Arkisto


Huippujen laskeminen

29.4.2020 klo 16.06, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Oikeakätinen neutriino on kenties yksinkertaisin ehdokas pimeän aineen hiukkaseksi. Viime kuussa kirjoitin oikeakätisen neutriinon yhteydestä siihen kysymykseen, miksi maailmankaikkeudessa on enemmän ainetta kuin antiainetta. Tulin kommenteissa maininneeksi, että oikeakätisen neutriinon massalle on yläraja siitä, että se voi hajota tavalliseksi neutriinoksi ja röntgensäteeksi, eikä tällaista säteilyä ole nähty.

Kommenttini sattuikin olemaan sikäli ajankohtainen, että Science-lehdessä julkaistiin viisi päivää sen jälkeen artikkeli (tässä ilmainen versio), jonka pääsisältö on juurikin se, että tuota neutriinoiden hajoamissäteilyä ei ole havaittu. Kaksi ja puoli viikkoa myöhemmin puolestaan julkistettiin kaksi sitä arvostelevaa artikkelia. Selvitän tässä tilannetta, mutta tiivistettynä vastaus kysymykseen siitä, onko pimeän aineen säteilyä havaittu on ”ehkä”.

Jos pimeän aineen hiukkanen voi hajota, siitä syntyvää säteilyä pitäisi tulla joka puolelta, koska pimeää ainetta on kaikkialla. Säteilyä pitäisi tulla sitä enemmän, mitä isompi pimeän aineen tiheys on. Niinpä kirkkaimmin pimeydestä hohtaisivat sellaiset paikat kuin Linnunradan keskusta ja galaksiryppäät.

Valitettavasti siellä, missä on eniten pimeää ainetta on myös eniten tavallista ainetta. Suurin pulma on pimeän aineen säteilyn erottaminen tavallisen aineen säteilyn seasta. Tämä ongelma on riivannut myös muiden pimeän aineen hiukkasiksi tarjottujen ehdokkaiden annihilaatiossa syntyvän signaalin etsimistä.

Syynäämistä helpottaa se, että hajoamisessa tai annihilaatiossa syntyvillä hiukkasilla on aina sama energia. Jos oikeakätinen neutriino hajoaa neutriinoksi ja fotoniksi, kummankin energia vastaa puolta neutriinon massasta. Niinpä taivaalla näkyvän säteilyn energiajakaumassa pitäisi näkyä terävä piikki.

Useimpien tähtitieteellisten kappaleiden ja ilmiöiden –vaikkapa neutronitähtien törmäysten– lähettämän säteilyn kirkkaus riippuu melko tasaisesti energiasta kuin nouseva tai laskeva mäki, siinä ei ole kapeita piikkejä eikä kuoppia. Poikkeuksena ovat yksittäiset atomit, joiden energia on kvantittunut, eli ne lähettävät valoa vain tietyillä energioilla.

Oikeakätisten neutriinojen etsimiseen taivaalta on siis periaatteessa yksinkertainen resepti: mitataan röntgensäteitä, siivotaan pois tasaisesti energiasta riippuva tausta ja atomien tunnetut energiapiikit. Jos jäljelle jää energiapiikki, on löydetty pimeää ainetta. Säteilyn energia kerrottuna kahdella kertoo sitten pimeän aineen hiukkasen massan. Säteilyn kirkkaudesta voi puolestaan päätellä hiukkasen eliniän, jos tietää pimeän aineen tiheyden. Mitä lyhytikäisempi hiukkanen, sitä useammin niitä hajoaa, joten sitä enemmän säteilyä tulee.

Reseptin seuraaminen ei käytännössä ole aivan helppoa. Viime viikkoina esille nousseen kiistan juuret ovat vuoden 2014 havainnoissa. Silloin kaksi ryhmää kävi läpi galaksiryppäistä ja Andromedan galaksista tehtyjä röntgensädehavaintoja. Eri kohteissa näkyi energiahuippu, joka ei vastaa mitään atomien lähettämää valoa ja sopii hyvin oikeakätisen neutriinon odotettuun massaan. Lisäksi eri teleskooppien havainnot olivat yhteensopivia. Säteilyn kirkkaus vieläpä sopi pimeän aineen odotettuun tiheyteen ja oikeakätisen neutriinon mahdolliseen elinikään. Havaintojen mukaan oikeakätisen neutriinon elinikä olisi 10^27 sekuntia, eli kymmenen miljardia kertaa pidempi kuin maailmankaikkeuden ikä. (Koska hiukkasia on paljon, osa niistä silti hajoaa koko ajan.)

Signaali oli kuitenkin heikko, kirkkaus oli huipussaan vain prosentin taustaa korkeammalla. Lisäksi esitettiin erilaisia tähtitieteellisiä selityksiä huipun alkuperälle. Tulkintaa vaikeutti se, että röntgenteleskoopit eivät pystyneet mittaamaan energiaa tarpeeksi tarkkaan tehdäkseen eroa terävän piikin ja vähän leveämmän huipun välillä. Niinpä jäätiin odottamaan uusia havaintoja, jotka voisivat varmistaa tai kumota piikin olemassaolon ja alkuperän.

Nyt maaliskuussa julkaistussa Science-lehden artikkelissa onkin kokonaisen vuoden verran uusia röntgenhavaintoja Linnunradasta. Tutkijat katsoivat Linnunradan sellaisia suuntia, joissa taivas on mahdollisimman tyhjä, jotta tavallisesta aineesta syntyvää säteilyä olisi mahdollisimman vähän. He eivät löytäneet mitään energiapiikkiä. Tästä he päättelivät, että pimeä aine ei ole oikea selitys aiemmille havainnoille galaksiryppäistä ja Andromedasta, koska silloin myös näissä Linnunradan havainnoissa olisi pitänyt näkyä huippu.

Tässä vaiheessa mainittakoon, että vaikka Science ja Nature ovat maailman arvostetuimpia tiedelehtiä, kosmologiassa niille vähän naureskellaan. Näihin lehtiin halutaan erityisen tärkeitä tuloksia ja läpimurtoja, mikä johtaa (ainakin kosmologiassa) siihen, että niissä julkaistaan suureelliseen kuosiin puettua vakiotavaraa sekä liian kauas kurottavia ja siksi virheellisiä tuloksia.

Niin ilmeisesti nytkin. Kaksi ja puoli viikkoa Sciencen artikkelin ilmestymisen jälkeen (se oli sitä ennen ollut yli vuoden saatavilla arXiv-nettiarkistossa) jälkeen kahdessa kommentissa huomautettiin vakavista puutteista.

Science-artikkelin kirjoittajat vertasivat analyysissään kahta vaihtoehtoa: onko energiajakauma tasainen vai onko tasaisen jakauman päällä yksi huippu? Näistä tasainen jakauma ilman huippua sopii havaintoihin paremmin. Havaitulla energia-alueella on kuitenkin kaksi tunnettua atomeista syntyvää energiahuippua. On siis mielekkäämpää verrata seuraavaa kahta vaihtoehtoa: tasainen jakauma plus kaksi huippua vai tasainen energiajakauma plus kolme huippua?

Käyrä, jossa on kolme huippua sopii havaintoihin selvästi paremmin kuin sellainen, jossa on vain kaksi huippua tai ei yhtään. Science-artikkelin kirjoittajat eivät siis onnistuneet löytämään taivaalta tarpeeksi tyhjää aluetta, etteikö siellä hehkuvia atomeita lymyäisi. Sitten he olivat luulleet kolmea matalaa vierekkäin olevaa huippua tasaiseksi käyräksi.

Kolmannen huipun paikka ja korkeus sopii hyvin yhteen aiempien havaintojen kanssa. Havaintojen tarkkuus ei kuitenkaan vieläkään riitä pimeän aineen selityksen varmistamiseen tai kumoamiseen. Tarvitaan parempia laitteita.

Japanin avaruusjärjestö JAXA laukaisi helmikuussa 2016 Hitomi-satelliitin, jonka laitteiden joukossa oli erittäin tarkka röntgenteleskooppi. Hitomin odotettiin ratkaisevan ongelman hyvin nopeasti. Ohjelmisto- ja laiteongelmien takia satelliitti kuitenkin tuhoutui kiertoradalla maaliskuussa 2016 ennen mittausten aloittamista. JAXA lähettää yhdessä Yhdysvaltojen avaruusjärjestö NASAn ja Euroopan avaruusjärjestö ESAn kanssa lähivuosina taivaalle XRISM-teleskoopin, joka korvaa Hitomin. Tuloksia odotetaan suurella mielenkiinnolla.

Oikeakätisten neutriinojen metsästykseen suunnitellaan myös hiukkaskiihdytinkokeita. Jos jotain löytyy taivaalta tai maan päältä, toisella saralla voidaan varmistaa ensimmäinen havainto täysin riippumattomasti – tai osoittaa, että jotain on taas tulkittu väärin.

22 kommenttia “Huippujen laskeminen”

  1. Eusa sanoo:

    Entäpä vasenkätinen antineutriino? Eikös silloin uskota siihenkin, jos oikeakätiseen neutriinoon?

    Tällä haavaa kai näyttää siltä, että oikeakätisyys ja antineutriinous voivat olla kytkennällinen välttämättömyys, vai kuinka?

    Kaikki todentamaton on uskonvaraista.

    1. Syksy Räsänen sanoo:

      Jos on olemassa oikeakätisiä neutriinoita, on tosiaan olemassa myös vasenkätisiä antineutriinoita.

  2. Lentotaidoton sanoo:

    Räsänen: Science-artikkelin kirjoittajat eivät siis onnistuneet löytämään taivaalta tarpeeksi tyhjää aluetta, etteikö siellä hehkuvia atomeita lymyäisi.

    Tulee mieleen taannoinen (2014) kohu-uutinen siitä että BICEP2-tutkimus väitti löytäneensä mikroaaltotaustasta varhaisen kosmoksen gravitaatioaaltojen polarisaatiokuvion. No kuvio oli totta, mutta se tuli Linnunradan pölystä.

    Tällöinkin tutkimuksessa etsittiin nimenomaan tarpeeksi ”tyhjää” aluetta Linnunradasta. Planckin karttaa Linnunradasta oli esikatseltu ei-riittävän huolellisesti.

    1. Syksy Räsänen sanoo:

      Vähän samanlainen tarina tosiaan, vaikka tässä tapauksessa itse datan suhteen oltiin huolellisempia.

      BICEP2:n tapauksessahan alue valittiin Planckin ryhmän jäsenen pitämässä esitelmässä näyttäneestä kuvasta otetun valokuvan perusteella, ymmärtämättä oikein mitä kuvassa oli.

      1. Syksy Räsänen sanoo:

        Sanottakoon, että jo vuoden 2014 havainnoissa käytettiin dataa taivaan keskivertoa tyhjemmistä alueista. Silloin niillä tuettiin sitä, että uusi piikki ei ole laitteeseen liittyvä virhe (koska sitä ei näkynyt taivaan tyhjemmässä osuudessa, toisin kuin Andromedan ja galaksiryppäiden suunnassa). Mutta nyt dataa oli enemmän, niin että siinä näkyi piikki.

        1. Kari O sanoo:

          Eikös ole niin, että jos taivaalla on ns. tyhjä alue, siellä on myös vähemmän pimeää ainetta?

          Tältä pohjalta koko esitetty periaate näyttää hiukan oudolta.

          Tietääkseni on niin, että esim. galaksit syntyvät, pysyvät koossa ja pyörivät tasaisesti juuri sen takia, että ne ovat syntyneet pimeän aineen massakeskittymiin.

          1. Syksy Räsänen sanoo:

            Pimeän aineen ja tavallisen aineen jakauma Linnunradassa on erilainen. Pimeä aine on mallien mukaan jakautunut pallomaisesti, näkyvässä aineessa on paljon isompia klimppejä ja enemmän rakennetta, esimerkiksi haarat.

            Kirjoitin merkinnässä kyllä näin: ”siellä, missä on eniten pimeää ainetta on myös eniten tavallista ainetta”. Tämä pitää paikkansa: tavallisen aineen tiheys on isoin Linnunradan keskustassa, kuten myös pimeän aineen tiheys. Tämä ei ole ristiriidassa sen kanssa, että taivaalla on suuntia (poispäin keskustasta ja haaroista), joissa tavallisen aineen ja pimeän aineen suhde on keskivertoa pienempi.

  3. Matti sanoo:

    Tässä tuli mieleen aihetta vain vähän sivuava kysymys:
    Olettamukset:
    1. Pimeä aine vuorovaikuttaa huonosti tavallisen materiaalin kanssa
    2. Pimeä aine noudattaa gravitaatiolakeja
    Näistä seuraa, että
    3. Pimeä aine putoaa massakeskittymiin, esim. tähtiin, mutta poistuu samalla nopeudella kuin saapuikin
    4. Kysymys: Entä mitä tapahtuu kun pimeä aine putoaa mustaan aukkoon?

    1. Syksy Räsänen sanoo:

      Kohdat 1-3 menevät tosiaan noin. Tosin se, että pimeä aine joskus vuorovaikuttaa tavallisen aineen kanssa johtaa siihen, että osa siitä törmäilee tähtien aineen kanssa, menettää energiaa ja jää niihin vangiksi. Tähdissä saattaa siis olla pimeän aineen ydin, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/pimea-sydan/

      Jos pimeää ainetta putooa mustaan aukkoon, sille käy samalla tavalla kuin tavalliselle aineelle.

      1. Matti sanoo:

        Ilmeisesti pimeä aine ei lähetä säteilyä kertymäkiekosta?
        Luulisi että sitä on tutkittu?

        1. Syksy Räsänen sanoo:

          Mustaa aukkoa kiertävä ainekiekko vaikuttaa ehkä huonoimmalta mahdolliselta paikalta etsiä pimeän aineen säteilyä, kun sieltä tulee monenlaista tavallisen aineen säteilyä paljon, ja aine liikkuu eri nopeuksilla, niin että spektriviivoja on vaikea erottaa.

  4. Martti V sanoo:

    Ilmeisesti steriilit neutriinot eivät vaikuta materiaan edes heikon vuorovaikutuksen kautta, mutta pystyvät törmäämään ja menettämään energiaa. Eikö tähän tarvita jotain vuorovakutusta? Onko oletettavaa, että vastaavia antihiukkasia esiintyy pimeässä aineessa ? Voitaisiinko annihilaatio havaita?

    1. Syksy Räsänen sanoo:

      Steriilien neutriinojen ainoat vuorovaikutukset (gravitaatiota lisäksi) on se, että ne voivat muuttua toisiksi neutriinoksi sekä hajota neutriinoksi ja fotoniksi.

      Ne eivät siis törmäile. Pimeän aineen jakauma galakseissa onkin erilainen kuin tavalliseen aineen juuri siksi, että pimeä aine ei pysty törmäilemään ja siten menettämään energiaa.

      Oikeakätisillä neutriinoilla ei ole annihilaatiosignaalia. Karkeasti sanottuna tämä johtuu siitä, että ne ovat omia antihiukkasiaan, kuten fotonit. (Oikeasti selitys on vähän monimutkaisempi.)

      1. Martti V sanoo:

        Eli steriliinin neutronin tapauksessa pimeitä tähtiä ei syntyisi, mutta kasvattavattavat mustia aukkoja. Muutenkaan ne eivät ilmeisesti kasaannu keskenään.

        1. Syksy Räsänen sanoo:

          Aivan. Kasaantuvat vain sen verran, minkä gravitaatio vetää. Eli niistä muodostuu isoja ja harvoja tihentymiä, kuten se, missä Linnunrata istuu. Galaksien sisällä on myös pienikokoisempia tihentymiä, mutta ei mitään tähtiin verrattavaa.

  5. Lentotaidoton sanoo:

    Tässä Suomen kielellä: Neutriinojen sekoitusmatriisin Majorana-vaiheet Hannu Hakalahti 2013
    https://jyx.jyu.fi/bitstream/handle/123456789/41303/URN:NBN:fi:jyu-201305031552.pdf?sequence=1

    1. Syksy Räsänen sanoo:

      Tuossahan on mukava historiaosuuskin.

  6. Jyri T. sanoo:

    Kiitos Lentsikka hyvästä vinkistä!

  7. Martti V sanoo:

    Tenkanen esitti viime vuoden puolella, että hiukkasfysiikan kokeissa olisi pitänyt jo näkyä merkkejä pimeästä aineesta, mikäli se olisi jäännettä alkuräjähdyksestä. Onko myös steriilistä neutriinosta odotettu tuloksia kokeissa?

    1. Syksy Räsänen sanoo:

      Siitä, mitä Tenkanen esitti, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/takaisin-alkuun/

      Tämä merkintä (sekä edellinen https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/vasemmalta-oikealle/) käsittelee juurikin sitä, millaisia merkkejä steriilistä neutriinosta odotataan kokeissa.

      1. Martti V sanoo:

        Tenkasen teksti oli hyvin perattuna.

        ”Suunnitteilla on useita kokeita, jotka yrittävät mitata näiden hiukkasten heiveröisiä signaaleja, esimerkiksi CERNin SHiP.”

        Lähinnä hain mitä signaaleja voisi löytyä, jos hajoaminen on ainoa vuorovaikutus ja onko niitä odotettu näkyvänkään.

        1. Syksy Räsänen sanoo:

          Tässä ja aiemmassa merkinnässä mainitut röntgensäteet esimerkiksi.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kuin putoava kivi

18.4.2020 klo 14.31, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Aika-avaruutta kuvaavan yleisen suhteellisuusteorian ja ainetta kuvaavan kvanttifysiikan yhdistäminen on fysiikan kenties suurin avoin kysymys. Ongelman kokonaisuuden kanssa ei tiedetä edes, ollaanko menossa oikeaan suuntaan, mutta kahdesta asiasta on melko vankalla pohjalla oleva ennuste.

Vuosina 1974-75 Stephen Hawking osoitti, että mustan aukon luona kvanttikentät säteilevät ulospäin. Vaikka tähtien romahduksessa syntyneitä mustia aukkoja on havaittu, niiden Hawkingin säteily on sen verta heikkoa, että sitä tuskin tullaan ikinä mittaamaan.

Toisaalta joukko tutkijoita –kärjessä Vjatseslav Mukhanov ja V.G. Chibisov– hahmotti 1980-luvun alussa, että varhaisessa maailmankaikkeudessa kosmisen inflaation aikana aika-avaruudessa on kvanttivärähtelyitä, jotka jäätyvät paikalleen. Näin syntyy pieniä epätasaisuuksia maailmankaikkeuden aineessa. Ne toimivat galaksien, planeettojen ja kaiken muun rakenteen siemeninä gravitaation kasvattaessa tihentymiä.

1980-luvulla kosminen inflaatio oli yksi spekulaatio muiden joukossa. Inflaatio kuitenkin eroaa Hawkingin säteilystä siinä, että sitä on 90-luvulta alkaen kokeellisesti testattu. Inflaatio ennustaa millaisia kvanttivärähtelyt ovat, ja kosmisen mikroaaltotaustan epätasaisuudet ja galaksien jakauma taivaalla vastaavat ennusteita monin tavoin.

Periaatteessa kuitenkin jokin muu tapahtuma voisi rypyttää maailmankaikkeutta samalla tavalla. Luottamusta inflaatioon lisäisi se, jos saisimme osoitettua, että rypyt ovat tosiaan peräisin kvanttivärähtelyistä.

Kvanttifysiikassa todellisuus on epämääräinen: esimerkiksi hiukkasilla ei ole määrättyä paikkaa, ainoastaan todennäköisyys olla eri paikoissa. Mitä tarkemmin hiukkasen paikka on määrätty, sitä epämääräisempi sen nopeus on, ja toisinpäin. Klassisessa fysiikassa sen sijaan hiukkasella on koko ajan sekä määrätty paikka että nopeus.

Arjen esineillä todennäköisyys olla yhdessä tietyssä paikassa ja liikkua tietyllä nopeudella on hyvin iso ja todennäköisyys olla missään muualla ja liikkua millään toisella nopeudella hyvin pieni, eli ne näyttävät käyttäytyvän klassisen fysiikan mukaan. (Ei tosin oikein ymmärretä miksi.) Mutta pienessä mittakaavassa –ja varhaisessa maailmankaikkeudessa– epämääräisyys on merkittävää.

Kosmisesta inflaatiosta on vastuussa jokin kenttä –ehkä Higgsin kenttä, ehkä joku toistaiseksi tuntematon kenttä– joka panee avaruuden laajenemaan kiihtyvällä nopeudella.

Kuten hiukkasen paikalla, kentän voimakkuudella ei ole yhtä määrättyä arvoa, vaan eri arvoja eri todennäköisyyksillä. Tätä arvojen epämääräisyyttä sanotaan kvanttivärähtelyiksi. Kun kentän voimakkuudesta tulee määrätty (ei tiedetä miten tämä tapahtuu), sen arvot eri paikoissa määräytyvät tämän todennäköisyysjakauman mukaan. Inflaation lopussa hajoaa tavalliseksi aineeksi, ja paikoissa, joissa kentän arvo on isompi, syntyy enemmän ainetta, ja niihin kehittyy galakseja. Inflaatiota ajaneen kentän arvojen todennäköisyysjakauma on siten painettu galaksien jakaumaan, ja myös kosmiseen mikroaaltotaustaan.

Nopeus, jolla kentän arvo muuttuu inflaation aikana, on sekin epämääräinen. Kentän muutosnopeus liittyy kentän arvoon samalla tavalla kuin hiukkasen nopeus liittyy hiukkasen paikkaan: mitä määrätympi on yksi, sitä epämääräisempi on toinen.

Inflaation aikana todennäköisyys pusertuu siten, että kentän arvosta tulee yhä tarkempi ja muutosnopeudesta yhä epämääräisempi. Samalla kuitenkin kentän arvo määrää muutosnopeuden yhä tiukemmin, eli ne ovat yhä vahvemmin kytköksissä.

Tämä ei ole ristiriitaista, vaikka siltä voi aluksi tuntua. Tilannetta voi verrata korkealta pudotettuun kiveen. Jos tietää, missä kohtaa kivi on, tietää tarkasti myös sen nopeuden, jos tuntee gravitaation ja ilmanvastuksen. Mutta nopeuden tietäminen ei anna yhtä tarkkaa tietoa kiven paikasta sen pudottua jonkin aikaa, koska ilmanvastuksen takia nopeus on alkuvaiheen jälkeen melkein sama paikasta riippumatta. Siis pieni muutos paikassa ei juuri vaikuta nopeuteen, mutta pieni ero nopeudessa tarkoittaa hyvin erilaista paikkaa.

Klassisessa fysiikassa paikalla ja nopeudella on tarkasti määrätty arvo, eli jos tietää yhden tismalleen, niin tietää toisenkin tismalleen. Mutta jos molemmilla olisi vain todennäköisyysjakauma, ja paikan todennäköisyys olisi keskittynyt yhteen arvoon, niin nopeuden todennäköisyysjakauma olisi hyvin lavea. Juuri näin käy inflaatiossa kentän arvon ja muutosnopeuden suhteen. Kentän nopeus lähestyy vakiota kuin putoavan kiven nopeus, joten pieni muutos kentän arvossa johtaa isoon muutokseen nopeudessa.

Kvanttioptiikan tutkijat kutsuvat tällaista systeemiä erittäin kvanttimekaaniseksi, koska se näyttää hyvin erilaiselta kuin klassinen systeemi, jossa paikka ja nopeus ovat suunnilleen yhtä epämääräisiä. (Gravitaatioaaltojen havaitsemisessa muuten käytetään fotoneita, joiden todennäköisyys on tällä tavoin puristunut.)

Kosmologit sen sijaan kutsuvat tällaista systeemiä klassiseksi. Tämä johtuu siitä, että kun mitataan kentän arvo, tiedetään myös sen muutosnopeus aika tarkkaan, eli näyttää siltä kuin molemmilla olisi määrätty arvo, kuten klassisessa fysiikassa. Jos mitattaisiin kentän nopeus, tilanne olisi tietysti toinen, mutta kentän nopeudesta ei jää jälkiä galaksien jakaumaan ja mikroaaltotaustaan, toisin kuin sen arvosta.

Kaiken kaikkiaan tulos on turhauttava: kvanttiefektit ovat inflaation aikana merkittäviä, mutta niiden todentaminen on hankalaa.

Ei kuitenkaan tiedetä tarkkaan, miten inflaatio on tapahtunut, ja on esitetty inflaatiomalleja, joissa kentän kvanttiluonteesta jää galaksien jakaumaan ja kosmiseen mikroaaltotaustaan leima. Toistaiseksi nämä mallit ovat melko koukeroisia, eikä niitä ole tarkoitettu realistisiksi, vaan osoittamaan, että on periaatteessa mahdollista mitata rakenteen siementen kvanttiluonne taivaalta, ja ideat kehittyvät koko ajan.

Tämä on hyvä esimerkki siitä, miten hedelmällisistä tutkimussuunnista löytyy usein yllättäviä yhteyksiä ja tuoreita tuloksia. Inflaatio kehitettiin vuonna 1980 selittämään, miksi maailmankaikkeus näyttää samanlaiselta kaikissa suunnissa. Tuskin kukaan arvasi, että tähän kysymykseen vastaaminen johtaisi siihen, miten todellisuuden kvanttiluonteen voi mitata taivasta katsoen – ja ehkä myös siihen, miksi maailmankaikkeuden tila nykyään näyttää määrätyltä eikä epämääräiseltä.

19 kommenttia “Kuin putoava kivi”

  1. Lentotaidoton sanoo:

    (Gravitaatioaaltojen havaitsemisessa muuten käytetään fotoneita, joiden todennäköisyys on tällä tavoin puristunut.)

    2017 kirjoitit gravitaatioaalloista. Kommentoinnista:

    Lentotaidoton: Kiitoksia. Tuossahan tuo tuli sanotuksi: However, by using a crystal with non-linear optical properties, it is possible to prepare a special state of light where most of the uncertainty is concentrated in only one of the two variables. Such a crystal can convert normal vacuum to ”squeezed vacuum”, which has phase fluctuations SMALLER than normal vacuum! At the same time, the amplitude fluctuations are larger, but phase noise is what really matters for LIGO.

    Räsänen: Tämä epämääräisyyden pienentäminen yhdelle muuttujalle ja kasvattaminen toiselle on muuten sattumoisin avain siihen, että inflaation aikaisista kvanttivärähtelyistä (jotka toimivat kaiken rakenteen siemeninä) tulee melkein klassisen näköisiä. (Tästä ehkä toiste enemmän!)

    1. Syksy Räsänen sanoo:

      Kiitos, tosiaan.

      Valon tapauksessa tosiaan paikkaa vastaan aallon korkeus ja nopeutta sen vaihe.

  2. Jyri T. sanoo:

    Mikä on käsitys tällä hetkellä: oliko mitään muita kenttiä olemassa inflaation aikana, vai alkoivatko ne vaikuttaa vasta inflaation lopun aikoihin?

    1. Syksy Räsänen sanoo:

      Ei tiedetä. Monen kentän inflaatiomalleja on tutkittu paljon, mutta toistaiseksi niitä ei tarvita havaintojen selittämiseen, yksi kenttä riittää.

  3. Martti V. sanoo:

    Miten tiedepiireissä nykyään suhtaudutaan nollaenergiseen universumiin, joka olisi syntynyt suuresta kvanttifluktuaatiosta?

    1. Syksy Räsänen sanoo:

      Se on yksi spekulaatio muiden joukossa. Idea ei ole ollut kovin hedelmällinen, eikä ole päätynyt osaksi kosmologien työkalupakkia, toisin kuin inflaatio. Mutta voihan sen aika vielä tulla.

  4. Martti V. sanoo:

    Teorian epäsuosio hieman ihemetyttää. Eikö tästä teoriasta saada tutkimuksellista tarttumapintaa vai onko se ristiridassa muiden teorioiden kanssa?
    Minusta ajatusta puoltaa se, että nykyisen universumin laajenemiseen laskelmoitu tyhjiön energiatiheys näyttäisi juuri tällä hetkellä olevan osapuilleen yhtä suuri kuin materian energiatiheys. Se selittyisi, jos positiivinen inflaatioenergia aina kompensoi negatiivista gravitaatioenergia niin, että universumin nettoenergiasta tulee nolla. Kiihtyvään laajenemiseen olisi syynä, että negatiivinen gravitaatioenergia on kasvanut itsearvoltaan massakeskittymissä.

    1. Syksy Räsänen sanoo:

      Muistettakoon, että tämä kommenttiosio ei ole paikka omien teorioiden esittelyyn.

      Teoriat maailmankaikkeuden syntymisestä tyhjästä olivat osa kvanttimekaniikan yksinkertaista soveltamista koko maailmankaikkeuteen. Tällainen soveltaminen ei juuri tehnyt ennusteita eikä muutenkaan ollut hedelmällistä. Ennusteiden osalta inflaatio on ajanut ohi tällaisista ideoista (jotka eivät toki ole ristiriidassa inflaation kanssa) ja kvanttifysiikan ja suhteellisuusteorian yhdistämisen osalta säieteoria ja vähemmässä määrin silmukkakvanttigravitaatio ovat noidenn ideoiden perillisiä.

  5. Martti V. sanoo:

    On ymmärrettävää, että varhaisessa tiheässä universumissa kvanttivärähtelyt ovat antaneet siemenet materian jakaumaan. Selittääkö inflaatioteoria sen enempää kvanttikenttäteorian yhteyttä gravitaatioon?

    Jos Higgsin kenttä on mahdollisesti aiheuttanut inflaation, voisiko sama kenttä määrittää suhteellisuusteorian aika-avaruuden geometrian? Jos kenttä antaa massan tietyille hiukkasille, vaikuttaako massa myös kentän arvoon?

    1. Syksy Räsänen sanoo:

      Inflaatiossa aika-avaruuden ja kentän pieniä poikkeamia keskiarvosta käsitellään kvanttikenttinä kaarevassa aika-avaruudessa (gravitaatio on aika-avaruuden kaatevuuden ilmentymä).

      Inflaatio ei kerro mitään kvanttikenttien ja gravitaation yhteydestä näitä pieniä poikkeamia lukuunottamatta. Rakenteen siementen lisäksi se kuvailee vain kvanttivärähtelyistä syntyviä gravitaatioaaltoja, ks. http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/maljan_jaljilla

      Aika-avaruuden geometria määräytyy sen ainesisällöstä, eli mikä ikinä kenttä on vastuussa inflaatiosta juurikin määrittää aika-avaruuden geometrian inflaation aikana. Kiihtyvä laajeneminen on aika-avaruuden geometrian ilmentymä (ja laajeneminen ylipäänsä).

      En ole varma ymmärränkö kysymystä siitä vaikuttaako massa kentän arvoon. Minkä massa? Yleensä minkä tahansa hiukkasten massako? Massa vaikuttaa gravitaation kautta kaikkeen mitä aika-avaruudessa on.

  6. Martti V. sanoo:

    Tarkoitin kysymyksellä aiheuttaako esim. minkä tahansa massan liikkuuminen muutosta sitä ympäröivän Higgsin kentän energia-arvoihin ? Pitäisikö gravitaatioaallot näkyä aaltoina Higgsin kentässä?

    Yleisesti ajatellaan, että Higssin efektissä energiaa siirtyy tyhiiöstä hiukkaseen. Energian säilymisen puitteissa efekti laskisi hiukkasen ympäröivää tyhjiön energiapotentiaalia (tämä lause omaa spekulointia), mikä voisi näkyä Higssin kentässä.

    1. Syksy Räsänen sanoo:

      Kyllä ensimmäiseen, mutta nykymaailmankaikkeidessa vaikutus on mitättömän pieni.

      Gravitaatioaalloilla ei ole massaa, ja ne häiritsevät Higgsin kenttää mitättömän vähän.

      En ole varma, mihin ”Higgsin efekti” viittaa. Higgsin mekanismissa (jolla hiukkaset saavat massansa) energiaa ei siirry tyhjöstä hiukkasiin.

      1. Martti V. sanoo:

        Kiitokset vastauksista. Higgsin mekanismia tarkoitin (efektiä käytetty jossain synonyyminä ja enkä löydä nyt tieteellistä julkaisua tyhjiöenergiaan liittyen). Higssin mekanismissa Higssin potentiaali laskee pienimpään arvoon (kaiketi negatiiviseksi) eli kentän energia pienenee massan saaneen bosonin kohdalla.

        1. Syksy Räsänen sanoo:

          Higgsin potentiaalin minimiarvo on nolla, ei negatiivinen.

          Higgsin kentän arvo määrää sekä hiukkasten massat ja Higgsin kentän energiatiheyden, mutta nuo kaksi asiaa eivät muuten liity toisiinsa. Hiukkasten massat eivät vähennä kentän arvoa.

  7. Lentotaidoton sanoo:

    Räsänen: Ei tiedetä. Monen kentän inflaatiomalleja on tutkittu paljon, mutta toistaiseksi niitä ei tarvita havaintojen selittämiseen, yksi kenttä riittää.

    Tulee heti mieleen tietysti suomalaiset. Eli Kari Enqvistihän oli mukana kehitelmässä, jossa toisena kenttänä (Higgsin lisäksi) on ns kurvatoni kenttä. Vaikka käsittääkseni se ei itse ”aja” inflaatiota mutta luo sille kaareutumishäiriöitä itse inflatonikentän (mikä se sitten onkin) hajottua. Osaatko sanoa vieläkö tämä jo 20 vuotta vanha kehitelmä on ”hapessa”?

    1. Syksy Räsänen sanoo:

      Kari Enqvist ja silloinen huonetoverini Martin Sloth olivat tosiaan ensimmäiset jotka esittivät kurvatonikenttää. Heidän alkuperäinen ideansa tosin ei liittynyt inflaatioon, vaan nk. pre-big bang -skenaarioon. Sittemmin Enqvist (ja muut) on soveltanut ideaa myös inflaatioon.

      Inflaatiokurvatonimalleja on moneen lähtöön, niistä osa sopii vielä havaintoihin, mutta mitään tukea idealle ei ole tullut. Kurvatoneilla on tiettyjä piirteitä (esimerkiksi kosmisen mikroaaltotaustan epätasaisuuksien nk. epägaussisuus). Jos niitä olisi nähty, se tukisi kurvatoneja. Se, että niitä ei ole nähty heikentää niiden tenhoa, mutta ei osoita niitä vääriksi (koska piirteet voivat olla heikkoja).

  8. Lentotaidoton sanoo:

    Räsänen: Kurvatoneilla on tiettyjä piirteitä (esimerkiksi kosmisen mikroaaltotaustan epätasaisuuksien nk. epägaussisuus). Jos niitä olisi nähty, se tukisi kurvatoneja. Se, että niitä ei ole nähty heikentää niiden tenhoa, mutta ei osoita niitä vääriksi (koska piirteet voivat olla heikkoja).

    Kurvatonien epägaussisuudesta näkyykin olevan esim Tenkasen pro gradu (2013) https://helda.helsinki.fi/bitstream/handle/10138/42000/Pro_gradu_Tommi_Tenkanen.pdf?sequence=2&isAllowed=y
    Mielenkiintoista luettavaa, kannattaa lukaista. Tässä jokunen poiminta Tenkasen paperin epägaussisuudesta:

    ”On syytä korostaa, että kurvatoni ja inflatoni ovat kuitenkin vain kuvailevia malleja vailla hiukkasfysiikan motivointia, eikä niitä ole havaittu.

    Havaintojen ensimmäisen asteen epägaussisuudelle tarjoamat rajat saattavat myös paljastua niin pieniksi, että tällaisen epägaussisuuden suorasta havaitsemisesta tulee periaatteessakin mahdotonta.
    Kaarevuusperturbaation jakaumassa esiintyvää epägaussisuutta ei ole toistaiseksi havaittu, mutta havainnot asettavat tiukkoja rajoja poikkeamille gaussisesta tapauksesta . Olemme johtaneet ennusteen ensimmäisen ja toisen asteen epägaussisuudelle yhden kentän tapauksessa ja todenneet, että mikäli selvästi nollasta poikkeavaa toisen asteen epägaussisuutta tullaan joskus havaitsemaan, sulkee tämä pois sellaisen yhden kentän inflaatiomallin, jossa kaarevuusperturbaatio generoidaan inflaatiota ajaneen kentän inflaation aikaisista kvanttifluktuaatioista”.

  9. miguel sanoo:

    Ehkä tähän on jo jossain vastattu, mutta kysymyksenä (ei omana teoriana), että universumin laajeneminen on johtanut samalla sen jäähtymiseen, miljoonista nykyisin kai 3 kelvinasteeseen. Jos laajeneminen jatkuu ja jos lämpöenergia on kvantittunutta, niin tuleeko edes teoriassa vastaan tilanne, jossa sen hetkisen lämpötilan ja absoluutisen nollapisteen välillä ei ole ”puoliväliä”, kvanttiteorian takia, vaan vaihtoehtona on, ettei laajeneminen (ja lämpötilan lasku voi jatkua) ikuisesti, vaan se pysähtyy kuin seinään. Eri alueilla eri aikaan.

    1. Syksy Räsänen sanoo:

      Kysymys on vähän kaukana merkinnän aiheesta, joten en vastaa sen tarkemmin kuin ”ei”.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *