Arkisto


Näkymätön valuvika

31.10.2021 klo 14.10, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Tällä viikolla Malte Buschmann Princetonin yliopistosta puhui etänä Helsingin yliopiston fysiikan osaston kosmologiaseminaarien sarjassa aksionisäikeistä.

Aksionit olivat yksi ensimmäisiä ehdotuksia pimeäksi aineeksi. Kuten monet kiinnostavat pimeän aineen ehdokkaat, aksionit kehitettiin alun perin muihin tarkoituksiin, tässä tapauksessa värivuorovaikutusten teorian kauneusvirheen paikkaamiseksi. Pian kuitenkin hahmotettiin, että koska aksionit vuorovaikuttavat heikosti valon kanssa (eli ovat näkymättömiä), samoin kuin tavallisen aineen ja toistensa kanssa, ne ovat sopivat mainiosti pimeäksi aineeksi.

Toistaiseksi aksioneista –kuten muistakaan pimeän aineen ehdokkaista– ei ole mitään todisteita. Lukuisat kokeet ympäri maailmaa etsivät aksioneja käyttäen hyväksi sitä, että ne sekoittuvat valon kanssa. Esimerkiksi voi osoittaa lampulla seinää, jonka kummallakin puolella on magneettikenttä. Valo voi magneettikentässä muuttua aksioniksi, mennä seinän läpi ja muuttua toisella puolella takaisin valoksi, eli voi nähdä valon hohtavan seinän läpi. CERNin CAST-kokeen idea on samanlainen. Kokeessa on Aurinkoa kohti osoittava putki, jonka sisällä on magneettikenttä. Jos aksioneja on olemassa, niitä syntyy Auringossa ja matkaa sieltä Maapallolle, ja ne voivat putkessa muuttua valoksi.

Etsinnän ongelmana on se, että aksionit muuttuvat valoksi ja toisinpäin vain jos magneettikentän voimakkuus vastaa aksionin massaa. Niinpä magneettikenttä pitää säätää jokaiselle massalle erikseen, mikä tekee vaihtoehtojen läpikäymisestä hidasta.

Pimeän aineen massatiheys (paljonko massaa on kuutiometrissä) kuitenkin tiedetään, koska sen gravitaatiovaikutus on mitattu monin tavoin. Jos pimeä aine koostuu aksioneista ja tiedettäisiin niiden lukumäärätiheys (montako hiukkasta on kuutiometrissä), niin massatiheyden jakaminen sillä kertoisi aksionin massan, mikä nopeuttaisi sen löytämistä. Buschmann ja hänen yhteistyökumppaninsa juurikin laskivat, paljonko aksioneja on.

Aksioneihin liittyy useita mielenkiintoisia ilmiöitä, mikä on kaunis tapa ilmaista, että niiden lukumäärän laskeminen on vaikeaa. Aksionikenttä, kuten Higgsin kenttä, jäätyy tiettyyn muotoon lämpötilan laskiessa ajan myötä. Higgsin tapauksessa voi muodostua kuplia, joiden törmäykset synnyttävät gravitaatioaaltoja, mutta lopulta kenttä tasoittuu kaikkialla samanlaiseksi.

Aksionien tapauksessa kenttä sen sijaan jäätyy eri kohdissa eri suuntiin, ja alueiden väliin jää ohuita valuvikoja, joita sanotaan säikeiksi. Säikeet hajoavat viimeistään kvarkkien sitoutuessa protoneiksi ja neutroneiksi maailmankaikkeuden ollessa noin mikrosekunnin ikäinen, ja niistä jää jäljelle vain aksionihiukkasten aallokko. Tästä voi katsoa Buschmannin ja kumppaneiden simulaatioita säikeiden synnystä ja tuhosta.

Noiden parinkymmenen sekunnin simulaatioiden tekemisessä on iso työ niin ihmisellä kuin koneella (noin neljä miljoonaa CPU-tuntia, asiaa tunteville). Säikeiden paksuus on hiukkasfysiikan suuruusluokkaa, mutta niiden pituus on kosmisissa mitoissa. Tässä tapauksessa mittakaavojen ero on sama kuin jos pitäisi valovuoden alueella seurata yksittäisten atomiydinten sisärakennetta. Ongelma ratkaistaan siten, että simulaation aikana säädetään resoluutiota sen mukaan, missä kohtaa ollaan, käyttäen isoa tarkkuutta vain säikeiden lähellä.

Simulaatio osoittaa, että säikeiden hajoamisessa syntyvät aksionit muodostavat suurimman osan maailmankaikkeuden aksioneista, ja niiden massa on noin kymmenesmiljardisosa elektronin massasta. (Sivumennen sanoen, ne ovat aivan liian kevyitä, jotta sopisivat kokeen XENON1T viime vuonna ilmoittamaan mahdolliseen signaaliin, jota on aksionienkin avulla yritetty selittää.)

Buschmann kumppaneineen aikovat seuraavaksi laskea, synnyttävätkö säikeet aksionien lisäksi tarpeeksi voimakkaita ja sopivan pituisia gravitaatioaaltoja havaittaviksi. Jos nähtäisiin sekä oikeanlaiset gravitaatioaallot että aksionihiukkanen, pimeän aineen olemus ja alkuperä olisi järkevän epäilyn ulkopuolella.

Entä jos ennustetun massaista aksionia ei löydykään? Onneksi tai valitettavasti, näkökulmasta riippuen, aksionit voisivat silti olla pimeää ainetta. On nimittäin mahdollista, että aksioni jäätyy ennen kosmisen inflaation alkua. Silloin eri asentoihin jäätyneet alueet venyvät inflaation aikana niin paljon, että meidän näkemämme osa maailmankaikkeudesta mahtuu yhden sellaisen sisälle. Tällöin meidän nurkkaukseemme maailmankaikkeudesta (halkaisijaltaan noin 100 miljardia valovuotta) ei ole luultavasti sattunut yhtään säiettä, ja aksionit syntyvät eri tavalla.

Aksionien suosio on viime vuosina kasvanut pääasiassa siksi, että muitakaan pimeän aineen hiukkasia (erityisesti nynnyjä) ei ole löytynyt, ja samalla on opittu ymmärtämään aksioneja paremmin. Nyt on intouduttu tekemään aksioneilla muutakin kuin pimeää ainetta, esimerkiksi yrittää ratkaista saman tien kaksi muuta kosmologian neljästä suuresta ongelmasta, kosmisen inflaation ja aineen ja antiaineen välisen epäsuhdan. (Neljänteen, pimeään energiaan, ne eivät luontevasti taivu.) Tämä on hyvä esimerkki siitä, että monien teorioiden ja ideoiden syvyyttä ja mahdollisuuksia ei hahmoteta ennen kuin niitä katsotaan oikeasta näkökulmasta.

18 kommenttia “Näkymätön valuvika”

  1. Sunnuntaikosmologi sanoo:

    Tuo on ymmärtääkseni sellaista työtä että jos osuu oikeaan niin voi ruveta odottamaan soittoa Tukholmasta.
    Mutta toisaalta, eikö tuossa ole myös melko ikävän suuri mahdollisuus sille, että koko työ on täysin hukkaan heitettyä aikaa ja energiaa ?
    Miten on ?
    Kokeellisella puolella, jos jotain rakennetaan päämäärää varten joka ei lainkaan toteudu, niin parhaassa tapauksessa laitetta voi käyttää toiseen tarkoitukseen ja huonommassakin tapauksessa laiterakentelu voi huomattavasti kasvattaa knowhow-pääomaa.

    1. Syksy Räsänen sanoo:

      Suurin osa teoreetikkojen työstä on tietysti väärin – ei siinä mielessä, että siinä olisi matemaattisia virheitä, vaan siksi, että se ei kuvaa todellisuutta. On satoja pimeän aineen malleja, joista korkeintaan yksi on oikein. Mutta niissä voi olla jotain oikean mallin piirteitä, ja niitä tarkkaan tutkiessa oppii menetelmiä, joista voi olla hyötyä muualla.

      Voi myös olla, että tästä työstä ei opi mitään hyödyllistä oikean pimeän aineen kannalta – sitä ei voi tietää.

      Mitä Nobeleihin tulee, jos aksionit ovat pimeää ainetta, palkintoja varmaan myönnetään tutkijoille, jotka ovat niitä alun perin esittäneet (jos he ovat enää elossa) sekä niill, jotka ovat löytäneet hiukkasen tai gravitaatioaallot. Tällaisistä tärkeistä (ja usein välttämättömistä) väliaskelista ei Nobeleita myönnetä.

  2. Antti sanoo:

    jos atomit eivät emitoi valoa vaan lämpöä avaruuden kylmyydessä,
    riittäisikö lämpöä emittoivien atomien määrä selittämään
    pimeän aineen?

  3. Antti sanoo:

    siis nämä lämpöä emitoivat atomit yhdessä doppler ilmiön kanssa, jäi lisäämättä

    1. Syksy Räsänen sanoo:

      ”Lämmön emittoiminen” tarkoittaa infrapunasäteilyn eli aallonpituudeltaan näkyvää valoa hieman pidemmän sähkömagneettisen säteilyn eli -laajasti ymmärrettynä- tietynlaisen valon lähettämistä.

      Pimeää ainetta ei ole havaittu siitä, että se lähettäisi infrapunavaloa – päin vastoin, sen ei ole havaittu lähettävän mitään valoa. Se on havaittu vain gravitaation kautta. Tiedetään, että pimeä aine ei koostu atomeista, vaan joistakin tuntemattomista hiukkasista.

      1. Antti sanoo:

        ajattelin kun linnunradan tarkkaa kokoa tai
        linnunradan taivaankappalaiden määrää ei vielä kyetä arvioimaan
        tarkasti vaan kyetään antamaan aika isollakin heitolla
        arvioita, 100 – 400 mirjardia aurinkoa esim, niin
        jos osa linnunradassa olevista atomeista ei avaruuden kylmyyden takia
        lähetä valoa vaan lämpöä ja ovat siksi havaintokykymme tavoittamattomissa ja niitä
        ei vielä osata ottaa huomioon arvioissa kun etsitään vastausta miksi linnunrata
        pyörii väärin laskennallisiin malleihin nähden.
        Jos näin olisi niin galaksi pyörii sen takia
        väärin nykymalleihin nähden.
        tällöin pimeän aineen määritelmät ja etsinnät menisivät
        varmaankin kokonaan uusiksi.
        Tiedän ettet pidä spekuloinnista blogissasi,
        toivottavasti et katso tätä sellaiseksi.

        1. Syksy Räsänen sanoo:

          Kuten yllä kirjoitin, lämpösäteily on infrapuna-alueen sähkömagneettista säteilyä eli valoa.

          Tämä riittäköön tästä.

          1. Antti sanoo:

            OK. kiitos vastauksesta.

  4. Lentotaidoton sanoo:

    ”Higgsin kenttä, jäätyy tiettyyn muotoon lämpötilan laskiessa ajan myötä.”
    ”Aksionien tapauksessa kenttä sen sijaan jäätyy eri kohdissa eri suuntiin.”

    Selventäisitkö hieman että miksi näin. Jos Higgsin kenttä toimii inflatonkenttänä niin jäätyminen tapahtuu inflaation aikana (ja ehkä useaankin otteeseen ON/OFF). Jos ei inflatonina, niin sitten myöhemmin sähköheikon symmetrian rikkoutumisen aikaan. Aksionikentän symmetrian rikkoutuminen (jäätyminen) myös inflaation aikana? Miksi kenttä jäätyisi ”eri kohdissa eri suuntiin”? Ja mitä se tarkoittaa?
    Higgsin kentän jäätynyt arvo 246 GeV (tämän tiedämme hiukkasten massoista). Aksionikentän jäätynyt arvo, mikä?

    1. Syksy Räsänen sanoo:

      No niin, hyviä tarkentavia kysymyksiä epämääräisistä muotoiluistani.

      Jos Higgs on vastuussa inflaatiosta, niin sillä tosiaan on nollasta eroava arvo, joka inflaation loppumisen jälkeen putoaa nollaan (eli kenttä sulaa), kunnes jäätyy taas lämpötilan laskiessa alle 160 GeV:in. Jos Higgs ei ole vastuussa inflaatiosta, niin sen arvo poukkoilee inflaation aikana satunnaisesti. Kuten tiedät, tämä liittyy sähköheikon symmetrian rikkoutumiseen.

      Ei tiedetä, koska aksionikenttään liittyvä symmetria rikkoutuu. Se voi tapahtua ennen inflaatiota, sen aikana tai sen jälkeen.

      Eri suunnat tarkoittavat tässä suuntia kenttä-avaruudessa. Aksionikentällä on kaksi osaa, joita voi ajatella kaksiulotteisen kenttäavaruuden suuntina. Teoria on symmetrinen tämän kenttäavaruuden kiertojen suhteen. Kun aksioni jäätyy, se jää osoittamaan yhteen suuntaan kenttäavaruudessa. Ei ole mitään syytä, miksi tämä suunta olisi samanlainen eri paikoissa.

      Higgsin kanssa käy hieman samalla tavalla. Syynä siihen, että Higgsin tapauksessa ei synny säikeitä eri alueiden välille on se, että rikkoutuva symmetria on erilainen.

      Teoria ei kiinnitä aksionikentän arvoa f minimissään, se on kääntäen verrannollinen aksionien massaa, m=6*10^(-6) eV * 10^12 GeV/f. Tämän aksionisäietuloksen mukaan aksionien massa on 40-180*10^(-6) eV, ali f on noin 10^11 GeV.

  5. Ari Leppänen sanoo:

    Jos toi aksioinin massa pitää paikkansa niin silloinhan sen on dekadeja pienempi kuin neutriinon massa. Onko tuolla massan suuruudella (tai sen puuttumisella) tekemistä vuorovaikutuksen kanssa esim. protoniin ja elektroneihin mistä näkyvä maailmankaukkeus on tehty.

    1. Syksy Räsänen sanoo:

      Kyllä, se että aksionin massa on niin pieni liittyy siihen, että se vuorovaikuttaa niin heikosti.

  6. Martti V sanoo:

    Kun aksionkenttä jäätyi, sen arvo meni nollaan ja vaihe jäi satunnaiseen arvoon. Onkos kenttä skalaari ja miten sillä on suunta?Jos jäätyminen tapahtui inflaation jälkeen, niin miten kentän suunta olisi jakaantunut? Jokainen aksioini osoittaa eri suuntaan mielivaltaisesti?

    1. Syksy Räsänen sanoo:

      Aksioni on pseudoskalaari, eli käyttäytyy muuten kuin skalaari, mutta vaihtaa merkkinsä kun avaruuden suunnat käännetään.

      Suunnasta, ks. vastaus Lentotaidottomalle yllä.

      Hiukkaset ovat kentän pieniä tihentymiä, jäätymisessä on kyse kentän sellaisesta käytöksestä, joka ei palaudu hiukkasiin. Eri paikoissa kenttä jäätyy sattumanvaraisesti eri suuntaan, ja kun eri suuntiin osoittavat kentät kohtaavat, niiden väliin syntyy säie.

      1. Martti V sanoo:

        Jos jäätyminen tapahtui hieman inflaation jälkeen ennen higgsiä, niin millaisiin mittoihin säikeiden etäisyys on kasvanut? Eikös pimeän aineen luonne ole säikeinen rihmasto ja voisiko olla samassa miittaluokassa?

        1. Syksy Räsänen sanoo:

          Kuten kirjoituksessa mainitse, säikeet ovat hajonneet viimeistään mikrosekunnin aikoihin. Pimeän aineen rihmarakenne seuraa inflaation aiheuttamista tiheysvaihteluista, eikä sillä ole mitään tekemistä aksionien säierakenteen kanssa.

          1. Martti V sanoo:

            Näkisikö hajonneista säikeistä syntyneistä aksionitiheyksistä säikeiden alkuperäinen rakenne?

          2. Syksy Räsänen sanoo:

            Käsittääkseni aksionisäikeiden rakenne pyyhkiytyy pois niin tehokkaasti, että sitä ei saa enää myöhemmin selville. Mutta voin olla väärässäkin, en tunne yksityiskohtia niin hyvin.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Taide ja tähtitaivas

24.10.2021 klo 16.11, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Puhun keskiviikkona 24.11. kello 16 taideyliopiston Kuvataideakatemian tilaisuudessa Taide ja tähtitaivas otsikolla Kaikkeuden epäinhimillinen kauneus. Puheen esittely on seuraava:

Kun Aurinko vajaan kahdeksan miljardin vuoden kuluttua sammuu, ihmiskunta on kuollut sukupuuttoon kauan sitten. Silti Auringon loppu ja Maapallon tuho herättää surua. Ihmiset ovat tottuneet katsomaan maailmaa inhimillisen linssin kautta, joten epäinhimillisen maailmankaikkeuden tapahtumia verrataan ihmiselämään. Toisaalta ihmisille on kehittynyt tilan ja muotojen hahmottamiseen abstraktin ajattelun välineitä, joita on mahdollista soveltaa maailmankaikkeuden täsmälliseen ymmärtämiseen ja epäinhimillisen kauneuden kokemiseen.

Tilaisuudessa puhuvat myös kulttuurintutkija Maarit Leskelä-Kärki otsikolla Avaruus ja suru, tähtitieteilijä Hannu Karttunen otsikolla Tähtikarttojen taidetta ja taiteilija Elina Saloranta otsikolla Kirje Liisiltä.

4 kommenttia “Taide ja tähtitaivas”

  1. Ruut sanoo:

    Millä perusteella tieteessä päätellään joidenkin tulevien tapahtumien tai menneiden ajankohdat? Miten voidaan ennustaa auringon sammuminen vuosissa? Itse ajattelen ajan olevan vain taivaankappaleiden liikkeiden suhdetta toisiinsa. En ajattele varsinaisesti lineaarisesti ainoastaan, koska se ei ole koko totuus ajasta. Vuodenkiertokin pohjoisella pallonpuoliskolla näyttätytyy syklisenä. Samoin yön ja päivän vaihtelu. Lineaarinen ajattelu ilmenee ehkä kaiken syntymän ja kuoleman vaihteluna. Eli kenellä on valta sanoa ja väittää jotain mitä tulee aikamääriin?

    1. Syksy Räsänen sanoo:

      Ennustus Auringon eliniästä perustuu siihen, että tunnetaan Auringon kehitystä määräävät fysiikan lait, ja taivaalla nähdään useissa kehitysvaiheissa olevia tähtiä, joiden avulla on voitu varmentaa, että niitä on sovellettu oikein.

      Arkiajattelulla ei ole mahdollista selvittää sitä, millainen fysikaalisen todellisuus on. Se vaatii matemaattista mallintamista ja empiirisesti rakennettuja teorioita. Ks. täällä:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/lyijya-ja-painoja/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/edistys-ja-rappio/

      Ajasta hieman täällä:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaksi-tarinaa-ajasta/

      https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/ajan_kanssa

  2. Erkki Kolehmainen sanoo:

    ”Kaikkeuden epäinhimillinen kauneus.”
    En ymmärrä, miksi on käytettävä adjektiivia epäinhimillinen? Tarkoittaako se eläimellistä, jumalallista, saatanallista vai vielä jotain muuta? Arkiajajttelulla voi selvittää periaatteessa kaiken, mutta ei mystiikalla!

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Rakentava luovuus

21.10.2021 klo 23.46, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Kirjoitin viime kuussa uudesta tiedelukutaidon peruskurssista, jossa kerrotaan muun muassa siitä, millainen rakenne tieteellisillä artikkeleilla on.

Fysiikan artikkeleissa on tyypillisesti ensin johdanto, jossa kerrotaan taustoja, käydään läpi aiempaa tutkimusta ja tiivistetään mitä artikkelissa tehdään. Joskus siinä myös esitetään tiivistelmä tuloksista. Seuraavaksi on varsinainen sisältö, eli teoreettiset laskut tai selitys siitä mitä havaintoja on tehty ja miten. Lopuksi tiivistetään keskeiset tulokset ja kommentoidaan avoimeksi jääneitä kysymyksiä. Ei ole tavatonta, että artikkelista luetaan vain johdanto ja johtopäätökset, kun halutaan saada pikainen käsitys siitä, mistä on kysymys.

Fyysikot oppivat tieteellisten artikkelien kirjoittamisen samalla tavalla kuin muunkin tutkimustyön: ei sääntöjä lukemalla tai metodeja erikseen opettelemalla, vaan tekemällä asioita käytännössä ja seuraamalla muiden esimerkkiä. Niinpä tutkijat eivät ajattele tutkimusartikkelien rakennetta rajoitteena, vaan ovat sisäistäneet sen ilmeiseltä tuntuvana parhaana ratkaisuna. Tällainen yhteisön normien omaksuminen on osa tutkijaksi kehittymistä väitöskirjatyössä.

Fysiikassa on omat, enimmäkseen kirjoittamattomat, sääntönsä siitä, millaista kieltä sopii käyttää. Tyypillisesti suositaan hillittyä ilmaisua, yksinkertaisia virkkeitä ja rajattua sanavarastoa. Eräs kuriositeetti on se, että itseensä viittaamista yksikössä (”sijoitan nyt yhtälön”) pidetään ylimielisenä. Sen sijaan kuninkaallista monikkoa (”sijoitamme nyt yhtälön”) pidetään neutraalina tapana kirjoittaa tekemisistään.

Fysiikan artikkelien avainsisältö ilmaistaan matemaattisesti: sanat sitovat yhtälöitä toisiinsa, selittävät miksi asioita lasketaan, ja tulkitsevat mitä tuloksista pitäisi ajatella. Tämä tarjoaa paljon mahdollisuuksia tyylittelyyn, ja artikkeleita on muodollisia ja vapaita, nokkelia ja eteenpäin voimalla puskevia. Matemaattista ilmaisua on monenlaista, mutta suurin osa fysiikan artikkeleista on matemaatikkojen näkökulmasta toivottoman epämääräisiä, niissä kun tehdään kaikenlaisia yksinkertaistuksia ja oletuksia ilman huolellista perustelua.

Joskus oikopolut tunnetaan tarkasti, joskus niitä ei tulla ajatelleeksi. Kun lukee tutkimuksia vuosikymmenten takaa, jolloin viitekehys oli hieman erilainen, huomaa miten riippuvaista fysiikan artikkeleiden sujuva ymmärtäminen on siitä, että asiat esitetään sopivassa muodossa ja tutulla tavalla.

Toisin kuin tuloksista kirjoittamiselle, tutkimuskohteiden valitsemiselle ei ole selkeitä sääntöjä, eikä ole ohjenuoraa, jonka seuraaminen aina veisi oikeiden vastausten luo. On tavallista, että artikkeleissa esitetään puolivalmiita ajatuksia ja ehdotellaan kaikenlaisia mahdollisuuksia. Yhteinen esitystapa auttaa ymmärtämään ehdotuksia, ja ideoiden arvo riippuu siitä, miten ne on asetettu tunnettuun viitekehykseen.

Suurin osa tutkimuksesta on huolellista matkaamista eteenpäin tunnetuin menetelmin. Joskus kehitetään uusia lähestymistapoja, ja avataan tuntemattomia reittejä, jotka aiempien karttojen tarkka tunteminen tekee mahdolliseksi. Toisinaan tulokset –sitten kun ne on tehty ymmärrettäviksi– tuntuvat ilmeisiltä, niin että ihmettelee, miksi tätä ei löydetty aiemmin, toisinaan taas hämmästelee, miten kukaan on tullut tuota ajatelleeksi.

Tällainen kurinalainen luovuus ei ole ainutlaatuista teoreettiselle fysiikalle. Esimerkiksi jotkut fiktion kirjoittajille tarkoitetut ohjeet ovat minusta olleet hyödyksi, eivät niinkään selvärakenteiselle tieteelliselle kirjoittamiselle, kuin sille miten käyttää tutkimuksen vapautta hedelmällisesti.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Ulos umpikujista

11.10.2021 klo 17.52, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Kirjoitin Helsingin opettajien ammattiyhdistyksen HOAY lehteen Rihveli 2/2021 artikkelin Ulos umpikujista kvanttifysiikan kehityksestä ja epämääräisestä todellisuudesta. (Artikkeli on vapaasti luettavissa linkin takana.) Kerron muun muassa näin:

Pitkään monet pitivät kvanttimekaniikan taustalla olevan todellisuuden pohtimista tuhoon tuomittuna touhuna. Kuten fyysikoiden fyysikko Richard Feynman totesi vuonna 1964: ”Älä kysy itseltäsi, jos vain voit välttää sitä, ”Miten voi olla näin?”, koska menet hukkaan ja joudut umpikujaan, josta kukaan ei ole paennut. Kukaan ei tiedä miten voi olla näin.”

Onneksi kaikki eivät uskoneet varoituksia, ja kvanttimekaniikan ymmärtämisessä on 1980-luvulta lähtien edistytty paljon.

19 kommenttia “Ulos umpikujista”

  1. ”…emme tiedä miksi arki näyttää yksinkertaiselta.”
    Tämä on hyvä kysymys. Arvelisin että vastaus löytyy enemmän aivojemme rakenteesta kuin fysiikasta. Aivomme ovat kehittyneet pitämään kantajansa hengissä luonnossa. Yksi niiden ominaisuuksista on että ne yksinkertaistavat aistihavaintoja aika paljon ennen kuin ne päätyvät tietoisuuteen. Tämä tapahtuu, koska tietoisuus on sarjamuotoinen prosessi, joka ylikuormittuisi jos tietoa tulisi enemmän. Yksinkertaistusprosessi on alitajuinen, joten emme pysty katsomaan tai muokkaamaan sitä kovin helposti.

    1. Syksy Räsänen sanoo:

      Totta, mutta tässä viittaan yksinkertaisuudella siihen, että maailma näyttää määrätyltä eikä kvanttimekaanisen epämääräiseltä.

      1. Jotuni sanoo:

        Eikö tuo selity sillä että arki ilmöt vuorovaikuttavat jatkuvasti. Jos satunnaisilmiötä mittaa jatkuvasti, se näyttäytyy odotusarvona? Niin tai näin, kvanttifysiikan vanha retoriikka on tuhoisaa: Jos vanha guru on käytännössä sanonut, että jos luulet ymmärtäväsi tätä, olet idiootti, niin uusi sukupolvi ei uskalla olla vastaan, vaikka ymmärtäisikin. Samasta syystä opettaja ei saa sanoa koetta vaikeaksi.

        1. Syksy Räsänen sanoo:

          Jatkuva vuorovaikutus on keskeinen osa dekoherenssina tunnettua ilmiötä. Kuten artikkelissa kirjoitan, se selittää vain osan ongelmasta.

          Hieman aiheesta myös täällä: http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/maarattyina_yhteen

          Dekoherenssi ei selitä, miten tila romahtaa, eikä sitä, miksi vain klassiset tilat ovat niitä joita havaitaan, ei niiden sekoitusta, eli mikä on klassisilta näyttävien tilojen erikoispiirre, joka valikoi ne.

    2. Lentotaidoton sanoo:

      ”Arvelisin että vastaus löytyy enemmän aivojemme rakenteesta kuin fysiikasta”

      Ja aivojemme rakenneko ei olisi selitettävissä fysiikalla? Toki se ei (vielä) onnistu. Niinkuin ei ”onnistu” yleensäkään ”selittää” fysiikan kvanttimekaniikan epämääräisyyttä (koulukuntia toki on).
      Evoluution luomat aivot ovat triviaali selitys käyttäytymisellemme. Emme tarvitse elossa pysyäksemme tietoa aivojen kvanttimekaniikasta (vaikka se siellä alla häärääkin).

  2. Erkki Kolehmainen sanoo:

    Se miltä maailma näyttää riippuu myös siitä, mitkä hiukkaset tuon kuvan välittävät. Jos silmä käyttäisi havainnoimiseen elektroneja eikä fotoneja, niin maailma näyttäisi hyvin erilaiselta ja yksityiskohtaisemmalta. Fotonin aaallonpituus saa aikaan sen, että epämääräisyys aistimuksesta häviää.

    1. Syksy Räsänen sanoo:

      Kvanttimekaanisen epämääräisyyden puute arjessa ei selity sillä, että havaitsemme fotonien avulla.

  3. Cargo sanoo:

    Onko epämääräisyyttä yritetty liittää systeemin massaan? Tuli vaan taas nojatuolissa mieleen, että jos kaksoisrakokokeissa interferenssi vaimenee sitä mukaan kun hiukkasen/molekyylin massa kasvaa, niin eikös se ole selvä merkki siitä, että mitä suurempi massa niin sitä vähemmän hiukkanen voi epälokalisoitua. Ja voisi myös olettaa, että kasvava sidosenergia ilmentää tätä asiaa: kun protoni ja elektroni lähestyvät toisiaan, niin systeemi muuttuu vähemmän ja vähemmän epämääräiseksi. Suurissa systeemeissä on paljon vuorovaikutusta ja sen mukanaan tuomaa sidosenergiaa eli käytännössä massaa.

    1. Syksy Räsänen sanoo:

      Kyllä, tällaisia mahdollisuuksia muokata kvanttimekaniikkaa on tutkittu ja tutkitaan vieläkin. Olen kirjoittanut niistä hieman täällä:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/koopenhaminan-takana/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kahden-ikkunan-nakoala/

      1. Cargo sanoo:

        Tuli mieleen sellanen kysymys, että jos de Broglie nappas Nobelin palkinnon yhdistämällä Planckin kvanttiteorian ja Einsteinin suppea suhteellisuusteorian, niin mikä voisi olla vastaava lisäoletus kvanttigravitaation perustaksi? De Broglie siis suttas yhteen E=hf, E~mv^2 ja v=kf, josta seuras kuuluisa kvanttiaallonpituus k=h/(mv). Näin nojatuolifyysikkona voisi olettaa, että jos kvanttigravitaatio on olemassa, niin jokin heuristinen perusyhtälö voidaan muodostaa jo olemassa olevien teorioiden avulla.

        1. Syksy Räsänen sanoo:

          de Broglie ei varsinaisesti yhdistänyt kvanttifysiikkaa ja suppeaa suhteellisuusteoriaa, vaan käytti joitakin elementtejä kummastakin. Kvanttifysiikka ja suppea suhteellisuusteoria yhdistettiin vasta vuonna 1948 Tomonagan, Schwingein ja Feynmanin toimesta.

          Erilaisia enemmän ja vähemmän heuristisia yhtälöitä kvanttigravitaatiolle on esitetty. Tunnetuin ja yksinkertaisin lienee Planckin skaala: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaymattomista-korpimaista-vihoviimeinen/

          1. Eusa sanoo:

            Planckin skaalahan ei ole invariantti fysikaalisesti. Esimerkiksi se mikä eräälle paikallisuudelle on Planckin pituus on toisessa liiketilassa olevalle eri mittainen. Pitäisi määrittää (Planckin) intervalli, jossa avaruusajan määrä saataisiin kvantitettua. Jaa, mutta meillähän on vakioitu kausaliteetin rajavauhti c – voisiko sillä olla jokin vaikka pariteettinen alirakenne?

          2. Syksy Räsänen sanoo:

            Planckin skaalat ovat vain yhdistelmiä luonnonvakioita valonnopeus, Newtonin gravitaatiovakio ja Planckin vakio. On Planckin pituus, aika, energia, pinta-ala jne.. Erilaisissa kvanttigravitaatioteorioissa tai niiden hahmotelmissa ne esiintyvät eri yhteyksissä, tyypillisesti siten, että kvanttigravitaatioille ominaiset ilmiöt ovat merkittäviä kun jokin fysikaalinen suure on Planckin mittakaavaa. (Kvanttigravitaatioilmiöt voivat periaatteessa olla merkittäviä muulloinkin.)

            Näissä teorioissa Planckin skaalalla on havaitsijasta riippumaton merkitys, samaan tapaan kuin hiukkastörmäyksissä on erilaisia suureita, jotka mittaavata törmäyksen energiaa, ja joilla on havaitsijasta riippumaton merkitys.

            On kyllä myös rakennettu teorioita, joissa esimerkiksi Planckin pituus todella on sinällään sama kaikille havaitsijoille, kuten valon nopeus.

  4. Erkki Kolehmainen sanoo:

    Kaksoisrakokoe on tehty jopa C60-fullereenilla. Eikö delokalisaatio tarkoita, että molekyylin on hajottava, jos se ei mene kokonaan yhden raon kautta ja sitten raon jälkeen palaset taas liittyvät yhteen? Minä en usko tähän vaan fullereenimolkyyli kulkee jommasta kummasta raosta, mutta saa ympäröivän vakuumin interferoimaan.

    1. Syksy Räsänen sanoo:

      Isoin kappale, jolla kaksoisrakokoe on tehty, on molekyyli, jossa on 2000 atomia.

      En tiedä mitä tarkoitat delokalisaatiolla. Kvanttimekaniikan mukaan maailma ei toimi kuvaamallasi tavalla.

      Tämä riittäköön tästä. Muistettakoon, että blogin kommenttiosio ei ole paikka omien fysiikan ideoiden esittelemiseen.

  5. Antti sanoo:

    avaako kvanttifysiikan energialait yhtään sitä sattumanvaraisuutta mistä nyt kirjotat?

    1. Syksy Räsänen sanoo:

      En tiedä mitä tarkoitat ”kvanttifysiikan energialaeilla”, mutta tämä sattumanvaraisuus on kvanttimekaniikan lakien ytimessä.

  6. Kas sanoo:

    Mikä on pienin mittakaava, jossa gravitaatio on kokeellisesti todennettu? Haen lähinnä sitä, että onko mahdollista, että gravitaatio on ”makrotason” voima, eikä se vaikuttaisi mittaluokassa, jossa kvanttifysiikan lait on huomioitava. Ja onko olemassa kokeellista mittausta, jossa samanaikaisesti on huomioitava sekä gravitaation että kvanttifysiikan ilmiöt?

    1. Syksy Räsänen sanoo:

      Noin mikrometri.

      Gravitaatio on aika-avaruuden geometrian ilmentymä, eli sitä on tiettävästi olemassa niin pitkälle kuin aika-avaruutta.

      On mahdollista, että aika-avaruus on vain approksimaatio, ja hyvin pienillä etäisyyksillä on olemassa jonkin muunlainen rakenne (tällaisia ideoita on tutkittu paljon). Jos näin, näiden etäisyyksien täytyy olla hiukkaskiihdyttimissa luodattuja etäisyyksiä, noin 10^(-20) metriä, pienempiä.

      Ainoa fysiikan alue, missä on yhdistetty kvanttifysiikkaa ja gravitaatiota siten, että on tehty ennusteita, joita havainnot ovat varmentaneet, on kosminen inflaatio. Siinä on kyse paljon lyhyemmistä etäisyyksistä, mutta ei ole varmaa onko inflaatio totta, vaikka se onkin onnistuneesti selittänyt ja ennustanut havaintoja.

      Inflaatiosta, ks:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/muistinmenetykset-ennustusten-takana/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/potkut-ylospain/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kuin-putoava-kivi/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/eilispaivan-rohkeutta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/jokin-sanoo-poks/

      http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/taivaallinen_ilmoitus

      https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/littean_maailman_selitys

      http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/kosmoksen_ja_laboratorion_avioliitto

      https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/syntymiskipuja

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *