Arkisto


Maanmittauksen perusteet

29.6.2023 klo 17.34, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Olin viime viikolla Tarton yliopiston konferenssissa Geometric Foundations of Gravity. Vierailin ensimmäisen kerran Tartossa vuonna 2004 Margus Saalin vastaväittäjänä. Nyt Margus on apulaisprofessori (vai liekö jo täysi professori), ja on osallistunut vuosien ajan gravitaatiokokousten järjestämiseen Tartossa. Nämä tapaamiset ovat kasvaneet pienistä keskikokoisiksi, ja paikalle tulee tutkijoita ympäri maailmaa. Osanottajia oli paikan päällä noin 70 ja etänä saman verran.

Konferenssin avasi Roberto Percaccin katsaus yleisen suhteellisuusteorian erääseen muotoiluun. Yleisestä suhteellisuusteoriasta on useita versioita, joissa on erilaisia oletuksia aika-avaruudesta. Yksi tutkituimpia teorioita on sellainen, missä erotetaan toisistaan se onko viiva suora ja onko sen vetämä reitti lyhin – nämä asiat eivät välttämättä liity toisiinsa. Yksinkertaisissa tapauksissa eri versioiden ennusteet ovat samat, mutta varhaisessa maailmankaikkeudessa ja muissa äärimmäisissä olosuhteissa teoriat erottuvat toisistaan.

Percacci on vanhan linjan gravitaatiotuntija, joka katsoo asioita ensisijaisesti aika-avaruuden kautta, ei miettien sovelluksia kosmologiaan tai hiukkasfysiikkaan. Tämä on katoava näkökulma, ja hänen puheensa on oli osoitus siitä, miten gravitaatiosta ja hiukkasfysiikasta voi puhua samalla kielellä yhtä aikaa laajasti ja yksityiskohtaisesti.

Seuraavana oli Verónica Errasti Díez, jonka ala on matemaattinen fysiikka, mikä on teoreettisesta fysiikasta piirun verran kohti matematiikkaa. Leikillisesti voi sanoa, että teoreettisilla fyysikoilla on ongelmia, joihin he etsivät ratkaisuja, kun taas matemaattisilla fyysikoilla on ratkaisuja, joihin he etsivät ongelmia. Toisaalta koska matemaattisessa fysiikassa pyritään samaan täsmällisyyteen kuin matematiikassa, se voi tarjota luotettavia yleisiä tuloksia teorioiden ominaisuuksista.

Diez puhui gravitaatioteorioiden vakaudesta. Vaikka yleiselle suhteellisuusteorialle on esitetty satoja erilaisia laajennuksia, suurin osa niistä ei voi kuvata todellisuutta. Tyypillisesti käy niin, että aika-avaruus ja aine eivät pysy jokseenkin samanlaisena pitkän aikaa, vaan kaikki hajoaa erittäin nopeasti, toisin kuin todellisessa maailmassa. Tämä on hyvä, koska epävakaat teoriat voi sivuuttaa ja keskittyä mahdollisesti toimiviin vaihtoehtoihin.

Diez kertoi oivaltavasti ja selkeästi miten teorian vakauden selvittäminen ei kuitenkaan ole niin helppoa kuin teoreettiset fyysikot ajattelevat. Teoria voi näyttää epävakaalta, mutta tarkemmin katsottuna osoittautua terveeksi, eikä sitä voikaan heittää romukoppaan.

Omassa puheessani hahmottelin hiukkasfysiikan merkitystä gravitaatioteorioille. Tieteenhistorioitsija Thomas Kuhn kirjoitti vuonna 1961, että 50 vuoden kuluttua yleinen suhteellisuusteoria saattaa olla kokonaan unohdettu, koska huolimatta ”epäilyttä nerokkaiden miesten” parhaista yrityksistä siitä oli saatu puristettua ulos vain kolme ennustusta.

Kuhn oli väärässä sekä menneisyydestä ja tulevaisuudesta. Venäläinen fyysikko Aleksandr Fridman oli osoittanut vuonna 1922, että yleinen suhteellisuusteoria johtaa siihen, että maailmankaikkeus laajenee tai supistuu, ja belgialainen tähtitieteilijä Georges Lemaître oli vuonna 1927 johtanut siitä täsmällisen ennustuksen galaksien etäisyyden ja etääntymisnopeuden suhteesta. Se tuli sittemmin tunnetuksi seuraavan löytäjänsä mukaisesti Hubblen lakina.

Mutta Kuhn oli oikeassa siinä, että yleisessä suhteellisuusteoriassa oli 30-50-luvuilla kuiva kausi, ja että ennustusten tekeminen ja tarkistaminen havaintojen avulla on tärkeää teorian kehitykselle. Yksi merkittävä syy siihen, että yleisen suhteellisuusteorian toinen kukoistus alkoi 1960-luvulla oli uudet havainnot kvasaareista (eli nykykielellä isoista mustista aukoista), joiden selittämiseksi Robert Oppenheimer kokosi yhteen hiukkasfyysikoita ja yleisen suhteellisuusteorian tuntijoita.

Nykyään hiukkasfysiikka ja yleinen suhteellisuuteoria kohtaavat kosmologiassa. Puhuin erityisesti siitä, että jos Higgsin kenttä on vastuussa kosmisesta inflaatiosta, niin se voi tuoda joitakin tavoittamattomana pidettyjä kvanttigravitaation piirteitä havaintojen ulottuville.

Konferenssissa oli 64 puhetta, joista suurin osa oli jaettu kahteen ohjelmavirtaan. Itse seurasin enimmäkseen esityksiä gravitaatioteorioista ja kosmologiasta, toisessa virrassa keskityttiin mustiin aukkoihin.

On tavallista, että konferenssipuheista monet ovat turhan yksityiskohtaisia ja siksi vaikeasti seurattavia. Niissä myös vaihtelee se, miten hienostunutta matematiikkaa niissä käytetään, ja miten perusteltuja niiden fysikaaliset ideat ovat. Kehittyneempien menetelmien käyttäminen ei välttämättä tarkoita sitä, että työ olisi merkittävämpää.

Konferensseissa saa muutamassa päivässä tehokkaan katsauksen yhteen fysiikan osa-alueeseen, keksii uusia ideoita ja havaitsee virheitä omassa ajattelussa. Ne myös muistuttavat siitä, miten paljon yksityiskohtaista työtä on pientenkin edistysaskeleiden takana.

Konferenssiin kuului tavalliseen tapaan sosiaalista ohjelmaa, kuten kiertue vanhalla observatoriolla. Sen tarkoitus ei ole vain viihdyttää osallistujia, vaan luoda tilaisuuksia epämuodolliselle vuorovaikutukselle. Teoreettisten fyysikoiden yhteistyö ei synny ylhäältä ohjaamalla, vaan ennustamattomasti ihmisten keskustellessa ja väitellessä.

Tarton yliopiston linjauksen mukaisesti venäläisten ja valkovenäläisten instituuttien tutkijat saivat osallistua konferenssiin vain, jos heillä oli henkilökohtainen kutsu. Euroopassa on tiukasti rajoitettu akateemista yhteistyötä venäläisissä instituuteissa työskentelevien tutkijoiden kanssa. Nämä rajoitukset ovat laajempia ja vähemmän kohdennettuja kuin palestiinalaisen kansalaisyhteiskunnan vaatimus Israelin akateemisesta boikotista, joka on suunnattu instituutioita vastaan, ei yksilöitä.

Fysiikka etenee havaintojen ja teorian yhteispelinä. Tarton tapaaminen oli painottui teoriaan, mutta joitakin siellä esitettyjä teorioita testaa ylihuomenna 1.7. kello 18.11 Suomen aikaa avaruuteen laukaistava Euclidsatelliitti.

20 kommenttia “Maanmittauksen perusteet”

  1. Eusa sanoo:

    Onko teorian ja hypoteesin raja kyllin selvä? Oliko sinulle Syksy helppoa tunnistaa, että nyt ollaan teorian kehyksessä tai että esittelyssä on hypoteesi?

    Edellä tuli puheeksi lisätty parametri. Voisiko ajatella, että niin kauan kuin teoria pysyy kasassa lisätyillä aineksilla, joita voisi olla olemassa mutta ei vielä havaittu, kysymyksessä on teorian koettelu ja kun ilmiölle esitetään systeemisesti uudenlainen selitysmalli, on se hypoteesi uudeksi teoriaksi?

    Aiheeseen liittyy mielestäni läheisesti se, että sovellettavaksi teoriaksi hyväksyttyjen oppien tulisi kai olla lopulta keskinäisesti ristiriidattomia – tai ainakin nähtävissä niiden kehittyminen sellaisiksi. Yleinen suhteellisuus ja kvattiteoriat taitavat olla natiivisti yhteensovittamattomia ilman hypoteesin kautta paradigman vaihdosta…

  2. maanmittari sanoo:

    Mielenkiintoinen otsikko, lyhimmästä matkasta kyllä puhuttiin mutta muuten otsikon yhteys tekstiin jäi itselleni epäselväksi, joka ei ole näissä yhteyksissä tietenkään kummallista.

    1. Syksy Räsänen sanoo:

      Otsikko viittaa konferenssin nimessä esiintyvään sanapariin ”geometric foundations”. Geometria tarkoittaa kirjaimellisesti maanmittausta, koska se kehittyi alun perin maanmittaukseen liittyvien ongelmien ratkaisemisesta.

      1. maanmittari sanoo:

        Kun otsikossa oli myös (- -) of Gravity, niin se vei ajatukseni pois ”perinteisestä” maanmittauksesta.

  3. Pauli Rikula sanoo:

    Jos olettaisi, että nämä koskiset säikeet ( https://www.youtube.com/watch?v=Thw43hzXlDA ) ovat totta, niin voisiko kaksi mustaa aukkoa imeä samaa kosmista täiettä kuin rakastavaiset spagethia lautaselta? Olisi ehkä sopivaa käyttää tästä testattavasta teoriasta työnimeä ’Cosmic Lady & tramp’ tuollaisessa konfrenssissa.

    1. Syksy Räsänen sanoo:

      En katsonut videota. Mutta jos kosmisiä säikeitä on olemassa, niitä on niin harvassa, että tällainen tilanne olisi hyvin epätodennäköinen.

  4. Erkki Kolehmainen sanoo:

    Geometria oli kehittynyttä jo antiikin Kreikassa. Tästä esimerkkinä on 1036 metriä pitkä Eupalinoksen tunneli Samoksen saarella.
    https://en.wikipedia.org/wiki/Tunnel_of_Eupalinos
    Se on valmistunut vesijohdoksi Kastro-vuoren läpi 6. vuosisadalla ennen ajanlaskun alkua. Tietojen mukaan tunnelin kaivajat lähtivät vuoren molemmilta puolilta liikkeelle ja osuivat yhteen. Tunneli on UNESCO:n maailmanperintökohde ja sinne pääsee. Minun kanttini kesti n. 100 m ja sitten tuli tunne, että täältä on päästävä äkkiä pois!

  5. Martti V sanoo:

    Arkinen käsitys suorasta viivasta lyhimpänä matkana ei taida päteä voimakkaassa gravitaatiossa, jossa lyhin matka käyristyy. Aikaulottuvuus vaikuttaa myös matkaan. Hiljattain uutisointiin että aika oli viisi kertaa hitaampaa maailmankaikkeuden ollessa miljardin vuoden ikäinen. Vaikka syntyvät galaksit olivat silloin lähempänä toisiaan olisiko niiden välinen matka taittunut hitaammin mitä vastaava etäisyys nykyään veisi valolta? Toinen kysymys oliko aika lähes pysähtynyt inflaation aikoihin?

    1. Syksy Räsänen sanoo:

      Asia on juuri päin vastoin.

      Yleisen suhteellisuusteorian (alkuoperäisen ja yleisimmän muotoilun) mukaan juurikin suoraa viivaa pitkin menevä reitti on (paikallisesti) lyhin. (Tämä pätee avaruudenkaltaisille viivoille – avaruuteen vedettyjen viivojen vastine suhteellisuusteoriassa. Kappaleet joihin ei vaikuta voimia liikkuvat näillä suorilla viivoilla.

      Aika kulkee samaa tahtia maailmankaikkeuden kaikkina aikoina. (Oikeastaan kysymys siitä, kulkeeko aika eri tahtia eri aikoina ei ole kovin mielekäs.)

      1. Martti V sanoo:

        Aiikaan liittyen onko tämä tutkimus sitten väärässä ? https://phys.org/news/2023-06-quasar-clocks-universe-slower-big.html

        1. Syksy Räsänen sanoo:

          Tutkimuksessa ei ole kyse siitä, että aika kulkisi hitaammin varhaisessa maailmankaikkeudessa. Kyse on siitä, että kun valo kulkee laajenevassa maailmankaikkeudessa, se venyy ja sen värähtelyjen taajuus laskee. Toisin sanoen tapahtumat näyttävät tapahtuvan hitaammin.

          Linkkaamasi uutisen otsikko on siis väärin, tutkimuksen otsikko on oikein: https://www.nature.com/articles/s41550-023-02029-2

          1. Cargo sanoo:

            Meinaako tuo sitä, että kun se muinainen valo on lähtenyt liikkeelle, niin avaruus on ollut enemmän ”rutussa” kuin nykyään, jolloin asiaa voisi verrata mustaan aukkoon putoavaan kappaleeseen ja sen lähettämään signaaliin?

          2. Syksy Räsänen sanoo:

            Kyllä.

          3. Cargo sanoo:

            Voisiko noiden havaintojen avulla tarkastella onko valon nopeus ollut lokaalisti vakio kaikkina aikoina? Voisihan sitä olettaa, että alkuaikojen tyhjiössä on ollut enemmän kuhinaa, mikä on saanut fotonit kulkemaan hitaammin verrattuna nykypäivään.

          4. Syksy Räsänen sanoo:

            Yleisessä suhteellisuusteoriassa (ja tavallisessa sähkömagnetismissa) valon nopeus tyhjössä on paikallisesti aina sama. Pitää siis ehdottaa jotakin laajennettua teoriaa, ja onhan niitä ehdotettukin. Mutta tulos riippuu siitä, millainen muunnettu teoria on, asiaa ei voi testata mallista riippumattomasti.

      2. Joksa sanoo:

        Siis olisi kyse pelkästään aika-avaruuden vaikutuksesta etäisen kellon käyntiä ilmentäviin viesteihin. Perus-Dopplerilmiössä kävisi kai niin että junan tullessa asemalle päin vihellys kuulostaa korkeammalta ja junassa kulkevan hyvin äänekkään kellon tikitys tiheämmältä, ja poispäin mennessä vihellys kuulostaa matalammalta ja sen kellon tikitys harvemmalta. Mutta kellot kävisi molemmissa tapauksissa koko ajan samaa tahtia. Etäisten maailmankaikkeuden tapahtumien nopeusmuutokset antanee viitettä sen osalta olisiko mahdollista että aika olisi kulkenut aikaisemmin esim. gravitaation vaikutuksesta hitaammin. Siinä tapauksessa _vaikuttaisi_ siltä että maailmankaikkeuden laajeneminen kiihtyisi, gravitaation aikaa hidastavan vaikutuksen heiketessä, kuten tekeekin. Mutta siis kiihtyykö oikeasti vai vaikuttaako vain silä?

        Suhtiksen mukaanhan eri- tai edes saman aikaisestikaan käyvät kellot eivät välttämättä käy samaa tasaista tahtia, joten olisi kai hyvä täsmentää mistä ajakulusta puhutaan. Suhteellisten havainnoijien mukana kulkevien kellojen mittaamien (itseis)aikojen lisäksi on siis dualistisesti olemassa myös yksi yleinen yhteinen kosminen aika. Muutoin kai ei ole edes mielekästä todeta ajan kulkeneen yhtä ja samaa tahtia maailmankaikkeuden kaikkina aikoina.

        1. Syksy Räsänen sanoo:

          Maailmankaikkeuden laajenemisen kiihtyminen ei liity näihin havaintoihin valon venymisestä.

          Kun puhutaan maailmankaikkeuden iästä, tarkoitetaan aikaa, jonka mittaa sellainen havaitsija, joka näkee aineen jakautuneen tilastollisesti homogeenisesti avaruudessa.

  6. Lentotaidoton sanoo:

    Aivan kuten Räsänen sanoo. (näitten uutisten kanssa täytyy aina olla vähän tarkkana). Otsikot heittää mutta asia on sama.

    Uutinen: ”If you were there, in this infant universe, one second would seem like one second—but from our position, more than 12 billion years into the future, that early time appears to drag.” Siis: early time APPEARS to drag.

    Tutkimus: “A fundamental prediction of relativistic cosmologies is that, owing to the expansion of space, observations of the distant cosmos should be time dilated and appear to run slower than events in the local universe”. Siis: “APPEAR to run slower”

    1. Martti V sanoo:

      Kiitos selvennyksestä. Äkkiä ajateltuna tiiviimmässä maailmakaikkeudessa gravitaatio vaikuttaisi myös ajan dilaatioon. Jännää että nopeat varhaiset vaiheet kuten massivisten mustien aukkojen syntyminen tapahtui vieläkin nopeempaa miltä se näyttää nykyään.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kohti kaaren huippua

14.6.2023 klo 15.52, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Satelliitti Euclid laukaistaan viimein heinäkuussa kiertoradalle. Tämänhetkisen aikataulun mukaan Euclid nousee taivaaseen lauantaina 1. päivä kello 18.42 Suomen aikaa. Odottaessa voi ostaa Euclid-paitoja ja muita fanituotteita Euroopan avaruusjärjestö ESAn nettikaupasta.

Euclid on ESAn uusin kosmologiasatelliitti. Edellinen oli 14 vuotta sitten laukaistu kosmista mikroaaltotaustaa katsonut Planck, seuraava on 14 vuoden päähän suunniteltu gravitaatioaaltoja kuunteleva LISA.

Kosmologian havaintoprojekteista on tullut isoja kuin hiukkasfysiikan kokeista. Euclidissa on yli 2 000 tutkijaa 300 instituutista 13 Euroopasta, Japanista, Kanadasta ja Yhdysvalloista. Euroopasta lienee vaikeampi löytää kosmologia, joka ei olisi mukana Euclidissa kuin Euclidin jäseniä.

Suomen osuutta johtaa Hannu Kurki-Suonio Helsingin yliopistosta, ja mukana on tieteilijöitä Helsingin, Turun ja Jyväskylän yliopistoista sekä Aalto-yliopistosta (minäkin). Tieteellisen laskennan keskus CSC on tärkeä kumppani, koska yksi Euclidin datankäsittelykeskuksista tulee Suomeen.

Isojen kokeiden kaari on pitkä. ESA valitsi Euclidin 4. lokakuuta 2011, samana päivänä kun Ruotsin tiedeakatemia päätti myöntää Nobelin palkinnon maailmankaikkeuden laajenemisen kiihtymisen havaitsemisesta. Kirjoitin vuonna 2012, että ”jos kaikki tapahtuu ajallaan (mikä lienee isoissa projekteissa poikkeuksellista), satelliitti laukaistaan seitsemän vuoden kuluttua”. Yksi viimehetken syy viivästymiseen on ollut se, että Euclid oli tarkoitus laukaista venäläisellä Soyuz-raketilla, mutta Venäjän hyökättyä Ukrainaan tilalle vaihdettiin SpaceX:n raketti Falcon 9 Block 5.

Planck teki maailman tarkimmat mittaukset koko kosmisesta mikroaaltotaivaasta, ja sen dataa käytetään vielä vuosikymmeniä. Euclidilla on vastaava rooli mitä tulee ison mittakaavan rakenteeseen eli galaksien, galaksiryppäiden ja muiden kosmisten kappaleiden jakaumaan. Ison mittakaavan rakenne on kosmisen mikroaaltotaustan ohella yksi kosmologian keskeisiä havaintokohteita.

Euclid kuvaa kolmanneksen taivaasta miljardien valovuosien päähän näkyvällä ja infrapuna-aallonpituudella. Lisäksi se mittaa pienen palan taivasta syvemmälle, ja näkee sieltä muun muassa varhaisten aikojen jättimäisten mustien aukkojen ympärille kertyneiden kiekkojen säteilyä.

Koska valo kulkee äärellisellä nopeudella, kun katsoo kauas paikassa näkee pitkälle menneisyyteen. Euclid siis havaitsee, miten aineen jakauma kehittyy maailmankaikkeudessa miljardien vuosien aikana. Yksi Euclidin tavoite on mitata muun aineen läpi virtaavien neutriinoiden massat havaitsemalla niiden vaikutus rakenteiden kehitykseen. Euclid myös tekee tarkkoja mittauksia varhaisen maailmankaikkeuden ääniaaltojen jalanjäljistä.

Galaksien paikkojen lisäksi Euclid mittaa puolentoista miljardin galaksin muodot. Meidän ja galaksien välinen aine taittaa galakseista tulevaa valoa. Niinpä muotojen vääristymästä voidaan päätellä kuinka paljon pimeää ainetta maailmankaikkeudessa on näkyvän aineen lisäksi.

Euclid näkee 200 000 galaksin ja 5 000 galaksiryppään taittavan valoa niin vahvasti, että taustalla olevien galaksien kuvat venyvät kaariksi ja hajoavat osiin. Nämä harvinaiset ilmiöt ovat hyödyllisiä testikappaleita. Nykyään tällaisia hyvin mitattuja systeemejä on vain joitakin kymmeniä.

Euclidin pääasiallinen tutkimuskohde on avaruuden laajenemisen kiihtyminen, jolle suosituin selitys on pimeä energia. Satelliitti on nimetty ”geometrian isänä” tunnetun kreikkalaisen matemaatikon Eukleideen mukaan, ja sen alkuperäisessä logossa oli vanha parrakas mies mittaamassa maailmankaikkeutta. Nimi viittaa siihen, että maailmankaikkeuden laajeneminen on aika-avaruuden kaarevan geometrian ilmentymä.

Vaikka Euclid suuntaa katseensa kauas, se näkee myös lähelle. Euclidin kuvissa arvioidaan näkyvän noin 150 000 Aurinkokunnan asteroidia, ja se erottaa yksittäisiä tähtiä jopa 20 miljoonan valovuoden päästä. Yksi kiinnostava kohde on 65-135 Auringon massan painoisten tähtien hajoamisesta syntyvät supernovat, joita Euclid voi nähdä paljon kauempaa. Niitä ei ole toistaiseksi havaittu ainuttakaan, ja gravitaatioaaltohavainnot saattavat viitata siihen, että jotakin noissa tähdissä ei ymmärretä.

Euclidilla kestää kuukausi kiivetä 1.5 miljoonan kilometrin päähän Maapallosta. Käyttöönotto ja koeaika kestää kolme kuukautta, eli tieteelliset havainnot alkavat marraskuussa. Satelliitti liikkuu Maan mukana Auringon ympäri. Mittausdataa kertyy 100 GB päivässä.

Euclidin on määrä tehdä havaintoja ainakin kuusi vuotta, mutta viralliset tavoitteet ovat varovaisia ja usein satelliitit kestävät suunniteltua pidempään. Planckin arvioitu kesto oli kaksi ja puoli vuotta, mutta se teki mittauksia yli neljä vuotta, kunnes lopulta jäähdytinaine loppui.

Tavallisen käytännön mukaan Euclid-ryhmä analysoi ensin itse datan ja tekee siitä analyysin, sen jälkeen data annetaan kaikkien käyttöön. Ensimmäiset tulokset ja havainnot on tarkoitus julkistaa vuonna 2025, ja kaiken datan pitäisi olla julkista 2030. Suurimman osa Euclidin havaintoja käyttävästä tieteestä tekevät muut kuin Euclid-ryhmä. Euclidin kaari jatkuu kauan sen jälkeen kun satelliitti on sammutettu ja heitetty pois avaruuteen.

13 kommenttia “Kohti kaaren huippua”

  1. Erkki Kolehmainen sanoo:

    ”Yksi viimehetken syy viivästymiseen on ollut se, että Euclid oli tarkoitus laukaista venäläisellä Soyuz-raketilla, mutta Venäjän hyökättyä Ukrainaan tilalle vaihdettiin SpaceX:n raketti Falcon 9 Block 5.”

    Venäjä ei ole hyökännyt Ukrainaan vaan Venäjällä on sotilaallinen erikoisoperaatio venäjää puhuvien ja venäjämielisten kansalaisten suojelemiseksi Ukrainassa. Olisi toivottavaa, että tieteellinen yhteistyö voitaisiin irrottaa politiikasta!

    1. Syksy Räsänen sanoo:

      Hyökkäyksen ja sodan todellisuuden peitteleminen kielellisillä tempuilla on hyökkääjille ja miehittäjille tyypillistä.

      Tämän blogin kommentteihin se ei kuulu.

      Tiede on osa yhteiskuntaa, ja siksi tieteellisessä yhteistyössä on syytä ottaa huomioon yhteiskunnan kehitys ja tieteilijöiden vaikutus.

      Tieteilijöiden vastuusta aiemmin, ks.

      https://web.archive.org/web/20150411182551/http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/ympariston_vaikutus_olomuodon_muutoksissa

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/rajaton-tiede/

      Tämä riittäkön tästä aiheesta tällä kertaa.

  2. Martti V sanoo:

    Jänniä aikoja jos gravitaatiolinssien mittaukset vetää rajaa muokatun gravitaation ja pimeän aineen välille

    1. Syksy Räsänen sanoo:

      Niinpä.

    2. Eusa sanoo:

      Käsittääkseni Euclidin tavoitteena ei ole osoittaa, kumpi hypoteesi on parempi, vaan pikemminkin auttaa tarkemmin ymmärtämään kaikkeuden ominaisuuksia ja kehitystä.

      Gravitaatiolinssihavaintojen kartoitus saattaa antaa valoa siitä mistä suunnasta voisi pimeän gravitaation luonteeseen löytyä selitystä, mutta ennakoidun mallin ratkaisijaksi todennäköisyys on häviävän pieni. Sen voi tietysti sanoa jo etukäteen, että koska pimeä aine on luonteeltaan lisätty parametri, sitä ei saada pois ilman uutta teoriakehystä. Esim. MOND puolestaan on sovitettua matematiikkaa ilman varsinaista fysikaalista motiivia, joten se voi lähinnä tulla pois suljetuksi.

      Mielenkiintoisinta olisi tulos, joka voisi johtaa yleisen suhteellisuuden kuvauksen syventämiseen.

      1. Syksy Räsänen sanoo:

        En tiedä mitä tarkoitat termillä ”pimeä gravitaatio”.

        Euclidin pääasiallinen tehtävä on maailmankaikkeuden kiihtyvän laajenemisen luotaaminen, ja suosituin selitys sille on pimeä energia. Se on eri asia kuin pimeä aine.

        Pimeä aine ei ole ”lisätty parametri”, vaan fysikaalinen idea, jota on toteutettu monissa eri malleissa. (Eli on olemassa erilaisia ehdokkaita sille, mitä pimeä aine voi olla.)

        1. Eusa sanoo:

          Pimeällä gravitaatiolla tarkoitan tutkimuskokonaisuutta, jossa nimettyinä avoimina (pimeinä) kysymyksinä ovat pimeä energia, pimeä aine ja gravitaatioon hakusalla olevat kvantit.

          Mm. Vulcanus oli lisätty parametri, kunnes selitys löytyi Merkuriuksen eksentrisen radan aiheuttamien gravitaatiomuutosten signaaliviiveistä.

  3. Martti V sanoo:

    Voiko pimeä aine olla kupruja aika-avaruudessa ilman että varsinaista pimeän aineen hiukkasta olisikaan olemassa? Maailman kaikkeuden jäähtyessä muitakin valuvikoja syntyi.

    1. Syksy Räsänen sanoo:

      Kyllä, niitä sanotaan mustiksi aukoiksi.

      1. Martti V sanoo:

        Luin blogisi kyllä plackin mittakaavan mustista aukoista mutta onko useita vaihtoehtoja syntymekanismiksi? Mahdollisesti romahtaneita axion säikeitä?

        1. Syksy Räsänen sanoo:

          On tosiaan monia ehdotuksia mustien aukkojen tuottamiseksi, yksi niistä aksionisäikeiden romahdus.

      2. Martti V sanoo:

        MOND on toinen vaihtoehto mustille aukoille. Hiljattain julkaistu korealaistutkimus kaksoistähdistä puoltaa MOND teoriaa. Ylipäätänsä oletus että avaruus kaaretuu ainaostaa energiatensorin mukaan saattaa olla väärä suurilla etäisyyksillä.

        1. Syksy Räsänen sanoo:

          MOND ei ole vaihtoehto mustille aukoille. Se on ehdotus muokatuksi gravitaatiolaiksi, joka selittäisi aineen liikkeitä galakseissa ilman pimeää ainetta. Se ei ole kokonainen teoria, joka selittäisi kaikkia havaintoja, mutta on esitetty teorioita, joista MOND olisi approksimaatio.

          Yksikään näistä teorioista ei ole ennustanut oikein asioita, joita pimeä aine ei selittäisi, eikä pysty selittämään kaikkia asioita, mitä pimeä aine selittää.

          Ei tästä nyt sen enempää.

          Tarkemmin: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *