Arkisto
- joulukuu 2023
- marraskuu 2023
- lokakuu 2023
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- heinäkuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- marraskuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- lokakuu 2017
- syyskuu 2017
- elokuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Etäisiä otoksia
Tällä viikolla Durhamin yliopiston hiukkasfysiikan instituutti IPPP järjesti etäkonferenssin RECONNECT (REmote COnference on NEw Concepts in particle Theory). Järjestäjät sanoivat haluavansa vastata kahden c:n (climate change ja corona, ilmastonmuutos ja koronavirus) haasteeseen ja auttaa ylläpitämään hiukkasfysiikan yhteisöä tilanteessa, jossa yhteistyön tekeminen on vaikeutunut.
Etäkonferensseissa on etunsa. Kuten järjestäjät totesivat, osallistumista eivät rajoita rahalliset, poliittiset (kasvava ongelma erityisesti Yhdysvalloissa) tai henkilökohtaisista syistä johtuvat esteet matkustamiselle.
Lisäksi puhujiksi on mahdollista saada tutkijoita laajemmalta alueelta kuin yleensä. Normaalisti esityksen valmistelun ja pitämisen lisäksi puhujalla menee ainakin pari päivää matkustamiseen. Tämän takia konferenssiin ei välttämättä viitsi lähteä elleivät muiden puheet kiinnosta tarpeeksi. Etätapaamisessa puheen voi pitää omassa nojatuolissa, joten RECONNECTiin oli saatu kerättyä laaja kirjo hiukkasfysiikan eri alojen kärkinimiä.
Haittapuoli on se, että etäpuheisiin on vaikeampi keskittyä. Tämän takia ohjelma oli tavallista konferenssia väljempi, tunnin pituisia puheita oli kolme tai neljä päivässä. Esitykset oli ajoitettu siten, että ainakin jotkut ovat sopivaan aikaan riippumatta siitä, missä päin maailmaa on.
Puheiden seuraaminen yhdessä kollegoiden kanssa, jotka ovat eri vuorokaudenajoissa eri puolilla samaa palloa korostaa sekä yhteyttä että etäisyyttä. Hiukkasfysiikassa seremoniaan kuuluu taputtaa puheen loputtua ja uudelleen kysymysten jälkeen, ja tuntuu oudolta niin olla taputtamatta kuin taputtaa yksin.
Yleensä konferensseissa kuuntelen kaikki puheet (paitsi jos niitä on useita samaan aikaan), nyt poimin vain ne, joita pidin erityisen kiinnostavina. Mainitsen tässä vain muutaman otoksen.
Hitoshi Murayama puhui pimeän aineen malleista, joissa pimeän aineen hiukkanen on osa kokonaisuutta, joka on hyvin samankaltainen kuin kvarkkeihin liittyvä värivuorovaikutus. Tämä on vähän samanlainen kuin tekniväri, mutta pienemmillä massoilla, teknivärin hiukkasia kun ei ole kiihdyttimissä näkynyt.
Murayama teki kiinnostavan huomion hiukkasfysiikan ”sosiologiasta”, kuten hiukkasfyysikot tutkimukseen vaikuttavia yhteisöllisiä tekijöitä kutsuvat.
Sen jälkeen, kun hiukkasfysiikan Standardimalli saatiin 1970-luvulla valmiiksi, hiukkasfysiikka kääntyi ratkaisemaan sisäisiä ongelmia. Yritettiin selittää esimerkiksi sitä, miksi Standardimallin energiaskaala on niin paljon pienempi kuin kvanttigravitaation, tai miksi Standardimallista puuttuu yksi mahdollinen vuorovaikutus.
Havainnot toivat pimeän aineen mukaan kuvioihin 70-80-luvun vaihteessa, mutta sitä pidettiin pitkään toissijaisena. Jos malli sisälsi muun muassa pimeää aineen hiukkasen, se oli ehkä mukava pieni lisä. Tutkimusta ajoivat suuret ideat huipulta alas, kuten supersymmetria ja ylimääräiset ulottuvuudet.
Näille ideoille ei ole hiukkaskiihdyttimissä eikä muissa kokeissa löytynyt tukea, eikä pitkään suosituinta pimeän aineen ehdokasta, nynnyä, ole odotuksista huolimatta löytynyt. Toisaalta kosmologiassa on piisannut uusia havaintoja, joita pimeä aine selittää. Niinpä on kysyntää (tai ainakin tarjontaa) uusille pimeän aineen ehdokkaille. Näin pimeä aine on noussut hiukkasfysiikan keskeiseksi kysymykseksi. Nyt pidetään tärkeänä, että mallissa on havaintoihin sopiva pimeän aineen hiukkanen; jos malli liittyy aiemmin tärkeinä pidettyihin teoreettisiin kysymyksiin, niin se voi olla kiva lisä.
Kosmologian ja astrofysiikan vahva asema näkyy siinäkin, että Juan Maldacena, joka tunnetaan parhaiten uraauurtavista teoreettisista oivalluksista gravitaation ja hiukkasfysiikan suhteesta säieteoriassa, puhui mustista aukoista, joilla on magneettinen varaus. Vaikka Maldacena käsitteli mustia aukkoja teoreettisesti, hän korosti niiden mitattavia ominaisuuksia ja pohjusti sen selvittämistä, olisiko niitä todella olemassa ja miten niitä voisi havaita.
Gerardus ’t Hooftin puhe oli spekulatiivisemmasta ja perustavanlaatuisemmasta päästä. ’t Hooft on omaperäinen ajattelija ja hän oli keskeinen hahmo hiukkasfysiikan Standardimallin kehittämisessä. Yhdessä väitöskirjaohjaajansa Martinus Veltmanin kanssa hän osoitti vuonna 1971, että Standardimalli on matemaattisesti ristiriidaton. Kaksikolle myönnettiin työstä Nobelin palkinto vuonna 1999.
’t Hooftista kertoo jotain se, että hän todisti seuraavana vuonna, että värivuorovaikutuksen voimakkuus menee nollaan pienillä etäisyyksillä, mutta piti asiaa niin vähäpätöisenä, että ei viitsinyt julkaista työtään. Tuloksen vuotta myöhemmin julkaisseet David Gross, Frank Wilczek ja David Politzer palkittiin siitä vuonna 2004 Nobelin palkinnolla. ’t Hooft ei ole välittänyt seurata muotia eikä antanut muiden mielenkiinnon määrätä tutkimusaiheitaan. Jotkut hänen ideansa ovat olleet mullistavia, toisten kohtalo on vielä epäselvä.
’t Hooft puhui siitä, miten kvanttimekaniikan taustalla voisi olla deterministinen teoria. Hän on työskennellyt aiheen parissa vuosia, ja on löytänyt kiinnostavia samankaltaisuuksia yksinkertaisten determinististen teorioiden ja kvanttimekaniikan rakenteen välillä. Kvanttimekaniikan kaikkien piirteiden selittäminen ei kuitenkaan ole onnistunut. Tällaisten perusteisiin pureutuvien läpimurtokysymysten pohtimista vaikeuttaa läpimurtoja janoava lyhytjänteinen rahoitusympäristö, eikä moni ’t Hooftin lisäksi asiaa mieti.
Konferenssipuheista saa usein selkeämmän käsityksen siitä, mistä on kyse ja mitä ideoita työn taustalla on kuin tieteellisistä artikkeleista. Tämä toimii myös etäpuheissa, vaikka vuorovaikutus onkin kömpelömpää. Konferenssien sosiaalinen anti on tärkeä, ja kytkeytyy vahvasti tieteeseen. Usein tutkimushankkeet lähtevät liikkeelle puheista kimmokkeensa saaneista epämuodollisista keskusteluista ja väittelyistä. Tämä etätapaamisista puuttuu. Ne ovat kokoelma konferenssin palasia, joiden välistä puuttuu oleellisia osia. Etäkonferensseja on lähiaikoina luvassa lisää, joten näemme miten niiden vahvuuksia opitaan paremmin hyödyntämään ja heikkouksia lieventämään.
5 kommenttia “Etäisiä otoksia”
Vastaa
Seitsemän ennustusta menneisyydestä
Kosminen inflaatio on paras selitys sille, miksi maailmankaikkeus näyttää isossa mittakaavassa samanlaiselta kaikkialla ja mikä on rakenteiden, kuten galaksien, planeettojen ja kissojen, alkuperä. Inflaation mukaan varhaisina aikoina avaruuden laajeneminen kiihtyi ja kvanttivärähtelyt jäätyivät rakenteen siemeniksi.
Olen maininnut, että inflaatio on ainoa fysiikan alue, jossa kvanttifysiikka ja yleinen suhteellisuusteoria on yhdistetty siten, että on tehty ennusteita joita on onnistuneesti testattu. Inflaatio on siis toistaiseksi ainoa kokeellinen kosketuksemme kvanttigravitaatioon. Avainasemassa ovat havainnot galaksien jakaumasta ja kosmisesta mikroaaltotaustasta. Yksi tärkeimpiä havaintolaitteita on ollut Euroopan avaruusjärjestö ESAn Planck-satelliitti.
Inflaatio tapahtui kenties ensimmäisen sekunnin miljardisosan miljardisosan miljardisosan miljardisosan tienoilla. Saattaa tuntua uskomattomalta, että noin varhaisista ajoista voidaan saada mitään tietoa. Selvennän tässä asiaa käymällä läpi inflaation seitsemän ennustusta.
1. Avaruus on tasainen
Inflaatio ennustaa, että avaruus on keskimäärin hyvin laakea (sen sijaan että se olisi kaareva), eivätkä yhdensuuntaiset viivat kohtaa.
Avaruuden kiihtyvä laajeneminen on kuin suurennuslasi: se venyttää avaruuden osia isommiksi. Jos jotain kaarevaa katsoo tarpeeksi läheltä, se näyttää tasaiselta. Pala Maapalloakin näyttää tasaiselta kun pläntti on tarpeeksi pieni, vaikka Helsingin kokoinen.
Avaruuden tasoittaminen oli yksi alkuperäinen motivaatio inflaatiolle 1980-luvun alussa. Tuolloin havainnot avaruuden kaarevuudesta olivat hyvin epätarkkoja. Nykyisten havaintojen mukaan (ainakin niiden yksinkertaisimmassa tulkinnassa) avaruuden kaarevuus on nolla tuhannesosan tarkkuudella.
Tasaisuus ei ole kovin monimutkainen ennuste: se kertoo vain, että yksi maailmankaikkeutta kuvaava luku on nolla. Inflaation tärkeimmät ennusteet koskevat aineen ja aika-avaruuden epätasaisuuksia, joissa on enemmän yksityiskohtia.
2. Epätasaisuudet ovat lähes samanlaisia kaikissa mittakaavoissa
Kiihtyvä laajeneminen pyyhkii pöydän tyhjäksi aiemmista epätasaisuuksista. Sen aikaiset kvanttivärähtelyt taasen selittävät, miksi näkemämme maailmankaikkeus ei ole aivan tasainen, vailla mitään rakenteita.
Aineessa ja aika-avaruudessa on koko ajan kvanttivärähtelyitä. Inflaation aikana nämä häiriöt venyvät hiukkasfysiikan piperryksestä kosmisiin mittoihin ja niiden värähtely hidastuu lähes olemattomiin. Samalla ne muuttuvat kvanttivärähtelyistä tavallisiksi epätasaisuuksiksi. (Tarkemmin tässä merkinnässä.)
Jäätyneet aallot vain venyvät muotonsa säilyttäen. Samalla koko ajan syntyy, venyy ja jäätyy pienempiä aaltoja. Mitä varhaisemmin aalto syntyy, sitä enemmän se ehtii venyä.
Jos olosuhteet olisivat samat koko inflaation ajan, aaltojen korkeus olisi samanlainen kaikille aallonpituuksille. Inflaation aikana aika-avaruuden kaarevuus kuitenkin vähän laskee. Tämän takia myöhemmin syntyvät (eli lyhyemmät) aallot ovat heikompia, eli niiden korkeus on pienempi.
Aallot pysyvät jäissä kunnes inflaatio loppuu. Sitten ne alkavat hiljalleen värähdellä yksi toisensa jälkeen, pienimmistä alkaen. Kosmisessa mikroaaltotaustassa, joka on valokuva maailmankaikkeudesta 380 000 vuoden ikäisenä, näkyy niin jäätyneitä kuin värähteleviä aaltoja. Siitä on mitattu, että lyhyemmät aallot ovat tosiaan vähän matalampia kuin pitkät, ja suhde vastaa inflaation ennustetta.
Koska kyse on kvanttifysiikasta, jokaisen aallon korkeus itse asiassa määräytyy sattumanvaraisesti, ja on siksi erilainen. Tässä on siis kyse aaltojen tyypillisestä korkeudesta. Mutta inflaatio ennustaa myös sen, millainen aallonkorkeuksien todennäköisyysjakauma on.
3. Epätasaisuuksien jakauma on gaussinen
Kvanttifysiikka kertoo, että inflaatiossa todennäköisyys kunkin aallon korkeudelle on muista aalloista riippumaton ja että todennäköisyysjakauma korkeudelle on kellokäyrän muotoinen. Tällaisia epätasaisuuksia sanotaan gaussisiksi.
Tämä on inflaation parhaiten testattu ennustus: havaitut epätasaisuudet kosmisessa mikroaaltotaustassa ovat gaussisia sadastuhannesosan tarkkuudella.
4. Epätasaisuudet ovat kaikkialla samanlaisia
Kvanttivärähtelyjen kehitys määräytyy niiden ympäristöstä. Koska inflaatio pyyhkii pois kaikki aiemmat epätasaisuudet, avaruus on samanlainen kaikkialla, joten kvanttivärähtelyt ovat samanlaisia joka paikassa ja suunnassa.
Niinpä kvanttivärähtelyistä myöhemmin syntyvät kosminen mikroaaltotausta ja galaksit ovat tilastollisesti samanlaisia kaikkialla. Yksittäiset galaksit ja niiden ryppäät ovat erilaisia, mutta kun katsotaan kuutiota, jonka sivu on vähintään 500 miljoonaa valovuotta, sen sisällä olevat rakenteet ovat keskimäärin samanlaisia olipa kuutio missä tahansa paikassa tai asennossa.
Pienemmässä mittakaavassa gravitaatiosta johtuva klimppiytyminen on piilottanut tämän alkuperäisen samankaltaisuuden. Inflaatio ennustaa myös sen, millaista tämä gravitaatio on.
5. Gravitaatio näyttää samanlaiselta kuin Newtonin teoriassa
Aineen liike gravitaation alla liittyy aika-avaruuden epätasaisuuksiin. Tämä on helppo ymmärtää: jos joka suunnassa olisi samanlaista, ei gravitaatio voisi vetää mihinkään päin. Yleisessä suhteellisuusteoriassa on kolmenlaisia gravitaatiokenttiä, jotka ovat aika-avaruuden kaarevuuden erilaisia ilmentymiä.
Ensinnäkin on samanlainen gravitaatiokenttä kuin Newtonian teoriassa. Mitä isompi on energian tihentymä, sitä isompi on kentän arvo. Tämä kenttä vetää kappaleita toisiaan kohti.
Toisekseen on gravitaatiokenttä, joka syntyy aineen liikkeestä, ja osoittaa aineen nopeuden suuntaan. Tämä kenttä kiertää kappaleita ratoja, sen sijaan että vetäisi niitä kohti massakeskittymiä.
Kolmannekseen on gravitaatioaaltoja, jotka matkaavat valonnopeudella ympäriinsä ja muuttavat etäisyyksiä läpi kulkiessaan.
Inflaatio ennustaa, että gravitaatiokenttä on enimmäkseen samanlainen kuin Newtonin teoriassa ja että liikkeen synnyttämä kenttä on mitättömän pieni. Gravitaatioaaltojen voimakkuus on inflaation mukaan pienempi kuin tavallisen gravitaatiokentän. Tarkka suhde riippuu siitä, miten inflaatio on tarkalleen tapahtunut.
Yksinkertaisimmissa inflaatiomalleissa gravitaatioaaltojen voimakkuus on noin puolet tavallisen gravitaatiokentän voimakkuudesta. Mutta näin voimakkaiden aaltojen vaikutus olisi jo nähty kosmisessa mikroaaltotaustassa. Koeryhmä BICEP2 väittikin vuonna 2014 havainneensa ne, mutta oli väärässä. Joissakin inflaatiomalleissa aallot ovat niin heikkoja, että niitä ei tulla havaitsemaan nähtävissä olevassa tulevaisuudessa.
6. Rakenteen siemeniä syntyy vain varhaisina aikoina
Inflaation mukaan epätasaisuudet ovat syntyneet hyvin varhaisina aikoina, ensimmäisen sekunnin murto-osan aikana. Sen jälkeen ne ovat vain kehittyneet gravitaation myötä. Tämä vastaa havaintoja.
1980-luvulla inflaation kanssa kilpaili idea, jonka mukaan epätasaisuudet syntyvät kosmisten säikeiden liikkuessa ainepuuron läpi. Säikeet synnyttäisivät epätasaisuuksia jatkuvasti, mikä on ristiriidassa havaintojen kanssa.
7. Epätasaisuudet ovat samanlaisia eri hiukkasille
Kun inflaatio loppuu, sitä ajanut kenttä (ehkä Higgsin kenttä) hajoaa hiukkasiksi. Paikkoihin, missä kenttä on voimakkaampi, syntyy enemmän hiukkasia. Jos kaikki aine on peräisin tästä samasta kentästä, niin näihin paikkoihin syntyy siis enemmän jokaista hiukkaslajia: tavallista ainetta, pimeää ainetta, fotoneita ja neutriinoita.
Tämä koskee varhaista maailmankaikkeutta. Kun tavallinen aine ja pimeä aine myöhemmin tihentyvät gravitaation takia, tilanne muuttuu, koska neutriinot kasautuvat paljon myöhemmin ja valo ei lainkaan.
Havaintojen perusteella varhaisessa maailmankaikkeudessa eri hiukkaslajien kummut ja laaksot todella olivat samoissa kohdissa, noin prosentin tarkkuudella.
Kosmiset säikeet ennustivat päinvastaista. Ne saavat aikaan epätasaisuuksia sekoittamalla eri hiukkaslajeja keskenään, niin että yhden kummussa on toisen laakso.
Inflaatio ei ole teoria eikä malli, vaan tieteellinen idea, josta on olemassa erilaisia toteutuksia. On satoja inflaatiomalleja, joissa on erilaisia kenttiä ja erilaisia gravitaatioteorioita, ja ne ennustavat erilaisia asioita. Lähes kaikkia yllä mainittuja ennusteita voi muuttaa kun tarpeeksi säätää: avaruuden kiihtyvällä laajenemisella voi olla erityinen suunta, aaltojen korkeus voi pienentyä aallonpituuden myötä sen sijaan että se kasvaisi, ja niin edelleen.
Tarkkaan ottaen ei siis pitäisi puhua inflaation ennusteista, ainoastaan inflaatiomallien ennusteista. Tämän takia jotkut ovat arvostelleet inflaatiota epätieteelliseksi. Mutta on tavallista, että onnistuneista ideoista esitetään kaikenlaisia versioita. Yksinkertaisten inflaatiomallien ennusteiden on havaittu pitävän kutinsa kerta toisensa jälkeen, mikä on lisännyt luottamusta ideaan. Inflaatiossa syntyneiden gravitaatioaaltojen löytäminen olisi kirsikka kakun päälle.
Päivitys (18/05/20): Korjattu korkeat-> pitkät.
42 kommenttia “Seitsemän ennustusta menneisyydestä”
-
Itselleni oli uutta tietoa, että erilaisia inflaatiomalleja on noin paljon. Siitä nousi itselleni seuraava kysymys. Onko kosmologien keskuudessa yleistä näkemystä siitä, käynnistyikö inflaatioksi kutsuttu tapahtumasarja nykyisin tuntemiemme fysiikan lakien olosuhteissa vai saimmeko maailmankaikkeutemme myötä myös ikiomat fysiikan peruslait? Lähinnä ajattelen sitä, vihjaavatko erilaiset inflaatiomallit mahdollisesti jompaankumpaan suuntaan, kuten voisi päätellä ilmaisusta inflaatiota ”ajaneesta kentästä”?
Samalla kysyisin näkemystäsi siitä, onko termi ”inflaatio” suomalaisittain semanttisesti osuva. Itseäni on aina häirinnyt se, että kosmisesta suurtapahtumasta käytetään samaa termiä kuin mitättömästä rahan laskennallisen arvon vähenemisestä. Onko tämä vain suomalainen ongelma tai ”ongelma”?
-
Arvostan Heikki Poroilaa siitä, että hän uskaltaa kirjoittaa täällä omalla nimellään. Nimimerkin takaa on helppo solvata ja kertoa muunneltua totuutta, kun siitä eii joudu vastuuseen. Inflaatiosta tiedetään niin vähän, että ihmettelen, miksei inflaatiomalleja ole enemmän. Niitä voisi olla jopa seitsemän miljardia . jokaiselle ikioma.
-
-
Räsänen: BICEP2 väittikin vuonna 2014 havainneensa ne, mutta oli väärässä. Joissakin inflaatiomalleissa aallot ovat niin heikkoja, että niitä ei tulla havaitsemaan nähtävissä olevassa tulevaisuudessa.
Niin muistamme tuon aikoinaan suuria odotuksia herättäneen BICEP2 (hätäisen?) ulostulon. Etelämantereella ei ole kuitenkaan noloina lyöty pillejä pussiin, vaan siellä BICEP ja Keck ovat lyöneet hynttyyt yhteen ja uudet havainnoinnit (parannetuilla vehkeillä) aloitettaneen tänä vuonna (kuudella eri aallonpituudella). Kun ns tensor-to-scalar power ratio 2014 oli 0,15 – 0,27 niin Planckin jälkeen tuo asetettiin teoreettisesti vähintään 0,06:ksi tai vielä selvästi alle sen (uusi BICEP IGW amplitudi 0,005). Tällöin meidän pitäisi saada vihonviimeinen testi inflaation hitaan vierimisen (slow-roll) malleille.
Lisänä B-mode kilpailuun BICEP/Keck tiimille tulee South Pole Telescope sekä vielä suunnitteluvaiheessa oleva CMB-S4 (next generation CMB Experiment, yli puoli miljoonaa detectoria) myös Etelänavalla.
-
Sanot kirjoituksesi alussa:”Inflaatio tapahtui kenties ensimmäisen sekunnin miljardisosan miljardisosan miljardisosan miljardisosan tienoilla”.
Mitä tarkoitat sanomalla ”tapahtui”? Tarkoitatko sillä inflaation alkamishetkeä ? Vai ehkä sen kestoa, koska käytät termiä ”tienoilla”? Jos tarkoitat alkamishetkeä, niin kuin oletan voitko kertoa, miten pitkään kosmisen inflaation, siis valoa nopeamman eksponentiaalisen laajenemisen, on arveltu kestäneen.
Voitko myös kertoa (ilman viittausta johonkin linkin takana olevaan), mistä oli kulunut tuo ”sekunnin miljardisosan miljardisosan miljardisosan miljardisosa”.
-
Kiitos vastauksestasi. Inflaatio on siis kosmologeillekin monella tavalla varsin epämääräinen ilmiö. Siitä huolimatta sen nimeen vannotaan. Sinäkin sanot: ”Kosminen inflaatio on paras selitys sille, miksi maailmankaikkeus näyttää isossa mittakaavassa samanlaiselta kaikkialla ja mikä on rakenteiden, kuten galaksien, planeettojen ja kissojen, alkuperä”.
Minusta on alkanut näyttää yhä vahvemmin siltä että tämä ihmeellinen Sampo, kosminen inflaatio, on varta vasten kehitelty selittämään maailmankaikkeuden nykytila eikä päin vastoin. Kyllä johtopäätösten tekemiseen näin keskeisessä asiassa tarvitaan monin verroin tarkempaa tietoa (ei siis teoriaa), kuin mitä nykykosmologialla on inflaatioTEORIAN muodossa tarjottavana. Muussa tapauksessa alan kutsua tätä tieteen alaa kosmetologiaksi.
-
Miksei inflaatio olisi voinut alkaa hetkestä nolla? Nykyiset arviot antavat kuvan, että aivan kuin olisi sitä ennen ollut jokin jakso.
Onko malleissa esitetty miten aika käyttäytyi inflaation aikana? Onko inflaatio voinut kestää pidempää tai tapahtua jopa nopeammin, jos havainnointi olisi tehty inflaation aikana? Lähes singulariteettiin verrannolissa tilassa aika kuluisi hitaasti.
Onko plankin yksiköt olleet reunaehtoina malleissa vai onko edes relevanttia olettaa sellaisia olleen? -
”lyhyemmät aallot ovat tosiaan vähän matalampia kuin korkeat”
Pitäisikö tässä lukea: ”lyhyemmät aallot ovat tosiaan vähän matalampia kuin _pitkät_” ?
-
Jos universumi, taikka jokin rinnakkaissellainen, olisi sykkivä, niin tapahtuisiko Suuren Kasaanromahduksen yhteydessä inflaatiota vastaten äkillinen deflaatio?
-
Inflaatiolla tarkoitetaan yleisesti univesumin alkuhetkien kiihtyvää laajenemista, jonka aiheutti jokin kenttä. Voiko nykyinen kiihtyvä laajeneminen olla saman kentän aiheuttamaa inflaatiota? Välillä on syntynyt massaa ja gravitaatio, jotka ovat vain hidastaneet inflaatiota. Mikä on itseasiassa inflaation lopun paras määritelmä?
-
Kiitos Syksylle (jälleen kerran) valaisevasta kirjoituksesta!
-
Kiitos Syksy tajuntaa laajentavista vastauksista. Tuo Schwarzschildin säde toisiaan on kääntäen verrannollinen valonnopeuden neliöön (liekö edes pädennyt inflaation aikana).
-
Jäi vielä kiusaamaan kysymys. Minkä kokoinen universumi oli säteeltään heti inflaation päätyttyä?
Olettaen että inflaation loputtua laajeneminen rajoittui valonnopeuteen, universumin säde oli massaansa vastaavaa Schwarzschildin sädettä suurempi.
Jos massa oli jo silloin nykyisen havaitun maailmankaikkeuden kokoluokkaa Schwarzschildin säde olisi ollut 10^10 valovuotta.
-
saisinko kysyä (vähän OT?) eräästä muistaakseni Nature Briefingin artikkelista jonka mukaan *mahdollisesti* universumin laajeneminen ei olisikaan tasaista, siis sen nopeus vaihtelee eri paikoissa. Onko sinulla jokin kommentti tähän?
-
kiitos, jollain tavalla tosi mielenkiintoista…
-
Saisinko esittää vielä täydennyskysymyksen (toivottavasti osaan muotoilla sen..)
Siis, onko kyseessä jokin tuntematon vaikuttaja x erilaisiin laajenemisvauhteihin, vai onko laajenemistahti aina sama esimekriksi alueilla joissa on keskimäärin saman verran ainetta? -
Hm, oliko inflaation alkutilanne siis olematon pieni klimppi kvanttifluktuaatiota ja gravitaatio (jossain muodossa)? Mutta sen kauemmas taaksepäin on vaikea tietää?
Eli onko gravitaatio kuitenkin aika-avaruuden ominaisuus? Entä kvanttifluktuaatio? Voiko tyhjiöenergia olla olemassa ’ennen alkuräjähdystä’? -
Onko hologramisen universumin teoriat vaihtoehtoisia inflaatiolle?
-
Saako kysyä vielä yhden ootee kysymyksen; kun tila kaareutuu, kaareutuuko tila vai sen sisältö? Sehän on hiukan, noh metafyysiista jos tila itsessään kaareutuu.(Olen kysynyt tätä random foorumeilta ilman oikein tyydyttävää vastausta, heh).
Vastaa
Jälleen fysiikkaa runoilijoille
Luennoin taas kurssin Fysiikkaa runoilijoille, alkaen 1. syyskuuta. Ilmoittautuminen opiskelijoille aukeaa kesäkuun lopulla, mutta kurssille ovat tervetulleita myös Helsingin yliopiston ulkopuoliset.
Kurssin tarkoituksena on avata fysiikan käsitteitä ja maailmankuvallista merkitystä. Käsittelytapa on kvalitatiivinen ja keskusteleva. Aiheisiin kuuluu Newtonin klassinen mekaniikka, suppea suhteellisuusteoria, yleinen suhteellisuusteoria, kvanttimekaniikka, kvanttikenttäteoria ja hiukkasfysiikka, kosmologia sekä yritykset kohti kaiken teoriaa. Tieteen historiaa ja filosofiaa käsitellään vähän.
Olen aiemmin luennoinut kurssin vuosina 2016 ja 2019. Lisäsin kurssin sivuille kurssin käyneiden antamia neuvoja tuleville kurssilaisille, niistä näkyy hieman miten opiskelijat kurssin kokivat. Kirjoitin vuoden 2016 kurssin palautteesta laajemmin täällä.
4 kommenttia “Jälleen fysiikkaa runoilijoille”
-
Kävin lukemassa nuo edellisen kurssin opiskelijoiden kommentit, Siellä oli mm. tämä: ”Tieteelliseen maailmankuvaan on vähitellen siis tarttumassa ajatus siitä, että ihmisen havaintokyvyn ulkopuolella olevat asiat selittävät todellisuutta parhaiten.”
Siis esim. transkendenttinen jumala selittää fysiikkaa paremmin kuin kokeet? Eikö parempi nimi kurssille olisi Fysiikkaa mystikoille tai metafyysikoille.
Olen keskustellut t’Hooftin kanssa satunnaistulkinnan korvaamisesta soluautomaattisin tms. keinoin. On yritetty viritellä laajempaa näkökulmakeskustelua perustavasta fysiikasta kvanttilogiikassa, mutta huonolla menestyksellä – aihe tosiaankin kiinnostaa vain erittäin harvoja…
”’t Hooft puhui siitä, miten kvanttimekaniikan taustalla voisi olla deterministinen teoria.”
Mielenkiintoinen hypoteesi, koska se käsittääkseni haastaa kavnttiteorian kööpenhaminalaisen tulkinnan, jota Einsteinkaan ei ymmärtänyt.
Aiheesta, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/koopenhaminan-takana/
”’t Hooft puhui siitä, miten kvanttimekaniikan taustalla voisi olla deterministinen teoria. Hän on työskennellyt aiheen parissa vuosia, ja on löytänyt kiinnostavia samankaltaisuuksia yksinkertaisten determinististen teorioiden ja kvanttimekaniikan rakenteen välillä. Kvanttimekaniikan kaikkien piirteiden selittäminen ei kuitenkaan ole onnistunut. Tällaisten perusteisiin pureutuvien läpimurtokysymysten pohtimista vaikeuttaa läpimurtoja janoava lyhytjänteinen rahoitusympäristö, eikä moni ’t Hooftin lisäksi asiaa mieti”.
Monet ammattilaisetkin pitävät ’t Hooftia yhtenä maapallomme fiksuimmista ihmisistä. Kuva on muodotunut järjen jättiläisestä joka ei kuitenkaan paljon itseään mainostele (voi tietysti olettaa että ei nobelisti paljon yleisön kehuja muutenkaan kaipaile).
Uskoisin monien näitäkin blokisivuja seuraavien kuitenkin pyörittelevän omissa vaatimattomissa aivoympyröissään nimenomaan tätäkin problematiikkaa. Kun fysiikka tuntuu junnaavan paikallaan (kvanttigravitaatiosta ei ole haisuakaan – yritelmät Loop Quantum Gravity ja säieteoriat eivät millään vakuuta vuosikymmenien pyörittelystä huolimatta ja Standarditeoriasta ei yleensäkään näytä olevan selvää tietä eteenpäin) niin voitko mitenkään edes ylimalkaisesti kuvailla ’t Hooftin ideoita.
Luin myös tuon viitauksesi aiempaan. Mihin nimenomaan ’t Hooftin (uusi?) tulkinta/idea näyttäisi kompastuvan – jos se sen tekee. Köpistulkinta, vaikka puutteineenkin, lienee kuitenkin suosituin lähestymistapa ammattilaispiireissä. Kadun jokajätkähän on ilman muuta sitä mieltä että maailma on deterministinen.
Olen viimeksi lukenut ’t Hooftin artikkeleita aiheesta varmaan yli 15 vuotta sitten, pitäisi palauttaa yksityiskohtia mieleen. En tosin ole varma, onko tämä sopiva blogimerkinnän aihe. Katsotaan.
’t Hooft ei yritä toistaa kvanttimekaniikkaa (kuten esim. David Bohmin teoria), vaan lähtee syvemmältä. Teorian rakenteessa on samanlaisia piirteitä kuin kvanttimekaniikassa, mutta toistaiseksi siitä ei saa kvanttimekaniikan kaikkia ominaisuuksia oikein. Ei ole selvää, miten vuorovaikutuksia pitäisi kuvata. Näennäinen epädeterminismi ja epämääräisyys selittyy, mutta ei esimerkiksi sitä, miksi Bellin epäyhtälö näyttää rikkoutuvan tismalleen kuten kvanttimekaniikka ennustaa.