Oudompia suuntia

16.12.2018 klo 16.32, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kirjoittaessani hiukkasfysiikan Standardimallin tuonpuoleisesta maastosta olen usein maininnut ylimääräiset ulottuvuudet, mutta en ole tarkemmin kertonut, mistä on kyse. Paikkaan tässä tilannetta.

Vuonna 1907 matemaatikko Hermann Minkowski hahmotti, että Albert Einsteinin kaksi vuotta aiemmin valmiiksi saama suppea suhteellisuusteoria ei kuvaa vain suhteellista aikaa ja avaruutta, vaan absoluuttista neliulotteista aika-avaruutta. Tästä alkoi ulottuvuuksien tutkimus fysiikassa. Kiinnostavaa kyllä, aihetta oli käsitelty populaarikulttuurissa jo aiemmin. (Lawrence Kraussin kirja Hiding in the Mirror: The Mysterious Allure of Extra Dimensions, from Plato to String Theory and Beyond on hauska ja asiantunteva katsaus aiheeseen sekä fysiikan että populaarikulttuurin osalta.)

Fysiikkaan ylimääräiset ulottuvuudet toi suomalainen Gunnar Nordström vuonna 1914. Nordström esitti, että ulottuvuuksia on neljän sijaan viisi, eli on yksi aikasuunta ja neljä paikkasuuntaa. Nordströmin mullistava ajatus oli, että sähkömagnetismi onkin itse asiassa ylimääräisen ulottuvuuden gravitaatiota. Sen, että maailma näyttää neliulotteiselta, Nordström selitti sillä, että elämme neliulotteisella siivulla. Se, miksi me ja havaintomme ovat sidottuja tälle pinnalle, jäi tosin epäselväksi.

Nordströmin idea oli omaperäinen, ja muiden vuorovaikutusten selittämisestä ylimääräisten ulottuvuuksien gravitaation avulla tuli myöhemmin eräs tärkeimpiä yhtenäisteorioiden kehittämisen suuntia. Nordströmin malli kuitenkin unohtui, koska hän käytti omaa gravitaatioteoriaansa. Vuotta  myöhemmin, 1915, Albert Einstein ja David Hilbert saivat kiinni yleisestä suhteellisuusteoriasta, ja vuoden 1919 auringonpimennyksen aikaan nähtiin, että Aurinko taivuttaa valonsäteitä. Havainto oli sopusoinnussa yleisen suhteellisuusteorian kanssa ja ristiriidassa Nordströmin gravitaatioteorian kanssa.

Vuonna 1921 Theodor Kaluza esitti kuin uutena ideana yleisen suhteellisuusteorian puitteissa että sähkömagnetismi on viidennen ulottuvuuden ilmentymä, viittaamatta Nordströmin työhön. Kuten Nordström, Kaluza ei antanut tyydyttävää vastausta siihen, miksi maailma näyttää neliulotteiselta. Vuonna 1926 Oskar Klein tarjosi selkeän selityksen: emme näe ylimääräisiä ulottuvuuksia, koska ne ovat pieniä.

Jos käärii kaksiulotteisen arkin tiukasti rullalle, se näyttää suunnilleen viivalta, eli yksiulotteiselta. Jos vielä käärii rullan pieneksi donitsiksi, se näyttää pistemäiseltä, eli nollaulotteiselta. Klein ehdotti, että viides ulottuvuus on kääritty tällä tapaa. Tällöin sitä ei näe suoraan, ellei luotaa fysiikkaa hyvin pienessä mittakaavassa. Sen olemassaolo kuitenkin ilmenee sähkömagnetismina. Kleinin ideasta tuli suosittu, ja ylimääräisiä ulottuvuuksia sisältäviä teorioita ruvettiin kutsumaan Kaluza-Klein-teorioiksi. Nordströmin varhainen työ on muistettu vasta viime aikoina.

Ulottuvuuksia voi piilottaa miten monta tahansa, ja näkemämme vuorovaikutukset ja hiukkaset riippuvat siitä, miten ulottuvuudet on kääritty pieniksi. Yhdestä ulottuvuudesta voi saada sähkömagnetismin, kaikkien Standardimallin vuorovaikutusten selittämiseen ylimääräisten ulottuvuuksien avulla tarvitaan ylimääräisiä ulottuvuuksia seitsemän. Kaiken aineen selittäminen gravitaation ilmentyminä osoittautui tosin hankalaksi.

Merkittävä askel ylimääräisten ulottuvuuksien tutkimuksessa oli 1970-luvulla rakennetut supergravitaatioteoriat, eli gravitaatioteoriat jotka ovat supersymmetrisiä. Supersymmetria liittää yhteen aika-avaruuden ominaisuudet ja hiukkasfysiikan, mikä sitoo yhteen ulottuvuuksien lukumäärän ja hiukkassisällön: se millaisia hiukkasia on riippuu siitä, montako ulottuvuutta on olemassa, vaikka yksikään niistä ei olisi kääritty pieneksi. Osoittautui, että supergravitaatioteorioissa ulottuvuuksien lukumäärälle on yläraja. Mikä herkullisempaa, korkeinulotteisessa tapauksessa teoria on yksikäsitteinen: hiukkassisältö ja vuorovaikutukset on täysin määrätty, luonnonlaeissa ei ole valinnanvaraa. Ikävä kyllä tämä lukumäärä on yksitoista, ei neljä. Monet vaihtoehdot ylimääräisten ulottuvuuksien käärimiselle rikkovat teorian yksikäsitteisyyden.

Seuraava luku ylimääräisten ulottuvuuksien kehityksessä oli säieteoria, suosituin ehdokas kvanttigravitaatioteoriaksi ja kaiken teoriaksi. Sen lähtökohdat olivat hyvin erilaiset kuin aiempien fysiikan teorioiden. Säieteorian pioneeri Daniele Amati kuvaili 1970-luvulla säieteoriaa 2000-luvun fysiikaksi, joka oli vahingossa pudonnut 1900-luvun puolelle. Nyt 2000-luvulla, kun säieteorian tutkimus yhtenäisteoriana on juuttunut paikoilleen, tämä ei enää kuulosta yhtä hohdokkaalta.

Säieteoriassa tarkastellaan yksiulotteisia kappaleita, säikeitä, ja niiden liikkeen kattavaa 1+1-ulotteista pintaa (eli siinä on yksi paikkasuunta ja yksi aikasuunta). Hiukkaset, joista me rakennumme, ovat säikeiden värähtelyjä. Säikeiden muodostamalla pinnalla elää kenttiä, jotka vastaavat meidän näkemiämme ulottuvuuksia. Säieteorian yksinkertaisimmassa muotoilussa näiden kenttien eli ulottuvuuksien lukumäärälle on täsmällinen ennuste: kymmenen. Ylimääräiset ulottuvuudet eivät siis enää ole mahdollinen lisä, vaan välttämätön piirre.

Säieteorian ylimääräisten ulottuvuuksien ajateltiin aluksi olevan erittäin pieniä, Planckin pituuden 10^(-34) m suuruusluokkaa. Kun LHC-kiihdyttimen käynnistymisen aika lähestyi, alettiin esittää myös ideoita siitä, että ylimääräisten ulottuvuuksien koko olisi juuri tarpeeksi iso –noin 10^(-19) metriä– että ne voisi havaita LHC:ssä. Tälle ei oikeastaan ollut muuta motivaatiota kuin se, että ideaa on mahdollista testata pian. Tästä huolimatta siihen liittyvästä mahdollisuudesta, että LHC:n hiukkastörmäyksissä syntyisi mustia aukkoja, tuli tiedeuutisoinnin myötä valitettavan tunnettu.

Säieteoriassa palattiin myös Nordströmin alkuperäiseen ajatukseen siitä, että ylimääräiset ulottuvuudet ovat isoja, mutta me olemme sidottuja neliulotteiselle siivulle. Säieteoriassa onkin luontevasti hiukkasia ja vuorovaikutuksia, jotka on sidottu alempiulotteiselle siivulle, sen sijaan, että ne pääsisivät kulkemaan kaikkialla. Tätä ideaa käytettiin eräässä paljon julkisuutta saaneessa vaihtoehdossa kosmiselle inflaatiolle, ekpyroottisessa skenaariossa, jota sattumoisin tutkin väitöskirjassani. Siinä maailmankaikkeuden aine syntyy kahden neliulotteisen siivun törmäyksessä, joiden kupruista tulee rakenteen siemeniä. Eräs idean kehittäjistä, Paul Steinhardt, oli eräs ensimmäisiä inflaation parissa työskennelleitä tutkijoita, ja on sittemmin tullut tunnetuksi inflaation arvostelijana.

Ylimääräiset ulottuvuudet ovat vuosikymmeniä olleet perustavanlaatuisen teoreettisen fysiikan ytimessä, mutta ei tiedetä, kuvaavatko mitkään tuhansista siitä kirjoitetuista tieteellisistä artikkeleista todellisuutta. Mutta vaikka ylimääräisiä ulottuvuuksia ei olisi, niiden tutkiminen voi auttaa ymmärtämään, miksi ulottuvuuksia olisi vain neljä. Saatamme myös hahmottaa ajan luonnetta paremmin, ja ymmärtää miksei aikasuuntia ole enempää kuin yksi ja miksi aikaa on ylipäänsä olemassa.

4 kommenttia “Oudompia suuntia”

  1. Jernau Gurgeh sanoo:

    Onko ylimääräisissä ulottuvuuksissa aina kyse paikkasuunnasta (esim. Calabi-Yau avaruus) vai onko olemassa malleja, joissa ylimääräinen ulottuvuus olisi aikasuunnassa?

    Onko esim. Delayed choice quantum eraser -koetta yritetty selittää ylimääräisillä aikasuuntaisilla ulottuvuuksilla?

    Onko vuorovaikutuksilla kaikissa malleissa sama suunta? Johtuuko gravitaation heikkous siitä, että sitä valuu toisesta ulottuvuudesta vain vähän meidän nyt havaitsemiimme ulottuvuuksiin vai onko se siksi niin heikko, että se valuu meidän havaitsemistamme ulottuvuuksista pois piilossa oleviin ulottuvuuksiin? Onko tällaisella suunnanmuutoksella merkitystä?

    1. Syksy Räsänen sanoo:

      Sitä, mahdollisuutata, että aikaulottuvuuksia on useampia kuin yksi on kyllä tutkittu, mutta ei kovin paljon.

      En tiedä onko niillä yritetty selittää kvanttimekaniikan ominaisuuksia, niillä ei ole sen kanssa mitään ilmeistä tekemistä.

      En ymmärrä kysymystä suunnasta. Ylimääräisistä ulottuvuuksista on kirjoitetettu tuhansia artikkeleita, eri artikkeleissa on eri ideoita gravitaatiosta.

  2. Kommentti neliulotteisuudesta. Masud Chaichian opetti aikanaan että teoria voi olla siisti ja renormalisoituva vain jos sen kytkentävakio on dimensioton, ja se kuulosti uskottavalta. Katsomalla esim. mittakovariantin derivaatan kaavaa näkee että QED:n ja yleisemmin Yang-Mills -teorian kytkentävakio on dimensioton juuri neliulotteisessa aika-avaruudessa. Olen ajatellut itsekseni että tuo voisi olla jonkinlainen ”syy” (jos sellaista halutaan) sille että maailma on neliulotteinen.

    Gravitaatiovakio sen sijaan on 4-ulotteisessa tapauksessa dimensiollinen, ja kvanttigravitaatio onkin sotkuinen. Gravitaatiovakio olisi dimensioton 2-ulotteisessa tapauksessa. Olen ajatellut että tämä liittyisi siihen että säieteoria sisältää gravitaation luonnostaan. Näyttää siis kuitenkin siltä että mittakentän ja gravitaation kytkentävakioita ei saa dimensiottomiksi samanaikaisesti. Ehkä se on se maailmankaikkeuden ”suola”, minkä takia sen dynamiikka on niin rikas.

    Arvelen että tämä kommenttini on osittain mutta ei täysin järkevä.

    1. Syksy Räsänen sanoo:

      Se, ettö säieteoria sisältää gravitaation on paljon monimutkaisempi tarina. Kytkentävakioiden tarina on säieteoriassa myös monimutkaisempi, ei mennä siihen tässä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *