Arkisto
- joulukuu 2023
- marraskuu 2023
- lokakuu 2023
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- heinäkuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- marraskuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- lokakuu 2017
- syyskuu 2017
- elokuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Muisto läheisestä yhteydestä
Kosminen mikroaaltotausta on vanhinta valoa. Se irtosi aineesta, kun maailmankaikkeus oli 380 000 vuoden ikäinen. Sitä ennen lämpötila oli niin korkea, että atomit eivät pysyneet kasassa, vaan aine koostui irrallisista ytimistä ja elektroneista. Valo poukkoili jatkuvasti niiden sähkövarauksista, eikä päässyt liikkumaan vapaasti. Maailmankaikkeus oli tämän takia läpinäkymätön, kuten Aurinko nyt.
Kun katsoo Aurinkoa, näkee millainen se oli kahdeksan minuuttia sitten, kun silmiimme saapuva valo irtosi sen pinnalta. Kun katsoo kosmista mikroaaltotaustaa, näkee millainen maailmankaikkeus oli 14 miljardia vuotta sitten, kun havaintolaitteeseemme saapuva valo irtosi aineesta.
Vaikka emme näe Auringon sisään, sen pinnalta tulevasta valosta voi tehdä johtopäätöksiä siitä mitä sisustassa tapahtuu. Samoin kosmisesta mikroaaltotaustasta voi lukea jotain siitä, mitä tapahtui ennen sen irtoamista aineesta.
Mikroaaltotaustasta näytetään useimmiten kuva, missä on sen kirkkaus eri puolilla taivasta.

Tällaiset kuvat on koostettu muutamalla aallonpituudella tehdyistä mittauksista. Mikroaaltotaustaa voi myös mitata toisin päin: monella eri aallonpituudella, mutta välittämättä siitä mistä suunnasta valo tulee. Sitä, paljonko valoa on kullakin aallonpituudella kutsutaan spektriksi.
Kun COBE-satelliitin käänteentekevät tulokset mikroaaltotaustasta julkistettiin vuonna 1992, paljon huomiota kiinnitettiin juuri spektriin, jonka mittaus palkittiin vuonna 2006 puolikkaalla Nobelilla. Valon aallonpituus määräytyy suoraan sen energiasta, ja havaittu spektri noudattaa ennustettua lämpötasapainon energiajakaumaa mittauksen tarkkuudella, joka on yksi kymmenestuhannesosa.

Tämä oli merkittävä todiste sen puolesta, että maailmankaikkeus oli varhain kuuma ja tiheä. On nimittäin vaikea selittää miten mikään tähdissä, molekyylipilvissä tai missään muualla nykymaailmankaikkeudessa syntynyt valo olisi tarkkaan samassa lämpötilassa kaikkialla alun perin, ja koska valo vuorovaikuttaa itsensä kanssa vain heikosti, irrallaan kulkeva valo ei kulje kohti lämpötasapainoa. Mutta vanha valo kantaa yhä muistoa ajasta, jolloin se oli läheisesti yhteydessä aineeseen.
Sittemmin tärkeämmäksi on noussut COBEn mittaus mikroaaltotaustan jakaumasta taivaalla. Tämä ensimmäinen havainto kosmisen mikroaaltotaustan epätasaisuuksista palkittiin toisella puolikkaalla Nobelista vuonna 2006, ja on usein mainittu ”täsmäkosmologian” alkuna. Epätasaisuuksista on tullut kosmologian keskeinen havaintokohde, jonka avulla on onnistuneesti luodattu niin pimeää ainetta kuin muinaisten aikojen inflaatiota.
Mutta myös mikroaaltotaustan aallonpituusjakauma kertoo menneestä. Niin kauan kuin hiukkaset ovat tiukasti kytköksissä toisiinsa, ne siirtyvät takaisin kohti lämpötasapainoa jos niitä häiritään. Palautuminen kestää kuitenkin aikansa, ja valon irrottua aineesta se ei enää juuri vuorovaikuta, ja säilyttää silloisen tilansa. Niinpä mikroaaltotaustan spektriin kirjattu historiaa ajalta hieman ennen valon ja aineen irtoamista.
Jos kosmista keittoa häiritsee ennen kuin maailmankaikkeus on noin vuoden ikäinen, niin se ehtii palautua tasapainoon ennen valon irtoamista 380 000 vuoden iässä. Vuoden ja 380 000 vuoden välillä tapahtuneet jäljet eivät sen sijaan ehdi kadota ennen fossiloitumistaan mikroaaltotaustaan.
Yksi esimerkki mahdollisesta häiriötekijästä on hiukkasten hajoaminen. Jos on olemassa tuntemattomia hiukkasia, joiden elinikä on jotain kuukauden ja miljoonan vuoden väliltä, niiden hajoaminen jättäisi jälkensä mikroaaltotaustaan. COBEn mittausten perusteella tällaisten hiukkasten osuus maailmankaikkeuden energiatiheydestä pitää olla alle kymmenestuhannesosa, koska mitään merkkejä niistä ei ole nähty. Havainnot rajoittavat yhtä lailla myös sitä, paljonko kevyitä mustia aukkoja voi olla olemassa, jotta niiden Hawkingin säteilyn vaikutus ei näkyisi spektrissä.
Tällaisten spekulaatioiden lisäksi on yksi asia, jonka varmasti tiedämme hämmentävän muinaista puuroa: mikroaaltotaustassa näkyvät aineen epätasaisuudet. Gravitaation takia sopan sattumat tihentyvät entisestään, kunnes mukana kasautuvan valon paine työntää tiheän alueen takaisin, minkä jälkeen se taas tihentyy. Tämä aaltoilu työntää keittoa pois lämpötasapainosta siirtämällä energiaa fotonien välillä. Spektriin jää näin jälki keiton lyhyistä aalloista, jotka ovat jo ehtineet vaimeta mikroaaltotaustan irrotessa aineesta ja joita ei siksi siinä suoraan nähdä.
Koska epätasaisuudet ovat hyvin pieniä, sadastuhannesosan suuruisia, COBEn tarkkuus ei riittänyt havaitsemaan niistä johtuvia häiriöitä. Mikroaaltotaustan spektriä ei ole mitattu COBEn jälkeen, ja teknologia on kehittynyt valtavasti kolmen vuosikymmenen aikana, joten nykyisillä laitteilla nämä epätasaisuuksien jäljet näkyisivät. Tähän kaavailtiin 2010-luvulla PIXIE-satelliittia, jota ei kuitenkaan rahoitettu, mutta yhä valmistellaan paluuta spektrin mittaamiseen, jotta näkisimme muinaisten aikojen aineeseen pintaa syvemmälle.
16 kommenttia “Muisto läheisestä yhteydestä”
Vastaa
Kuratoitu läpileikkaus
Viime viikolla oli merkittävä vuotuinen kosmologiakonferenssi COSMO. Tällä kertaa se järjestettiin Yhdysvaltojen Illinois’n yliopistossa ja pidettiin etänä. COSMO-konferenssien sarja alkoi vuonna 1997, tavoitteena tuoda hiukkasfyysikkoja ja kosmologeja lähemmäs. Nykyään kentät lomittuvat niin sujuvasti, että nuorempi sukupolvi ei edes tiedä, että niiden välillä oli aiemmin paljon epäilyä ja väärinkäsityksiä.
COSMO-konferenssien johtokunnan jäsen Leszek Roszkowski mainitsi hiukkasfysiikasta Nobelin saaneen Martinus Veltmanin ykskantaan todenneen, että kosmologia ei ole tiedettä. Mielipide meni Veltmanin mukana tammikuussa hautaan, ja nykyään kukaan fyysikko tuskin esittää tällaisia kommentteja. Hiukkasfyysikoiden mielenmuutosta on edesauttanut se, että kosmologiassa on tehty läpimurtoja havaintojen saralla, merkittävimpänä vuonna 1998 julkistetut (ja 2011 Nobelilla palkitut) maailmankaikkeuden kiihtyvästä laajenemisesta kertovat supernovahavainnot.
Tämän vuoden COSMOssa näkyi, miten havaintovetoista kosmologia on, ja miten paljon teknologia ja data-analyysi ovat kehittyneet. Kun vuonna 2000 aloitin tutkimuksen tekemisen, muotiterminä oli ”täsmäkosmologia”. Tässä COSMOssa ei sanaa juuri kuultu, koska havaintojen ja analyysin täsmällisyys on ilmeistä ja tunnustettua.
Kosmologiakonferensseissa ei julkisteta uusia tuloksia eikä artikkeleita, jotka ovat kaikki luettavissa nettiarkistosta arXiv, mutta ne tarjoavat kuratoidun läpileikkauksen alan tilanteeseen ja ponnistuslaudan ajattelulle. Ohjelma koostuu kutsutuista puheista, jotka ovat enimmäkseen katsauksia johonkin osa-alueeseen, ja osallistujien omasta työstään tarjoamista lyhyemmistä esityksistä. Vuosien varrella naisten osuus on kasvanut merkittävästi: tämän vuoden 24 kutsutusta puhujasta 15 oli (nimen ja ulkonäön perusteella oletetusti) naisia.
Gravitaatioaalloilla oli ansaitusti iso rooli. Uusien havaintojen (ja Nobelin) edesauttamana alan tutkimus on laajentunut nopeasti. Kun kosmisen mikroaaltotaustan epätasaisuuksien ensimmäiset mittaukset julkistettiin vuonna 1992, data-analyysin ja havaintojen ohella kehitettiin rivakasti erilaisia tapoja hyödyntää dataa ja lukea siitä kaikenlaista. Gravitaatioaallot ovat nyt samalla tavalla uusi väline, jolla voi luodata tähtien kehitystä, raskaiden alkuaineiden muodostumista, neutronitähtien rakennetta, värivuorovaikutusta, mustien aukkojen muodostumista, maailmankaikkeuden laajenemisnopeutta, yleistä suhteellisuusteoriaa, Higgsin kentän olomuodon muutosta ja niin edelleen. Kuten LIGO-koeryhmän Daniel Holz asian ilmaisi, tutkijat ovat odottaneet gravitaatioaaltojen datatulvaa, ja nyt se on alkanut.
Teoreetikot vaihtavat kentältä toiselle onnistumisten vetämänä ja epäonnistumisten hylkimänä. Monet vaikkapa gravitaatioaaltoihin tai Higgsin kenttään liittyvistä viime vuosien uusista ideoista olisi voitu keksiä vuosia sitten, mutta niitä ei tullut ajatelleeksi kuin havaintojen ja uuden keskustelun myötä. Teknologia ajaa havaintoja, mikä ruokkii teoriaa, mikä osoittaa miten analysoida ja tehdä havaintoja.
Teknologian kehitys näkyy myös teoriapuolella esimerkiksi siinä, että yhä enemmän tehdään raskaita yleisen suhteellisuusteorian kaikki yksityiskohdat huomioon ottavia numeerisia laskuja ei vain mustien aukkojen törmäyksistä, vaan myös kosmisesta inflaatiosta ja sen loppumisesta.
COSMOssa näkyi se, miten teoreetikot ovat siirtyneet enemmän lähellä havaintoja oleviin rajattuihin malleihin suureellisten rakennelmien sijaan. Säieteoria oli kuitenkin vielä vahvasti ainakin hengessä mukana. Tähän saattaa vaikuttaa se, että teoreettinen tutkimus on Yhdysvalloissa enemmän sidottua siihen, sen muotivirtauksiin ja persoonallisuuksiin kuin Euroopassa tai Aasiassa.
Gravitaatioaaltohavaintojen inspiroimana mahdollisten muinaisten mustien aukkojen tutkimus on paisunut. Pimeän aineen tutkimusta on päinvastoin ajanut havaintojen puute: koska aiemmin suosituinta ehdokasta pimeäksi aineeksi, nynnyä, ei ole löytynyt, tutkitaan yhä enemmän kaikenlaisia mahdollisuuksia.
Yksi esille nostettu idea on makroskooppinen pimeä aine, eli pimeä aine, joka koostuu isoista kasoista yhteen sitoutuneita hiukkasia, tavallisen aineen tapaan. Tällaisia kasoja pitäisi etsiä aivan eri tavalla kuin yksittäisiä hiukkasia, esimerkiksi katsomalla iskeytyykö tähtiin asteroidin massaisia mutta paljon nopeampia möykkyjä.
On aina havaintoja, jotka ovat ristiriidassa teorian kanssa, ja voi kestää kauan, ennen kuin saadaan selville, onko ongelma havainnoissa, teoriassa vai jossain oletuksissa. Yksi tällainen ongelma on se, miksi maailmankaikkeudessa näyttää olevan vain noin neljännes siitä määrästä litium-7:aa (eli ytimiä, joissa on kolme protonia ja neljä neutronia) mikä ennustetaan syntyvän maailmankaikkeuden ensimmäisten minuuttien aikana. Poikkeama on tilastollisesti erittäin merkittävä. Nyt on viimein paikallistettu uskottava mahdollinen selitys. Litiumin määrä on arvioitu vanhojen tähtien pinnalta, ja uusien havaintojen nojalla niissä on tapahtunut odotettua enemmän kehitystä, missä pinta on voinut sekoittua alempien kerrosten kanssa, johtaen litiumin tuhoon.
Kosmologian puhutuin ristiriita tällä hetkellä on se, että eri havainnot näyttävät antavat eri arvon maailmankaikkeuden laajenemisnopeudelle. Vastakkain ovat asettuneet erityisesti kosminen mikroaaltotausta ja kosmisen naapuruston supernovat. Kosmisen mikroaaltotaustan fysiikka tunnetaan erinomaisesti ja mittaukset ovat tarkkoja, mutta laajenemisnopeuden lukeminen siitä vaatii oletuksia pimeästä energiasta. Etäisyyksien mittaaminen supernovalla kärsii epävarmuuksista tähtien ja muiden järjestelmien mallintamisessa, mutta ei juuri riipu siitä, millaista pimeä energia on (tai onko sitä).
Havaintoryhmä Dark Energy Surveyn uudet havainnot galaksien jakaumasta ja gravitaatiolinssivääristymistä tukevat kosmisen mikroaaltotaustan tuloksia. Supernovapuolella on avautunut sisäinen ristiriita eri etäisyysmääritysten välillä: yksi tapa sopii yhteen kosmisen mikroaaltotaustan kanssa, toinen ei ja kolmas on liian epätarkka, että voisi vielä sanoa. Kovasta syynäämisestä huolimatta kummastakaan tarkassa supernovamenetelmässä ei ole löydetty virhettä. Mutta nyt tiedetään paremmin mistä katsoa, ja voi olla että huolellisen analyysin jälkeen osoittautuu että ongelmana on supernovien ympäristön tai tähtien mallintaminen, tai jokin muu kosmologian kannalta arkinen lähipiirin touhu.
COSMOn sävy oli innostunut ja eteenpäin ravaava. On uusia tarkkoja havaintoja, tulevia innostavia projekteja ja hauskoja teoreettisia ideoita. On silti syytä muista, että vaikka havainnot voivat tarjota vastauksen isoihin kysymyksiin –pimeän aineen luonne, kiihtyvän laajenemisen syy, inflaation yksityiskohdat, aineen ja antiaineen epäsuhdan synty– ja paljastaa jotain yllättävää, siitä ei ole mitään taetta. Kosmologian tulevaisuus on havaintojen arpapeliä.
16 kommenttia “Kuratoitu läpileikkaus”
-
Entäpä jos pimeän aineen möykyt ovatkin valovuosien kokoisia sumeita rakenteita?
-
Ketä voi kutsua ensimmäiseksi kosmologiksi, nykytieteen mielessä ? Albert Einstein ?
Voinee kai sanoa että meni monta vuosikymmentä niin että kosmologia oli kokonaan teoreetikoiden juttu ?
Tähtitieteilijäthän jakaantuvat teoreetikoihin ja havaitsijoihin, joista jälkimmäiset siis vastaavat fysiikan kokeilijoita.
Ja nykyäänhän on sitten simuloijia jotka lasketaan teoreetikoiksi tai sitten omaksi ryhmäkseen.
Onko nykyään olemassa sellainen identiteetti kuin havainnoitsija-kosmologi ? -
Pimeän aineen hiukkasten detektoinnissa taidetaan olla hieman epätoivoisia. Onko muunnellut gravitaatioteoriat nostaneet profiilia viime aikoina?
-
Onko pohdittu sellaista vaihtoehtoa, että jostain syystä pimeä aine ei pysty ”lokalisoitumaan” — eli jostain syystä tavallisten hiukkasten kyky muuttua tarvittaessa ”aallosta hiukkaseksi” ei koskekaan pimeää ainetta vaan se pysyy (nykyenergioissa) aina aaltomuodossa?
Siinä tapauksessa pimeän aineen hiukkasia etsittäisiin aivan turhaan.
-
taas kerran mielenkiintoinen läpileikkaus kuukauden aiheesta!
Riittääkö kvantti-painoteorian löytäminen selittämään galaksien
rotaation teoreettisen virheellisyyden ja siten sulkisi pois
pimeän aineen olemassaolon tarpeellisuuden tai vähintään muuttaisi asian
hahmotusta tiedeyhteisöissä merkittävästi?Entä voisiko uusimmalla muon- g -2 löydöllä (mikäli se osoittautuu oikeaksi)
mitään tekemistä pimeän aineen pois rajaamisessa? -
Litium probleemiin liittyen. Mainitsemasi ”litiumin tuho alaspäin hajoamisena” vanhoissa tähdissä on varmaankin se todennäköisin selitys. Eikö myös ole mahdollista, että osa puuttuvasta litiumista löytyy niistä galaksiytimien muustien aukkojen sylkemistä miljoonaasteisista purkaussuihkujen seittirihmastoista, galaksien välitiloissa, joissa vetykin on ionisoitunut näkymätttömäksi protoniainekseksi. Aikoinaan v. 2018 ilmoitettiin, muistaakseni 20.6:tta, että baryonistakin ”kateissa” ollutta ainetta oli löytynyt se puuttuva kolmannes juuri näistä seiteistä, Tässä Fabrizio Nicastron tukimusryhmässä havainnot paikallistettiin mukana olevien happiatomien perusteella, niissäoli yhä tallella kahdeksasta elektronistaan 2kpl, jotka sitten splittaamalla ytimiensä kanssa antoivat puuttuvat signaalit massojen arvioinneille.
Eikö osa puuttuvaksi arvioidusta BBN – alun nukleosynteesi ainesosuuksista litiumin osalta voisi selittyä näissä korkeissa lämpötioissa näkymättömäksi, eli elektroniensa kanssa splittaamattomaksi, ionisoituneella litiummassalla?
Artikkeli: ”Last of universes missing ordinary matter”/ astrophysics, Fabrizio Nicastro
”Tähän kaavailtiin 2010-luvulla PIXIE-satelliittia, jota ei kuitenkaan rahoitettu, mutta yhä valmistellaan paluuta spektrin mittaamiseen, jotta näkisimme muinaisten aikojen aineeseen pintaa syvemmälle.”
Tutkailin noita PIXIE-satelliitin esittelyjä. Niiden mukaisesti laite todella olisi ollut erittäin edistyksellinen (ja olisi ilmeisesti tarkentunut moni asia varhaiskosmologiassa). Kompastuiko vain rahaan, vai oliko muita (teknisiä, tieteellisiä) esteitä? Olettaisi vielä kymmenessä lisävuodessa tulleen paljon lisätietoutta havainnointiin. Tämä laitehan olisi tietysti pureutunut vielä varhaisempiinkin aikoihin eli inflaation kosmologiaan (polarisaatio), tappoiko BICEP2 sähläys rahoituksen?
En valitettavasti tiedä miksi PIXIEtä ei rahoitettu. Pitääkin kysyä asiasta kun törmään taas spektrimittausten asiantuntijaan.
Voisiko olla niin, että valon dualismismissa olisi lopulta kyse ”vene vesillä -ilmiöstä. Kun kohdistetaan huomio tarkasti” veneeseen,” niin nähdään” vene”, mutta ”kauempaa katsottuna havaitaan vain liikkuvan veneen muodostamat aallot” https://physicsworld.com/wave-particle-duality-quantified-for-the-first-time/
Edistys fysiikassa edellyttää teorioiden matemaattisen rakenteen ymmärtämistä. Sitä ei voi saavuttaa tuollaisia populaareja vertauskuvia pohtimalla.
Aaltohiukkasdualismista hieman alla. Koska tämä ei liity merkinnän aiheeseen, niin ei siitä sen enempää.
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/pikkuhyrrien-kertomaa/
”Yksi esimerkki mahdollisesta häiriötekijästä on hiukkasten hajoaminen. Jos on olemassa tuntemattomia hiukkasia, joiden elinikä on jotain kuukauden ja miljoonan vuoden väliltä, niiden hajoaminen jättäisi jälkensä mikroaaltotaustaan.”
Paljonkohan tuossa alkukeitossa on tapahtunut kuplintaa aiheuttaneita satunnaisia fuusiopamauksia, kun ympäristön paine on puristanut alkeishiukkasia kasaan? Lisäksi tuollainen aaltoilu voisi summautua isoksi ’superaalloksi’, jolla saattaa olla kosmisia seurauksia 🙂
Fuusio tarkoittaa kevyiden atomiydinten yhtymistä raskaammiksi ytimiksi. Tätä tapahtuu vain noin kolmen minuutin ja puolen tunnin välillä: sitä ennen on niin kuuma, että ytimet eivät pysy kasassa, sen jälkeen niin kylmä, että ydinreaktiot sammuvat. Kuplimisella ei ole asian kanssa mitään tekemistä.
Täyttiko aine tuossa 380000 vuotta vanhassa maailmankaikkeudessa koko maailmankaikkeuden? Valo varmaankin lähti tuolloin joka suuntaan niin valohan etenee ainetta nopeammin niin laajentaako maailman kaikkeuden reunalta lähtenyt valo maailmankaikkeutta?
Näkyvän aineen ja valon tiheys on sama kaikkialla noin sadastuhannesosan tarkkuudella, pimeän aineen noin tuhannesosan.
Maailmankaikkeudella ei ole reunaa, ks
http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/muotoja-ilman-mittanauhaa/
CMB syntyaikoina universumi oli tasaista puuroa, jossa alkoi atomit muodostua. Toki fotonit sinkoilivat mm. atomeista joka suuntaan. Materian määrä universumissa ei varmaankaan ole ääretön? Näin ollen voisi ajatella, että fotonit ovat levinneet laajemmalle kuin materia.
Emme tiedä onko maailmankaikkeus äärellinen vai ääretön, emmekä näin ollen myöskään sitä, onko ainetta äärettömästi. Tällä ei kuitenkaan ole mitään tekemistä sen kanssa, ovatko fotonit levinneet laajemmalle kuin aine.
Olipa universumin topologia mikä tahansa sen tila kasvaa koko ajan. Jos koko on ääretön se kasvaa äärettömästä vielä suuremmaksi eli äärettömäksi. Voidaanko olettaa että taustasäteily on jakautunut tasaisesti tässä tapauksessa?
Kaikkialla näkemässämme maailmankaikkeudessa kosminen mikroaaltotausta -kuten kaikki muukin- on tilastollisesti samanlaista kaikkialla. (Avaruuden laajeneminen ei tee kosmisesta mikroaaltotaustasta erilaista eri puolilla.) Näemme 50 miljardin valovuoden päähän. Emme tiedä millaista kauempana on, mutta ei ole mitään syytä odottaa, etteikö kosminen mikroaaltotausta olisi tasainen muuallakin.
Kiitos vastauksesta. Jos universumi on ääretön, oli alussa myös ääretön lämpötila äärettömän tiheässä. Miksi taustasäteilyn lämpötila on laskenut arvoonsa? Vaikka ääretöntä jakaa millä tahansa tilavuusyksikölle lopputulos on ääretön.
Sillä, onko maailmankaikkeus äärellinen vai ääretön, ei ole mitään tekemistä sen kanssa, mikä siinä olevan aineen lämpötila on. Tämä riittäköön tästä.
Muistuuko mieleen onko taustasäteilystä menossa mitään uudenlaisia tutkimuksia vai onko siitä
kaavittu jo kaikki irti?
Merkinnässä kirjoitan siitä, miten kosmisen taustasäteilyn spektristä on tehty vain yksi mittaus, ja sitä haluttaisiin mitata tarkemmin.
Muut kosmisen mikroaaltotaustan suunnitteilla olevat kokeet tähtäävät sen polarisaation tarkempaan mittaamiseen gravitaatioaaltojen jäljen havaitsemiseksi.
Toistaiseksi varmistuneita kokeita ovat Simons Observatory ja japanilainen LiteBIRD-satelliitti, suunnitteilla on myös nimellä S4 kulkeva maanpäällinen laitteisto.
http://litebird.jp/eng/
https://simonsobservatory.org/
https://cmb-s4.org/