Arkisto


Taivas ei hohda pimeää

30.9.2021 klo 16.28, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Kaikki näkemämme planeetat, tähdet, galaksit ja muut kappaleet koostuvat aineesta, eivät antiaineesta. Kun hiukkanen kohtaa antihiukkasensa, ne annihiloituvat eli muuttuvat toisiksi hiukkasiksi, usein fotoneiksi eli valoksi. Jos jotkut maailmankaikkeuden rakenteet koostuisivat protonien, neutronien ja elektronien sijaan niiden antihiukkasista, niin antiaineen ja tavallisen aineen rajalta näkyisi annihilaatiossa syntyvää korkeaenergistä säteilyä, mitä ei ole havaittu.

Syynä aineen ylivoimaan on se, että kaikki antiaine kului loppuun maailmankaikkeuden ensimmäisen kymmenen sekunnin aikana. Ainetta oli miljardisosan enemmän, ja näkemämme rakenteet koostuvat tuosta pienestä ylijäämästä –kosminen mikroaaltotausta taasen on enimmäkseen tuossa alkuaikojen annihilaatiossa syntynyttä valoa.

Näkymättömän aineen kohdalla tilanne voi olla toinen. Pimeäksi aineeksi on monenlaisia ehdokkaita, mutta pitkään suosituin oli WIMPpien (suomeksi siis nynnyjen) nimellä kulkevat hiukkaset.

Kuten näkyvä aine ja antiaine, varhaisessa maailmankaikkeudessa pimeä aine ja antiaine annihiloituvat. Kun maailmankaikkeus laajenee, aineen tiheys laskee. Jossain vaiheessa tiheys on niin pieni, että pimeän aineen hiukkaset eivät enää löydä toisiaan, ja annihilaatiot loppuvat. Tyypillisille nynnyille tämä tapahtuu noin sekunnin miljardisosan aikoihin.

Pimeän aineen hiukkasia ja antihiukkasia jää jäljelle yhtä monta, toisin kuin näkyvän aineen tapauksessa. Tämä johtuu siitä, että pimeä aine vuorovaikuttaa heikommin kuin näkyvä aine, eikä siksi annihiloidu yhtä tehokkaasti. Pimeää ainetta ei myöskään aluksi ollut enemmän kuin antiainetta. Mitä vahvemmin pimeä aine vuorovaikuttaa, sitä tehokkaammin se annihiloituu, ja sitä vähemmän nynnyjä on jäljellä.

Vaikka aineen keskitiheys laskee maailmankaikkeus laajetessa, joissain paikoissa tiheys kasvaa, koska gravitaatio vetää ainetta kasaan. Noin sadan miljoonan vuoden iässä tiheys kasvaa pienissä osissa avaruutta niin paljon, että näkyvän aineen ydinreaktiot käynnistyvät uudelleen, eli tähdet syttyvät. Vastaavasti klimppiytyminen tehostaa pimeän aineen annihilaatiota.

Annihilaatio tuottaa energiaa paljon tehokkaammin kuin ydinreaktiot, mutta toisaalta pimeä aine ei kasaudu yhtä tehokkaasti kuin näkyvä aine, ja se vuorovaikuttaa paljon heikommin. Niinpä vain pieni osa pimeän aineen hiukkasista ja antihiukkasista annihiloituu, eikä taivas hohda pimeän aineen valoa. (Muuten sitä tuskin sanottaisiinkaan pimeäksi aineeksi.) Pimeää ainetta etsitään siksi monin eri tavoin.

Havaintojen kannalta annihilaatiossa on kuitenkin se hyvä puoli, että kysymyksessä on sama ilmiö, joka määrää paljonko pimeän aineen hiukkasia on jäljellä. Jos tietää pimeän aineen hiukkasten lukumäärän, voi suoraan laskea annihilaation tehokkuuden ja siten kirkkauden taivaalla. Pimeän aineen gravitaatiovaikutuksesta voi puolestaan päätellä sen massatiheyden, eli hiukkasten lukumäärän kerrottuna yhden hiukkasen massalla jaettuna tilavuudella. Ainoa tuntematon tekijä on siis hiukkasen massa. Annihilaation tehokkuuteen vaikuttaa myös se miten paljon pimeä aine on klimppiytynyt – parhaita havaintokohteita ovat Linnunradan keskusta ja kääpiögalaksit, joissa pimeän aineen tiheys on iso.

Taivaalla onkin nähty ehkä odotettua enemmän valoataipositroneja (eli elektronien antihiukkasia). Koska avaruudesta tulee monenlaista säteilyä kaikenlaisista lähteistä, niin voi olla vaikea erottaa, ovatko hiukkaset peräisin pimeän aineen annihilaatiosta vaiko esimerkiksi pulsareista tai supernovien jäänteistä. Mutta jos sen sijaan nähdään vähemmän säteilyä kuin mitä pimeän aineen malli ennustaa, niin se on selvästi väärin

Tarkimmat rajat pimeän aineen annihilaatiolle on antanut vuonna 2008 kiertoradalle noussut Fermi-satelliitti. Se on vuosia mitannut avaruudesta saapuvia korkeaenergisiä fotoneja, ja pystyy sulkemaan pois monenmassaiset nynnyt – vähän riippuen siitä, mihin niiden oletetaan hajoavan. Kansainväliseen avaruusasemaan kiinnitetty hiukkasdetektori AMS-02 on osaltaan sulkenut pois sen mahdollisuuden, että kevyet nynnyt hajoaisivat tunnetuiksi sähköisesti varatuiksi hiukkasiksi, koska signaalia ei ole nähty.

Nynnyt voi pelastaa kehittämällä malleja, joissa pimeä aine hajoaa lähinnä hiukkasiksi, jotka ovat yhtä näkymättämiä kuin se itse (kuten neutriinoiksi tai joiksikin tuntemattomiksi hiukkasiksi). Toinen vaihtoehto on yksinkertaisesti tehdä pimeän aineen hiukkasesta raskaampi. Koska havainnot kiinnittävät massatiheyden, niin mitä isompi hiukkasten massa on, sitä pienempi on niiden lukumäärä, ja sitä vähemmän annihilaatioita tapahtuu.

Kumpikin muutos menee kuitenkin vastakarvaan nynnyjen alkuperäistä ideaa. Tarkoituksena oli, että pimeä aine vuorovaikuttaa hiukkasfysiikan heikon vuorovaikutuksen kautta, joten se hajoaa näkyväksi aineeksi, ja sen massa olisi samaa luokkaa heikkoa vuorovaikutusta välittävien W– ja Z-bosonien massan kanssa. Tällöin pimeän aineen massatiheys sattuisi sopimaan havaintoihin ilman säätämistä.

Yhdistettynä siihen, että myöskään maanpäällisissä kokeissa nynnyjä ei ole näkynyt vaikka olisi odottanut, taivaan pimeys tekee niistä yhä vähemmän houkuttelevia. Idea pimeästä aineesta sinällään voi hyvin, ja nynnyjen hohteen himmentyminen on siirtänyt huomiota muihin ehdokkaisiin, kuten steriileihin neutriinoihin, aksioneihin ja mustiin aukkoihin, joita vuorostaan ajetaan ahtaalle kunnes ne teilataan tai löydetään.

6 kommenttia “Taivas ei hohda pimeää”

  1. Martti V sanoo:

    Mielenkiintoinen kirjoitus. Pimeä aineen massan ylivoima näkyvään voi selittyä sillä, että se ei ole annihiloitunut ja sitä on myös antiaineen muodossa. Voiko pimälle aineelle olla baryoniluvun kaltainen suhde? Onko pimeälle aineelle välttämättä antihiukkasta?

    1. Syksy Räsänen sanoo:

      Moniin pimeän aineen hiukkasiin liittyy jokin säilyvä luku. Näin on myös joidenkin suosittujen nynnyjen kohdalla. Tässä tapauksessa aina kun pimeän aineen hiukkanen syntyy tai tuhoutuu, samalla pitää syntya täi tuhoutua sen antihiukkanen. Tämä on yksi selitys sille, miksi pimeän aineen hiukkanen on stabiili.

      Mutta toisin kuin baryonien tapauksessa, nynnyjä ei alun perin ole enemmän kuin antinynnyjä. (Tai vaikka olisi miljardisosan verran, sillä ei ole juuri merkitystä, koska antiainetta on jäänyt annihiloitumatta niin paljon.)

      Muissa pimeän aineen malleissa asia voi olla toisin. Esimerkiksi tekniväriin liittyvät teknibaryonit ovat pimeän aineen ehdokas, jota olisi jäljellä vain hiukkasia, jotka ovat jääneet jäljelle antihiukkasten kuluttua loppuun, baryonien tapaan.

      Toisaalta esimerkiksi steriilit neutriinot ovat (useimmissa malleissa) omia antihiukkasiaan, eli niiden kohdalla kysymys ei ole edes mielekäs.

  2. Miquel sanoo:

    Syntyikö alussa ainetta ja pimeää ainetta yhtä paljon? Jos näin, voisi ajatella, että pimeä aine vuorovaikuttaa antiaineensa kanssa 10 miljardia kertaa heikommin (10 sek vs. miljardisosa sekuntia) ja silti sitä jäi jäljelle 5 x niin paljon kuin ainetta. Eli vuorovaikutus olisi annihilaatiossa 1:50 000 000 000 näkyvän aineen annihilaatiosta (vuorovaikutuksesta). Vähän mutkat suoriksi peruskoulun matikalla. Tiedän, että tähän liittyy joku koukku. Toisaalta, kun on tehty niitä bullet-kuvia pimeästä aineesta, niin kaareuttaako se avaruutta enemmän kuin viereinen näkyvä aine? Vai onko se 5 kertaa kevyempää, vaikka sitä on 5 kertaa enemmän.

    1. Syksy Räsänen sanoo:

      Oletettavasti näkyvä aine ja pimeä aine ovat molemmat syntyneet kosmisesta inflaatiosta vastuussa olevan kentän hajotessa. Ei ole mitään syytä, miksi niitä olisi syntynyt yhtä paljon.

      Jäljellä olevan näkyvän aineen määrä ei määräydy sen vuorovaikutusten voimakkuudesta, kunhan ne vain ovat tarpeeksi voimakkaita, että lähes kaikki antiaine kuluu loppunu ja jäljelle jää vain pimeää ainetta. Oleellista on se, että näkyvään aineeseen liittyy säilyvä luku, baryoniluku, ja tämän takia on olemassa enemmän ainetta kuin antiainetta. (Tarkemmin täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/muistinmenetykset-ennustusten-takana/)

      Jos näkyvää ainetta ja antiainetta olisi aluksi yhtä paljon, ainetta jäisi jäljelle noin miljardiososa siitä mitä sitä oikeasti on. (Ja antiainetta saman verran.)

      Pimeä aine kaareuttaa aika-avaruutta saman verran per massatiheys kuin näkyväkin. Se kaareuttaa enemmön sellaisissa alueissa, missä sen massatiheys on isompi. (Käytännössä kaikkialla galaksien reunoilla ja galakseja isommassa mittakaavassa.)

      Bullet Clusterista tarkemmin: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

  3. Lentotaidoton sanoo:

    ”Yhdistettynä siihen, että myöskään maanpäällisissä kokeissa nynnyjä ei ole näkynyt vaikka olisi odottanut, taivaan pimeys tekee niistä yhä vähemmän houkuttelevia. Idea pimeästä aineesta sinällään voi hyvin, ja nynnyjen hohteen himmentyminen on siirtänyt huomiota muihin ehdokkaisiin, kuten steriileihin neutriinoihin, aksioneihin ja mustiin aukkoihin, joita vuorostaan ajetaan ahtaalle kunnes ne teilataan tai löydetään.”

    Kun ”nynnyjen hohde on himmentynyt” niin tuolla aiemmin kolmisen vuotta sitten olleessa kirjoituksessasi käsiteltiin myös FIMPejä, siis Feebly Interacting Massive Partikkeleja. Onko näiden osalta mitään lisäkerrottavaa? Esim tuolloin esitit että vuorovaikutus on niin heikko että senaikuiset kokeet eivät pysty niitä havaitseman. Entä tänään? Eli onko kokeiden ”haarukka” mahdollisesti tarkentunut?

    1. Syksy Räsänen sanoo:

      Käsittääkseni FIMPpien tilanne ei ole juuri muuttunut. Mahdollisuudet niiden havaitsemiseen riippuvat siitä, millainen FIMP tarkalleen ottaen on, ja ovat enimmäkseen kosmologisia. Termiä on kyllä käytetty myös steriileistä neutriinoista, joiden havaitsemista olenkin täällä joskus kirjoittanut: yksi mahdollisuus on hajoamisesta tulevat röntgensäteet. Toisaalta FIMPit saattaaat jättää jäljen kosmiseen mikroaaltotaustaan.

      En tiedä, onko tulossa mitään uusia kokeita, joiden tarkkuus olisi tässä suhteessa ratkaisevasti aiempaa parempi – ensi vuonna taivaalle nouseva Euclid-satelliitti mittaa toki monia kosmologisia asioista paremmin, mutta en tiedä mitä sanottavaa sillä on FIMPeistä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Lukutaidon perusteet

25.9.2021 klo 21.50, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Helsingin yliopisto, kehittämiskeskus Opinkirjo ja Kauniaisten kaupunki ovat tuottaneet nettiin avoimen tiedelukutaidon peruskurssin. Tiedotteen mukaan kurssi ”on suunnattu ennen kaikkea lukiolaisille, mutta sopii myös niin tavallisille kansalaisille kuin päättäjillekin”.

Tieteellinen tutkimus on laaja kenttä, joten yritykset kirjoittaa siitä kattavasti ovat helposti joko niin yleisluontoisia, että niistä ei saa paljon irti, tai sitten yksityiskohdiltaan joidenkin alojen kohdalla pielessä. Kurssi tasapainottelee sekä kuvaamalla tieteen yleisiä käytäntöjä että kertomalla yksittäisistä tapauksista, esimerkiksi revontulien tutkimuksesta.

Tämä toimii enimmäkseen hyvin, vaikka osa kuvailusta tuntuu pohjaavan enemmän teoreettisiin ideoihin tieteestä kuin siihen, miten tiedettä oikeasti tehdään. Esimerkiksi tieteellisestä kirjoittamisesta kerrotaan seuraavaa:

”Tutkimusraportin rakennetta on perinteisesti kuvattu neljällä kirjaimella: IMRD. Lyhenne tulee sanoista Introduction (johdanto), Methods (menetelmät), Results (tulokset), Discussion (pohdinta). Malli sopii parhaiten kuvaamaan kliinistä ja määrällistä tutkimusta, joka on tyypillistä esimerkiksi luonnontieteissä.”

Mielestäni tällainen menetelmiä korostava rakenne on päin vastoin leimallinen ihmis- ja yhteiskuntatieteille. Fysiikan artikkeleissa johdannon jälkeen tyypillisesti vain kerrotaan mitä on tehty, eikä metodeilla ylipäänsä ole samanlaista erityistä roolia kuin ihmistieteissä. Matematiikan artikkeleissa taasen ei yleensä ole sen enempää selityksiä metodeista kuin lopun pohdintaakaan.

Se, että tällaiset tekstit tuntuvat tutkijalle vieraalta johtunee osittain siitä, että niissä kuvaillaan tieteilijän työtä ulkoapäin, kun taas tutkijana sitä katsoo sisältäpäin ja vain pienestä osasta tutkimuksen kenttää. Tätä paikataan kurssilla tutkijoiden omilla teksteillä sekä haastatteluilla. Minulta on mukana kommentteja tutkijalle hyödyllisistä taidoista. Tämä huomio tuntuu tarpeelliselta muillekin:

”Tarvitaan myös sen sietämistä, että aloittaessaan tutkimusta ei tiedä, mihin päätyy ja kuinka kauan kestää saavuttaa tuloksia.”

Viime viikolla avaruusfyysikko Minna Palmroth puhui siitä, miten hän oli löytänyt ja selittänyt revontulidyynejä yhdessä ”kansalaistieteilijöiden” kanssa. (Sana ”kansalaistieteilijä” tarkoittaa henkilöä, joka ei ole tieteilijä, mutta osallistuu tieteen tekemiseen.) Palmroth kertoi, miten taivasta tarkkaan kuvaavien ei-tieteilijöiden havaintoverkosto oli oleellinen tutkimuksen tekemisessä, mutta sen koordinoiminen oli raastavaa, koska tutkimukseen tottumattomilla osallistujilla oli epärealistisia odotuksia. He olivat kovin innoissaan kun jotain löytyi, turhan kärsimättömiä kun tuloksia ei tullutkaan heti lisää, ja aivan lannistuneita kun jokin idea ei osoittautunutkaan oikeaksi.

Tieteen tenhoon mukaan hyppäävien ihmisten kohdalla tällaista vuoristorataa sopii odottaakin. Haitallisempaa on se, että tiedepoliittisia päätöksiä muokkaavilla virkailijoilla ja tieteestä käytävää keskustelua määrittävillä toimittajilla on vakavia puutteita tieteen ymmärtämisessä.

On tullut tavaksi verhota tietämättömyys tieteestä ja vihamielisyys tutkimuksen vapautta kohtaan vaatimuksiin ”vaikuttavuudesta”. Opetus- ja kulttuuriministeriön korkeakoulu- ja tiedepolitiikan osaston päällikkö Atte Jääskeläinen on esimerkiksi esittänyt, että tutkimuksen rahoitusta lisätään vasta sitten, kun tutkijoiden työ tehostuu ja he osoittavat sillä olevan ”vaikuttavuutta”. Käsite on epämääräinen, ja Helsingin yliopiston matemaattis-luonnontieteellinen tiedekunta on käsittänyt asian niin, että ”vaikuttavuutta” lisätään kehottamalla tutkijat käyttämään aikaansa ilmaisen työn tekemiseen kaupalliselle lehdelle.

Koska tieteessä kartoitetaan uusia alueita, on monesti mahdotonta arvioida, mihin tutkimus johtaa ja mitä siitä seuraa. Vaatimukset tieteen arvon osoittamisesta ovat sikäli hämmentäviä, että tiede on ihmiskunnan kehitystä viime vuosisatojen aikana eniten muuttanut tekijä, ja sen vaikutus on mittaamaton. Miten todistaa, että Aurinko on kirkas? Esimerkiksi kvanttimekaniikan löytäminen kumpusi ongelmista, jotka olivat aikanaan hyödyttömiä (eli ”akateemisia”), mutta siitä on muodostunut lähes kaiken nykyteknologian pohja. Lisäksi on syytä korostaa, että monilla tutkimustuloksilla on itseisarvoa, ei vain välinearvoa.

Valitettavasti edellä mainitun korkea-arvoisen OKM:n virkailijan lisäksi tietämättömyys tieteestä vaivaa joitakin tiedettä kommentoivia suomalaisia toimittajia. Toimittajat ovat ottaneet tavaksi arvostella yksittäisiä tutkimushankkeita, rahoituspäätöksiä tai jopa kokonaisia tutkimusaloja virheellisten tietojen, keksittyjen väitteiden tai vaikkapa vain hankkeen nimen perusteella.

Kohteet on usein valittu poliittisin perustein ihmistieteiden puolelta, ja hyökkäykset tiedettä kohtaan esitetään tieteen puolustamisena: eikö olisi parempi rahoittaa hyödyllistä tutkimusta hyödyttömän sijaan? Väitteissä ei kuitenkaan ole kyse niinkään yksittäisten kohteiden arvostelusta kuin tieteen autonomian ja vertaisarvioinnin kyseenalaistamisesta. Tämä on osa poliittista virtausta, joka pyrkii lyhytnäköisesti valjastamaan tieteen yritysten palvelijaksi ja alistamaan tieteellisen yhteisön tiukemmin vallanpitäjien ohjaukseen.

Tiederahoituksessa on tietysti arvostelemista, kuten olen sekä hakijan että arvioijan näkökulmasta kirjoittanut. On myös totta, että koko ajan tehdään myös huonoa tutkimusta, ja monilla tieteenaloilla on vääristymiä ja ongelmia. (Hiukkaskosmologia ei ole poikkeus.) Mutta mielekäs keskustelu niistä edellyttää kyseisten tieteenalojen tuntemista. Esimerkiksi kosmologian tutkimushankkeiden rahoituspäätösten mielekäs arviointi vaatii vuosien perehtymistä. Päätökset tutkimuksen rahoittamisesta ja julkaisemisesta sekä tutkijoiden palkkaamisesta (tai suositukset päätöksille) tekevät toiset tutkijat siksi, että vain heillä on siihen tarvittava asiantuntemus.

Kun toimittaja toteaa, että se tosiseikka, että rahoituspäätösten perusteita ei voi ymmärtää ilman mittavaa perehtymistä ei ole este sille, että asiaan perehtymätön ihminen arvioi niitä, on kyseessä kiinnostava esimerkki tieteellisen lukutaidon puutteesta.

Osittain toimittajien ongelma voi liittyä journalismin ja tieteen eroihin. Toimittajien kulttuurissa on tavallista julkaista vakavia, perättömiä ja virheellisiä väitteitä –tieteestä tai muista aiheista– ilman että se vaikuttaa kirjoittajan asemaan negatiivisesti. Lisäksi muita toimittajia pidetään oman sisäryhmän jäseninä, joiden julkista arvostelua vältetään.

Tältä pohjalta voi olla vaikea ymmärtää, että tiedeyhteisö hakeutuu kohti totuutta keskinäisen kritiikin ja vertaisarvioinnin kautta. Jos tieteilijä jää kiinni perättömien väitteiden julkaisemisesta, hän menettää uskottavuutensa tiedeyhteisössä. Lisäksi toisten tutkijoiden arvosteleminen ja heidän arvostelunsa kohteena oleminen on keskeinen osa tutkijan työtä. Arvostelu ei ole hajottavaa ”kivien heittämistä” (kuten toimittajat saattavat toistensa julkista arvostelemista soimata), vaan rakentava osa virheiden korjaamista, koska se perustuu asioiden tuntemiseen ja faktojen korjaamiseen.

Vaikka osa tiedevastaisuudesta on poliittisesti tarkoitushakuista, mukana on myös aitoa ajattelemattomuutta ja vilpitöntä tietämättömyyttä, mihin kurssi tiedelukutaidon perusteista voi auttaa.

3 kommenttia “Lukutaidon perusteet”

  1. Aulis Tuohimäki sanoo:

    Loistava artikkeli.
    Minäkin luin tämän kahteen kertaan ja ihailin tekstin selkeyttä helppolukuisuutta.
    Kiitos!

  2. Erkki Kolehmainen sanoo:

    Lisäisin tuohon IMRD-lyhenteeseen yhden kirjaimen C eli Conclusions. Siinä tutkijan tulisi pohtia, mikä oli tehdyn tutkimuksen arvo ja hyöty ja kannattaako tiukasti samalla linjalla jatkaa ja jos ei,niin mihin suunnata.
    Eli lyhyesti sanottuna sijoittaa työnsä osaksi laajempaa kokonaisuutta.

    1. Syksy Räsänen sanoo:

      Johtopäätökset ovat osa Discussion-osuutta.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *