Arkisto
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- heinäkuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- marraskuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- lokakuu 2017
- syyskuu 2017
- elokuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Luomisen kuvajaisia
Luin hiljattain uudelleen Alan Lightmanin kirjan Einstein’s Dreams (suom. Einsteinin unet). Sen 179:llä pienellä sivulla seurataan Albert Einsteinin päiviä ja unia vuoden 1905 huhtikuusta kesäkuuhun, jolloin hän sai suppean suhteellisuusteorian valmiiksi.
Fyysikoiden elämästä kertovissa teoksissa on kaksi vaaraa. Ensinnäkin, jos tarkoitus on kuvata heidän työnsä sisältöä, kertoa sen tekemisestä tai avata sen merkitystä, niin eksyy helposti ellei tunne fysiikkaa ja sitä, millaista fysiikan tutkiminen on. Toisaalta tarina saattaa hukkua päähenkilönsä alle, kuten suurmieskertomuksissa usein. On vaikea ottaa etäisyyttä nerouden myyttiin, kuten esimerkiksi Feynman-sarjakuva osoittaa. Ongelmat ovat erityisen vakavia kun kyseessä on Einstein, josta tuli nerouden vertauskuva jo eläessään ja jonka kehittämä suhteellisuusteoria ei ole helppo kuvattava.
Ensimmäistä ongelmaa Lightmanilla ei ole, koska hän on tutkimusta tehnyt yleisen suhteellisuusteorian asiantuntija. Hänen väitöskirjaohjaajansa oli itse asiassa Kip Thorne, eräs suhteellisuusteorian vanhoja mestareita. Lightman välttää päähenkilön paisuttelemisen, kuitenkaan vähättelemättä tai ottamatta liikaa etäisyyttä, siten että pääosassa ei ole Einstein eikä Einsteinin tietoinen työskentely. Sen sijaan kirja keskittyy tämän näkemiin uniin, joissa aika ja avaruus ovat erilaisia tavalla, joka tavoittelee suppeaa, ja yleistäkin, suhteellisuusteoriaa. Unissa ihmisten käytös peilaa näitä eroja ja on inhimillinen kosketuspinta aika-avaruuden rakenteeseen.
Tutkimukseen kuuluu eri vaihtoehtojen vertaaminen, harhapolut ja lopulta oikean vaihtoehdon löytäminen. Lightmanin kuvaamat unet ovat runollinen tulkinta tästä fysiikan luomistyöstä. Unissa on oikeita ja vääriä oivalluksia, ja herätessä kirkkauteen unet putoavat mielestä, kuten väärät teoriantyngät hylätään kauniin totuuden löydyttyä. Osa luomistyöstä ja etsimisestä tehdään alitajuisesti, joten unet ovat sille luonteva kuvajainen.
Tieteessä, toisin kuin taiteessa, on kyse luomisen lisäksi samanaikaisesti löytämisestä: jos Einstein ei olisi vuonna 1905 muotoillut suppeaa suhteellisuusteoriaa, niin joku toinen olisi kehittänyt sen täysin samanlaisena myöhemmin. Lightmanin kirja pitää tarinan henkilökohtaisena tahdittamalla unia arkisilla päiväkohtauksilla Einsteinin elämästä Bernissä, joihin tuntuu tarttuneen unien merkityksellisyyttä.
Avaamalla yksityisiä unia Lightman tuo sisäisen luomisprosessin ulkoilmaan ja tekee abstraktista ajattelusta ja määrittelemättömistä tuntemuksista näkyvää. Einsteinin unet ovat läheistä sukua elokuvalle Alaston lounas, jossa David Cronenberg maalaa William Burroughsin merkkiteoksen luomistyön valkokankaalle Burroughsin elämästä ja kirjoista otetuilla tapahtumilla ja symboleilla.
2 kommenttia “Luomisen kuvajaisia”
Vastaa
Kaikenlaisia selityksiä
Multiversumi on paljon julkisuudessa. Siitä kirjoitetaan lukuisissa artikkeleissa (se on päässyt Tähdet ja avaruus –lehden 7/2014 kanteenkin), puhutaan lukemattomissa haastatteluissa ja sitä mainostetaan jatkuvasti, kuten Peter Woitin hiukkaskosmologian uutisia ja hölynpölyä seuraavan Not Even Wrong –blogin arkistoista näkyy. Multiversumista myös kysytään usein, joten kirjoitan siitä hieman. (Käsittelin asiaa hieman vuoden 2013 Tieteen päivien kirjassa.)
Multiversumi tarkoittaa kokoelmaa universumeita eli maailmankaikkeuksia. Tämä saattaa kuulostaa ristiriitaiselta, koska usein maailmankaikkeus määritellään siten, että se on kaikki mitä on olemassa. Multiversumilla tarkoitetaankin eri asiayhteyksissä eri asioita, ja joskus puhujille ei ole itselleenkään selvää, mitä he oikein tarkoittavat.
Yksinkertaisimmillaan sana multiversumi viittaa joukkoon maailmankaikkeuden alueita, jotka ovat kaukana toisistaan. Koska valo kulkee äärellisellä nopeudella ja maailmankaikkeuden ikä on äärellinen, jokainen havaitsija näkee vain palasen maailmankaikkeudesta. Meillä ei ole mitään tietoa horisontin takana olevista alueista, joten ne ovat käytännöllisesti katsoen irrallisia maailmankaikkeuksia, ainakin siihen asti kunnes niistä ehtii tulla valoa meille.
Sanaa multiversumi käytetään myös toisella tavalla. Jos maailmankaikkeus ymmärretään koko avaruudeksi, niin multiversumi tarkoittaa sitä, että on olemassa täysin erillisiä avaruuksia, jotka eivät ole yhteydessä keskenään. On tosin epäselvää, mitä tarkoitetaan sillä, että tällaisia avaruuksia on olemassa, koska yleensä fysiikassa jonkin asian olemassaolo tarkoittaa sitä, että sen kanssa on mahdollista vuorovaikuttaa, ainakin periaatteessa.
Tilanne ei tosin ole täysin vieras. Kun maailmankaikkeuden laajeneminen kiihtyy, aiemmin horisontin sisällä olleet alueet poistuvat horisontista, ja on mahdollista olla yhteydessä yhä pienempään osaan maailmankaikkeutta. Jos kiihtyvä laajeneminen jatkuu ikuisesti, niin kadonneet alueet eivät koskaan palaa takaisin kosketuksiin. Tuntuisi kuitenkin oudolta sanoa, että niitä ei enää ole olemassa. Fysiikan edistys johdattaakin miettimään uudelleen sitä, mitä olemassaolo tarkoittaa, myös esimerkiksi virtuaalisten hiukkasten tapauksessa. Mutta vaikka virtuaalisia hiukkasia ei voi suoraan havaita, ne perustuvat teoreettisesti hyvin tunnettuun ja kokeellisesti tarkasti testattuun kvanttikenttäteoriaan. Multiversumin pohja taas on hatara niin teorian kuin havaintojenkin osalta.
Jos muita maailmankaikkeuksia on olemassa –mitä se sitten tarkoittaakaan– niin ensi silmäyksellä vaikuttaisi siltä, että niillä ei voi olla mitään kokeellista merkitystä, koska ne ovat täysin erillisiä meistä. Multiversumia on yritetty yhdistää havaintoihin antrooppisen periaatteen kautta.
Antrooppinen periaate tarkoittaa yksinkertaisimmillaan sitä, että voimme havaita vain sellaisia maailmankaikkeuksia, ja sellaisista paikoista maailmankaikkeudessa, missä olemassaolomme on mahdollista. Osa havainnoistamme selittyy fysiikan laeilla, osa sattumalla ja osa antrooppisella periaatteella.
Esimerkiksi Aurinkokunnassa planeettojen etäisyyksien ja kiertonopeuksien suhde johtuu siitä, että gravitaatiovoima on kääntäen verrannollinen etäisyyteen. Toisaalta planeettojen lukumäärä on sattumaa: on olemassa aurinkokuntia, joissa on enemmän tai vähemmän planeettoja, eikä kahdeksassa ole mitään erityistä. Se, että kotiplaneettamme on juuri sopivalla etäisyydellä Auringosta elämän synnylle, selittyy antrooppisesti: emme olisi voineet kehittyä Jupiterissa tai Merkuriuksessa.
Tässä tapauksessa antrooppinen selitys perustuu siihen, että tiedämme, että on olemassa muita aurinkokuntia ja tunnemme niiden kehityksen määräävät fysiikan lait. Muuten ei olisi mahdollista selvittää, onko kysymys luonnonlaista, sattumasta vai antrooppisesta valinnasta.
Antrooppista periaatetta on viime aikoina sovellettu multiversumiin maailmankaikkeuden kiihtyvän laajenemisen selittämiseksi. Kiihtyvän laajenemisen syytä ei varmasti tiedetä, mutta suosituin vaihtoehto on tyhjän tilan energia. Tyhjön energia selittää hyvin havainnot, jos se on tarpeeksi pieni, mutta on vaikea ymmärtää, miksi se olisi niin pieni.
Jos oletetaan, että on olemassa multiversumi ja eri maailmankaikkeuksissa tyhjön energian on eri suuruinen, niin antrooppisen periaatteen mukaan elämme sellaisessa maailmankaikkeudessa, jossa tyhjön energia on yhteensopiva olemassaolomme kanssa. Jos tyhjön energia olisi paljon havaittua isompi, kiihtyvä laajeneminen olisi alkanut aiemmin, eikä planeettoja –eikä meitä– olisi olemassa. Mutta jos tyhjön energia olisi pienempi, niin siitä ei olisi olemassaolomme mitään haittaa. Pitää siis vielä keksiä joku syy, jonka mukaan suurimmassa osassa maailmankaikkeuksista tyhjön energia on niin iso kuin mahdollista ja olettaa, että meidän maailmankaikkeutemme on tyypillinen. Silloin havaittu tyhjön energian arvo on todennäköinen.
Tällainen selitys tyhjön energialle on saanut suosiota useiden kosmologien ja hiukkasfyysikoiden keskuudessa. Sen sosiologinen menestys on johdatellut seuraamaan samaa epätoivon reittiä muidenkin ongelmien kohdalla. Esimerkiksi ei tiedetä, mistä Higgsin hiukkasen massa määräytyy, mutta jos se olisi hyvin erilainen, niin maailmankaikkeus näyttäisi tyystin toisenlaiselta, eikä meitä olisi olemassa.
Antrooppinen selitys on kuitenkin saanut paljon kritiikkiä osakseen, ja monien tutkijoiden mielestä se ei ole edes kritisoimisen arvoinen. Ongelmana on se, että toisin kuin planeettojen tapauksessa, ei ole todisteita siitä, että olisi olemassa muita maailmankaikkeuksia, joissa on toisenlaiset olosuhteet kuin omassamme. On hyviä syitä ajatella, että on paljon avaruutta paljon tämänhetkisen horisontin tuolla puolen, mutta ei ole mitään vakuuttavia syitä uskoa, että siellä olisi perustavanlaatuisesti erilaista kuin täällä. Mitä täysin erillisiin avaruuksiin tulee, niiden olemassaololle ei ole mitään kunnollista teoreettista perustetta.
On esitetty, että säieteoria ennustaa multiversumin. Säieteoria on tutkituin ehdokas kvanttiteorian ja yleisen suhteellisuusteorian yhdistäväksi yhtenäisteoriaksi. Teoriaa ei kuitenkaan ole saatu täysin muotoiltua, eli ei tiedetä, mitä säieteoria tarkalleen on, joten se ei myöskään (ainakaan vielä) ennusta mitään. Itse asiassa antrooppista selitystä tyhjön energialle käytetään usein todisteena säieteorian oikeellisuudesta. Tällainen päättely on tieteellisen käytännön vastaista: jos tiedämme multiversumin olemassaolon ainoastaan säieteoriasta, niin emme samaan aikaan voi käyttää multiversumia todisteena sille, että säieteoria pitää paikkansa. Joidenkin multiversumin kannattajien mielestä tämä on hyvä syy muuttaa tieteen käytäntöjä.
Multiversumiselitysten suurin ongelma on se, että ne ovat hedelmättömiä. Ne eivät ennusta mitään, ja niitä sovelletaan vain selittämään havaintoja, jotka jo tiedetään, mutta joita ei ymmärretä.
Jos protonin elinikä olisi liian lyhyt, niin protonit olisivat tähän päivään mennessä hajonneet, eikä meitä olisi. Ei tiedetä, miksi protonien elinikä on niin pitkä. Jos protonin pitkäikäisyyden haluaisi selittää antrooppisesti, niin eliniän ei tarvitsisi olla kovin paljon maailmankaikkeuden nykyistä ikää pidempi. Protonin elinikä on kuitenkin yli kymmenentuhatta miljardia miljardia kertaa tätä pidempi. Tästä ei kuitenkaan päätellä, että antrooppinen periaate olisi väärä, vaan että protonin eliniällä on jokin muu selitys.
Toisaalta vuonna 1973 C.B. Collins ja Stephen Hawking esittivät, että avaruuden litteys selittyy antrooppisesti: jos avaruuden kaarevuus olisi iso, meidän olemassaolomme ei olisi mahdollista. 1980-luvun alussa keksittiin, että inflaatio selittää avaruuden litteyden, ja antrooppiset arvelut muuttuivat tarpeettomiksi.
On mahdollista, että elämme multiversumissa, jossa tyhjön energia selittyy antrooppisesti. On myös mahdollista, että elämme tietokonesimulaatiossa, jonka on tehnyt jokin supersivilisaatio, joka on jättänyt tyhjön energian vihjeeksi siitä, että maailmamme ei ole todellinen. Kummastakaan mahdollisuudesta ei ole mitään todisteita, eikä niiden pohtiminen vie tiedettä eteenpäin.
27 kommenttia “Kaikenlaisia selityksiä”
-
Jos multiversumista ei ole todisteita niin onko se vähän kuin uskonto?
Keksii kreationistitkin ”todisteita” ja ”teoriota” evoluutiota vastaan. -
Kiitokset mielenkiintoisesta kirjoituksesta!
Katselin jokin aika sitten Leonard Susskindin luentoa, jossa hän multiversumeista puhuessaan mainitsi että kahden multiversumin törmääminen voisi olla mahdollista, ja tämä olisi myös mahdollista havaita. Tämä arvostetun fyysikon kommentti herätti minussa kaksi kysymystä, joita uskallan näin sopivan blogimerkinnän kohdalla kysyä.
1. Miten nämä multiversumimallit määrittelevät ”tilan” jota laajenevat maailmankaikkeudet kyntävät ennen yhtymistään, sillä jossainhan ajattelisi olevan ajanhetki t-1 ennen törmäystä? Toisaalta nykykäsityksen mukaan yksittäisen maailmankaikkeuden kohdalla tätä tilaa ei ole olemassa.
2. On ehdotettu että fysiikan lait voisivat olla erilaisia eri multiversumeissa. Kun kaksi eri laeilla varustettua maailmankaikkeutta törmäävät, mitkä ovat vallitsevat luonnonlait tässä kombinaatiossa?
Blogimerkinnästäsi kävi hyvin selväksi miten huteralla pohjalla nämä mallit ovat, mutta koska moni fyysikko uskoo niihin, olisi mielenkiintoista tietää miten heidän matematiikkansa vastaa näihin kysymyksiin.
-
Syksy kirjoitti:
”1. Tässä on kyse saman avaruuden kahden eri alueen törmäämisestä.”
Jos saman avaruuden kaksi eri aluetta voivat törmätä keskenään, niin miten se tapahtuu?
Liikkuvatko saman ( laajenevan ) avaruuden eri alueet suhteessa toisiinsa jossakin tausta-avaruudessa?
Miksi ylipäätään on keksitty avaruus joka muuttuu?
Eikö riitä että on olemassa ainetta joka kokee muutosta avaruudessa joka ei muutu?
-
Tämä blogimerkintä voisi olla hyvä tilaisuus kysyä, missä määrin fyysikot osallistuvat pohdintaan, voisiko tässä omassa, tai ehkä jossain toisessa universumissa, elämä perustua aivan toisiin molekyyleihin kuin tuntemamme elämän molekyylit.
Onko aihetta jotenkin tutkittu luonnontieteen keinoin?
-
Syksy kirjoitti:
”Tapauksessa, josta Jarno mainitsi, on kyse on siitä, että kaksi avaruudessa kasvavaa kuplaa törmää toisiinsa – hieman kuin kaasukuplat törmäävät kiehuvassa vedessä.”
Avaruushan nimenomaan laajenee siten ettei se laajene ulos päin jo olemassa olevaan tilaan?
jos näin, niin miten kaksi eri alueen laajenevaa avaruutta voisivat törmätä keskenään, vaikka olisivatkin samaa laajenevaa avaruutta?
Laajenevat kaasukuplat laajenevat ulos päin jo olemassa olevaan avaruuteen ja sen lisäksi ne vielä liikkuvat suhteessa toisiinsa siinä jo olemassa olevassa avaruudessa, joten laajenevien kaasukuplien osalta tilanne on aivan erilainen?
-
Syksy Räsänen
”Kuten sanottua, Jarnon mainitsemassa tapauksessa on kyse aineen liikkeestä avaruudessa. Tässä tapauksessa kyseinen aine ei koostu hiukkasista, vaan kyseessä on kenttä – ei mennä tähän tarkemmin. Samoin aika-avaruuskaan ei koostu mistään hiukkasista, sillä ei ole mitään alirakennetta.”
Aine siis koostuu erillisistä tihentymistä jotka liikuvat suhteessa toisiinsa ja siksi aineella on kyky kokea muutosta!
Sen tiheys ja tilavuus kokee siis muutosta jo olemassa olevassa avaruudessa joka on jo olemassa, eikä aineen tiheyden tilavuuden muuttuminen vaadi sellaista avaruutta joka myös kykenee muuttumaan.
Mihin avaruuden itsensä kokema muutos perustuu?
Aineen muutos perustuu LIIKKEESEEN joka tapahtuu avaruudessa!
Liittyykä liike mitenkään siihen että avaruus itse kokee muutosta?
jos ei, niin mihin se avaruuden itsensä kokema muutos perustuu?
-
Jos olen käsittänyt oikein esim. David Deutschin edustaman MM-tulkinnan (jossa kvanttitapahtuman dekoherenssissä ei ”romahdusta” tapahdu vaan maailmat ”eriytyvät” toisiksi determinismin säilyttämiseksi), niin nämä eri ”maailmat” esim jakavat (yllätys yllätys) tämän saman avaruus-aika ”tilan” meidän kanssamme. Hän on myös esittänyt (kirjan Brown: Kvanttitietokone mukaan) hypoteettisen kokeen maailmojen mahdollisesta interferenssistä. Tähän tarvittaisiin ei enempää eikä vähempää kuin täydellisen tietoisuuden omaava tietokone, joka tekisi kvanttitapahtumasta ”mittauksen”. Tämän jälkeen sen tulisi täydellisesti ”unohtaa” näkemänsä (jotta koherenssi säilyisi). Nyt tehtäisiin interferenssikoe eri maailmojen välillä. Jos koe antaisi aina tuloksen 1 (eli maailmat interferoisivat) olisi monimaailmatulkinta oikea, jos tulisi 50/50 1-0 niin Köpistulkinta.
Koe lienee mahdottomuudessaan kaukainen haave.
-
Kyllä, mutta vaikka eri vaihtoehdot vastaisivat (ominaisuuksiltaan) eri aika-avaruuksia, niin olen käsittänyt, että nimenomaan Deutschin MM-tulkinnassa nämä muut ”aika-avaruudet” eivät sijaitsisi kuitenkaan ”jossain tuolla”, vaan ”tässä ja nyt” ja siksi determinismi säilyisi (ja ilmeisesti useampiulottuvuuksisina kuten mahdollisesti tämä omammekin). Deutschin mukaanhan nämä maailmat voivat periatteessa interferoida (mm. kaksoisrakokokeessa ”varjofotoneina”). Taitaa olla niin monta soppaa kuin on hämmentäjiä.
-
http://www.hedweb.com/manworld.htm#where
Where are the other worlds?
Non-relativistic quantum mechanics and quantum field theory are quite unambiguous: the other Everett-worlds occupy the same space and time as we do.
The implicit question is really, why aren’t we aware of these other worlds, unless they exist ”somewhere” else? To see why we aren’t aware of the other worlds, despite occupying the same space-time, see ”Why do I only ever experience one world?” Some popular accounts describe the other worlds as splitting off into other, orthogonal, dimensions. These dimensions are the dimensions of Hilbert space, not the more familiar space-time dimensions.
-
Kiitos kun kerroit kantasi multiversumeista näin selkeästi.
Myös tyhjän tilan energia mietityttää minua. Onko se jotenkin todettu eli tiedetäänkö mitä se on?
Kun näet sanotaan, että maailmankaikkeus laajenee tyhjän tilan energian takia ja laajeneminen kiihtyy, koska samalla syntyy lisää tyhjää tilaa ja samalla tietenkin sen energiaakin – niin se kuulostaa kyllä aika tyylipuhtaalta kehäpäätelmältä.
-
Paluuviite: Kosmokseen kirjoitettua | Muihin maailmoihin
-
Paluuviite: Kosmokseen kirjoitettua | Jokin sanoo poks
-
Paluuviite: Kosmokseen kirjoitettua | Aika-avaruuden atomit
-
Paluuviite: Kosmokseen kirjoitettua | Alas huipulta
-
onko maailmankaikkeuden laajentumisen kiihtyvyys kääntäen verrannollinen etäisyyteen?
Vastaa
Talouden ennustaminen ja tieteilijöiden vastuu
Tieteessä tapahtuu –lehden numerossa 6/2014 on minulta taloustiedettä koskeva puheenvuoro. Se on vastaus kansantaloustieteen professori Vesa Kanniaisen numerossa 5/2014 olleeseen kommenttiin Helsingin Sanomien kolumnistani. Kirjoitan seuraavasti:
”Kun kosmologit ovat väärässä, tai kun julkisuudessa esitellään heidän tuloksiaan virheellisesti, seuraukset ovat korkeintaan noloja. Taloustiedettä sen sijaan käytetään oikeuttamaan miljoonien ihmisten hyvinvointiin ja kokonaisten yhteiskuntien poliittiseen tulevaisuuteen ratkaisevasti vaikuttavia päätöksiä.”
Yksi kommentti “Talouden ennustaminen ja tieteilijöiden vastuu”
Vastaa
Sisäistetty seksismi
Kirjoitan Helsingin Sanomien tänään julkaistussa kolumnissa seuraavasti:
”Tutkijat lähettivät luonnontieteen alan yliopistolaisille Yhdysvalloissa hakemuksia, jotka olivat täysin samanlaisia hakijan nimeä lukuun ottamatta.
Puolessa hakemuksista oli miehen ja puolessa naisen nimi. Naisen nimellä varustetut hakijat arvioitiin järjestään vähemmän päteviksi ja heille tarjottiin pienempää palkkaa. Naispuoliset arvioijat eivät pitäneet naisten hakemuksia sen parempina kuin miespuoliset.”
Olen kirjoittanut kyseisestä tutkimuksesta aiemmin täällä.
Amazonista napattua; ehkä haluat kommentoida tämän kirjan väitettä:
Bankrupting Physics: How Today’s Top Scientists are Gambling Away Their Credibility
The recently celebrated discovery of the Higgs boson has captivated the public’s imagination with the promise that it can explain the origins of everything in the universe. It’s no wonder that the media refers to it grandly as the ”God particle.” Yet behind closed doors, physicists are admitting that there is much more to this story, and even years of gunning the Large Hadron Collider and herculean number crunching may still not lead to a deep understanding of the laws of nature. In this fascinating and eye-opening account, theoretical physicist Alexander Unzicker and science writer Sheilla Jones offer a polemic. They question whether the large-scale, multinational enterprises actually lead us to the promised land of understanding the universe. The two scientists take us on a tour of contemporary physics and show how a series of highly publicized theories met a dead end. Unzicker and Jones systematically unpack the recent hot theories such as ”parallel universes,” ”string theory,” and ”inflationary cosmology,” and provide an accessible explanation of each. They argue that physics has abandoned its evidence-based roots and shifted to untestable mathematical theories, and they issue a clarion call for the science to return to its experimental foundation.
Sunnuntaikosmologi:
En ole lukenut kirjaa, ks. Peter Woitin arvio:
http://www.math.columbia.edu/~woit/wordpress/?p=6156