Arkisto
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- heinäkuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- marraskuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- lokakuu 2017
- syyskuu 2017
- elokuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Kulta-ajan neljäs kausi
Gravitaatioaalto-observatorioiden nelikko LIGO, Virgo ja KAGRA aloitti eilen neljännen kautensa. Se oli ollut poissa pelistä sen jälkeen kun kolmas havaintokausi loppui maalis-huhtikuussa 2020. Laitteita on kolmen vuoden aikana huollettu ja kehitetty.
Japanissa Ikenoyama-vuoren sisällä istuva KAGRA osallistuu tälle kaudelle entistä täysipainoisemmin. Laite otti ensimmäisen kerran dataa vuonna 2016, joskin lähinnä laitteiden testaamiseksi. KAGRA osallistui kolmannelle havaintokaudelle vain kaksi viimeistä viikkoa, ja nyt se on aluksi mukana vain kuukauden. Sen jälkeen laitetta parannellaan, ja se palaa myöhemmin mukaan. KAGRAssa on osittain kehittyneempää teknologiaa kuin LIGOssa, mutta ilmeisesti kestää odotettua kauemmin, että se saadaan toimimaan kunnolla. Italiassa oleva Virgo puolestaan aloittaa vasta myöhemmin tänä vuonna. Aluksi pääpaino on siis LIGOn kahdessa Yhdysvalloissa sijaitsevassa havaintolaitteessa, jotka tekivät myös ensimmäiset havainnot.
LIGOlla ja Virgolla on ollut onnea matkassa. Ensimmäisen kauden alussa syyskuussa 2015 LIGO näki kauniin musta aukko -parin törmäyksen ennen kuin laitteet olivat edes varsinaisesti aloittaneet tiedehavaintoja.
Toisella kaudella LIGO ja Virgo näkivät törmäyksen, jossa ainakin toinen osapuoli oli neutronitähti ja josta siksi nähtiin gravitaatioaaltojen lisäksi myös valosignaaleja monilla aallonpituuksilla. Tämä oli vastaansanomaton todiste siitä, että laitteet todella näkevät gravitaatioaaltoja, ja niiden yhdistäminen sähkömagneettisiin havaintoihin avasi uusia mahdollisuuksia. Toistaiseksi haaviin ei ole jäänyt muita tapauksia, joissa olisi nähty törmäys eri sanansaattajien kautta. Toisen kauden jälkeen lokakuussa 2017 LIGOn löydöistä myönnettiin Nobelin palkinto.
Kolmannen kauden merkittävin piirre oli laitteiden kehittymisestä seurannut havaintojen määrän kasvu. Ensimmäisellä ja toisella kaudella tehtiin yhteensä vain 11 havaintoa, kolmannella kaudella LIGO ja Virgo näkivät 79 gravitaatioaaltoa. Tämä teki mahdolliseksi yksittäisten tapausten lisäksi mustien aukkojen väestön ominaisuuksien tutkimisen. Jotkut havainnot olivat outoja, koska niissä näkyi kohteita, jotka vaikuttavat joko liian pieniltä mustaksi aukoksi mutta turhan raskaita neutronitähdiksi, tai liian keskiraskailta mustiksi aukoiksi, jotka ovat syntyneet tähden romahtaessa.
Alkuun jokainen havainto tuntui läpimurrolta, mutta kolmannella kaudella niistä tuli arkea, kun satoja miljoonia vuosia sitten törmänneiden mustien aukkojen synnyttämiä avaruuden värähtelyjä havaittiin kerran-pari viikossa. Applella on appi, jolla saa puhelimeen viestin kun gravitaatioaalto on kulkenut Maan läpi. Jos on kiinnostunut yksityiskohdista, niin LIGO-Virgo-KAGRA-ryhmällä on sivu, mistä löytyy dataa ja neuvoja.
Neljännen kauden on määrä kestää 20 kuukautta, joista 18 kuukautta on havaintoaikaa. Kolmannella kaudella tehtiin 11 kuukautta havaintoja. Lisäksi laitteet ovat nyt entistä 30% herkempiä, eli odotettavissa on yli 150 uutta havaintoa. Pitkä aika auttaa myös kaivamaan pitkäkestoisia mutta heikkoja signaaleja kohinan seasta, kuten pyörivien neutronitähtien pinnalla olevien vuorten jalanjälkiä.
Odotetaan erityisesti, että nähdään lisää neutronitähtien törmäyksiä sekä gravitaatioaaltojen että valon avulla. Koska neutronitähdet ovat kevyempiä kuin mustat aukot, niiden synnyttämät gravitaatioaallot ovat heikompia.
Tällä hetkellä LIGO näkee neutronitähtien törmäyksiä 520 miljoonan valovuoden päästä, KAGRA vain kolmen miljoonan. Virgo on siinä välissä, noin 150 miljoonalla valovuodella. Ennusteiden mukaan näillä etäisyyksillä tapahtuu yhdestä kymmeneen tällaista törmäystä vuodessa. Eri teleskoopit ja satelliitit ovat valmiina suuntaamaan katseensa sinne kohtaa taivasta mistä gravitaatioaaltoja tulee heti saatuaan LIGOlta ja kumppaneilta sanan. Mitä useampia havaintolaitteita on eri paikoissa, sitä tarkemmin saadaan määritettyä, mistä suunnasta gravitaatioaallot tulevat, ja sitä helpompi on etsiä tapahtuman lähettämää valoa.
Viime kuussa Intian hallitus antoi lopullisen luvan kolmannelle LIGO-observatoriolle, joka rakennetaan lähelle Aundhan kaupunkia Intiassa. Laite tunnetaan nimillä LIGO-India, IndIGO ja LIGO-Aundha. Alun perin puhuttiin, että se aloittaisi toiminnan jo 2024. Nyt näyttää siltä, että LIGO-India tulee mukaan vasta LIGOn ja kumppaneiden viidennelle kaudelle, jonka on määrä alkaa vuonna 2027. Tällöin myös Virgon ja KAGRAn on määrä saavuttaa lähes yhtä iso herkkyys kuin LIGOn.
Viidennen havaintokauden lopusta vuonna 2029 on alle vuosikymmen siihen, kun satelliittikolmikon LISA on määrä nousta Aurinkoa kiertävälle radalle mittaamaan törmäävien galaksien keskustojen jättimäisten mustien aukkojen lähettämiä gravitaatioaaltoja. Toistaiseksi niitä on nähty ainoastaan valolla. LISAn laukaisu on viivästynyt vielä pari vuotta sitten tavoitteena olleesta vuodesta 2034 vuoteen 2037. Tämä on isoille ja uutta teknologiaa käyttäville kokeille tavallista. Viive antaa nopeasti etenemään pyrkiville kiinalaisille satelliittihankkeille TianQin ja Taiji lisäaikaa kiriä ohi.
Jättimäisten mustien aukkojen gravitaatioaaltohavainnot saattaa kuitenkin korkata NANOGrav, joka mittaa häiriöitä pyörivien neutronitähtien lähettämissä radioaalloissa. Tästä julkaistiin kutkuttavia vihjeitä 2020, ja varmistusta odotettiin vuodelle 2021. Tänä keväänä on kuulunut huhuja siitä, että löytö julistettaisiin pian. Varmaa on se, että nyt on gravitaatioaaltojen ja mustien aukkojen kulta-aika, ja havainnot ja teoria kehittyvät koko ajan.
14 kommenttia “Kulta-ajan neljäs kausi”
Vastaa
Kellojen verkko
Nathaniel Sherrill Sussexin yliopistosta Iso-Britanniasta puhui toissaviikolla Helsingin yliopiston fysiikan tutkimuslaitoksen seminaarissa atomikelloista. (Tieteellinen artikkeli aiheesta täällä.)
Atomikellojen idea on yksinkertainen. Jokainen atomi värähtelee ja lähettää valoa vain tietyillä sille ominaisilla taajuuksilla. Valon taajuus osataan mitata erittäin tarkasti, atomien tapauksessa miljardisosan miljardisosan tarkkuudella. Atomien värähtely on tarkin tapa mitata aikaa: ajan yksikkö sekunti on määritelty cesium-atomin lähettämän valon taajuuden avulla. Atomikello jätättää vain noin sekunnin kymmenessä miljardissa vuodessa, toisin sanoen sekunnin kymmenesmiljardisosan vuodessa.
Koska atomin lähettämän valon taajuus on tunnettujen fysiikan lakien mukaan aina sama, sen muutos on viesti tuntemattomasta. Niinpä atomikellot ovat uuden fysiikan herkkiä mittareita.
Atomit koostuvat protonien ja neutronien muodostamasta ytimestä sekä siihen sähkömagneettisen vuorovaikutuksen sitomista elektroneista. Siksi atomin taajuudet riippuvat neutronien ja protonien massojen suhteesta elektronin massaan sekä sähkömagneettisen vuorovaikutuksen voimakkuudesta. Koska eri atomiytimissä on eri määrä protoneita ja neutroneita, niiden taajuus riippuu näistä tekijöistä eri tavoin, joten erilaisten atomien mittaaminen antaa erilaista tietoa mahdollisista muutoksista.
Sherrill on mukana verkostossa QSNET, joka tarkkailee, muuttuvatko atomien taajuudet ajan myötä. Toistaiseksi QSNET on mitannut cesium-, strontium- ja ytterbium-atomeita, ja se on laajentamassa kokeita neljään muuhun atomiin.
Protonien, neutronien ja elektronien massat ja sähkömagnetismin voimakkuus voivat muuttua, jos ne vuorovaikuttavat jonkin kentän kanssa, joka muuttuu ajassa. Kaikkialla avaruudessa on Higgsin kenttä, joka antaa massat tunnetuille hiukkasille. (Paitsi kenties neutriinoille, niiden massojen alkuperästä ei ole varmuutta.) Jos Higgsin kenttä muuttuisi ajassa, niin myös hiukkasten massat muuttuisivat. Higgsin kenttä ei kuitenkaan nykyaikoina muutu mihinkään, vaan istuu paikoillaan.
On mahdollista, että on olemassa muita samantyyppisiä kenttiä, joiden kytkentä näkyvään aineeseen on heikompi, mutta jotka muuttuvat nopeammin. Yksi motivaatio on se, että tällainen kenttä voisi olla pimeää energiaa, jolla selitetään maailmankaikkeuden laajenemisen kiihtymistä. Myös pimeän aineen ehdokas nimeltä aksioni voi vaikuttaa hiukkasten massoihin.
Cesiumiin liittyy SI-yksikköjärjestelmässä hauska yksityiskohta. Jos huomattaisiin, että sen atomien lähettämän valon taajuus pienenee ajan myötä, olisi väärin sanoa että cesium-atomit värähtelevät hitaammin. Tämä johtuu siitä, että ajan yksikkömme perustuu niiden värähtelyyn. Sen sijaan pitäisi sanoa, että aika kulkee hitaammin. Asioiden muutosta voi mitata vain suhteessa muihin asioihin: koska ei ole mitään atomikelloja tarkempaa, kaikkia muita tapahtumia mitataan suhteessa niihin.
Toistaiseksi QSNET ei ole nähnyt mitään muutosta. Tämä rajoittaa sitä, miten vahvasti joku tuntematon kenttä voi vaikuttaa tunnettuihin hiukkasiin ja miten nopeasti se voi muuttua. Tulokset perustuvat kahden viikon mittaukseen. Mittausjakson pidentäminen ja eri atomien ottaminen mukaan parantaa tarkkuutta lähivuosina kymmenentuhatkertaiseksi.
Pidemmän aikavälin muutoksia on luodattu Maassa Oklossa, missä oli kaksi miljardia vuotta sitten luonnollisesti syntynyt ydinreaktori, jonka reaktiotuotteita voidaan nyt tarkastella. Taivaalla muutosta on etsitty miljardien valovuosien päästä tulevan valon aallonpituudesta. Tällaisten mittausten tarkkuus jää kuitenkin kauas siitä, mikä laboratorio-olosuhteissa saavutetaan.
QSNETin koe on samaa hiukkasfysiikan halpalaaria, josta kirjoitin edellisessä merkinnässä, eli hinta mitataan miljoonissa. Toisaalta kokeella ei ole varmaa kohdetta, eli ei ole taetta, että mitään näkyy vaikka tarkkuus paranee. Voi sanoa, että tämä havainnollistaa sitä, miten hyvin ymmärrämme maailmankaikkeutta, ja miten suurella tarkkuudella hiukkasfysiikan Standardimalli ennustaa hyvin erilaisten havaintojen tuloksia. Tieteen edistys ei rakennu aiemman päälle kuin torni, vaan tieto muodostaa verkon, jossa yksi säie ei ratkaise, jonka osat tukevat toisiaan.
17 kommenttia “Kellojen verkko”
-
” Higgsin kenttä, joka antaa massat tunnetuille hiukkasille. (Paitsi kenties neutriinoille, niiden massojen alkuperästä ei ole varmuutta.)”
Onko neutroonien massasta tulossa aihetta tai tai ovatko tutkijat päässeet lähemmäs selitystä mistä niiden massa
voisi tulla.jos higgs ei sitä selitä ? -
Jatketaan ajatusleikkiä atomin sisäisen värähtelyn ja pimeän energian välisestä yhteydestä:
Jos osa massasta on sitoutuneena atomiytimen sisäiseen värähtelyyn, niin miten hyvin ja millä mekanismeilla se voisi välittyä viereisiin atomiytimiin? Onko atomin ydin täydellinen termospullo? Painavatko alkuräjähdyksestä asti yksin seilanneet vety-ytimet saman verran kuin vaikka Auringon sisällä olevat seurallisemmat sisaruksensa? -
Eikö atomi menetä energiaa, kun se lähettää valoa, kuten tässä kerrottiin? Mitä tapahtuu, kun atomi menettää tällä tavoin kaiken energiansa?
-
Miten oikeastaan on mahdollista sanoa cesium-kellon jätättävän lainkaan, eikö olekaan niin että aika hidastuu sen verran kuin cesium-kello ’jätättää’? Onko jollain käytössään tätä parempi absoluuttinen aika vai muuttuuko cesium-atomin rakenteessa jokin ajan myötä?
Cesium-atomien värähtelyyn perustuen varmaan voidaan määrittää mistä aikaskaalamme on alkanut, mutta voidaanko tuon ajankohdan katsoa mitenkään aidosti määrittävän ajan alkamista? -
Edelleen tarkentaen, SI sekunti määrittää standardi itseisaikaa maassa, pätee maan lähiympäristössä mittakellojen kanssa samassa liike- ja gravitaatiotilassa. UTC perustuu 260 atomikellon keskiarvoon 49 paikassa, USA:n standardiajan määrityksessä käytetään myös vetymaserkelloja (Hart-Davis 2011). Varmaan melko mielenkiintoinen prosessi tuollaisen määrän eri paikoissa sijaitsevien atomikellojen reaaliaikaisen keskiarvon muodostaminen.
Termi ’jätättäminen’ antaa ymmärtää että virhe voi olla vain käyntiä hidastava, onko niin että cesium-kello ei voi edistää? Virheen lähteen etsimminen liittyy blogin aiheeseen, voisi kai johtua myös kvanttiepämääräisyyksistä tai satunnaisiin gravitaatiohäiriöihin tms?
-
Siis ajan mittaus perustuu stabiilin Cs-133-isotoopin värähtelytaajuuteen. Jos tähän jokin kenttä tai muu tekijä vaikuttaa, niin kuinka se voisi olla vaikuttamatta mittalaitteen atomien värähtelytaajuuksiin?
-
Tiedän, ehkä kysymykseni Syksylle ovat ”booring” koska en ole kosmologi eikä minun kykyni ”opistoinssinä” riitä näihin juttuihin alkuunkaan. Esimerkiksi mikään syvällisempi matematiikka on minulle täysin mahdotonta. Mutta ehkä voisit vastata tavallaan ”tavisjärjellä” kahteen minua ihmetyttävään asiaan. Älä siis todellakaan vastaa liiaan monimutkaisesti. Kyssäri yksi: Josssain joku väitti että tämän universumin rajat katoavat yli valon nopeuden johtuen oudosta ”pimeästä energiasta”. Ok…univesrumi laajenee selkeästi oikeiden havaintojen kautta. Mutta eihän valon nopeutta voi mikään ylittää ? Toinen kyssäri on tämä: kun tuota tyhjyyttä syntyy tyhjyyteen ja universumi laajenee koko ajan, niin miksi väitetään että sitä tyhjyyttä tyhjyteen tulee vain galaksien väliseen avaruuteen ? Miksei minun keittiöön ?
tuleeko näin tarkat mittaukset korjaamaan teorioita joltain osin ?
Ne varmasti tarkentavat kuvaa ainakin neutronitöhtien koostumuksesta, ehkä myös tähtien kehityksestä ja muista aiheista. Olisi tietysti kiinnostavinta jos löydettäisiin jotain perustavanlaatuisesti uutta, kuten vaikka niin pieniä mustia aukkoja, että ne eivät ole syntyneet tähtien romahduksessa, tai jotain mitä ei ole vielö tultu ajatelleeksi, mutta tästä ei ole takeita.
Ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaksi-kuilua/
täyttä asiaa!
31.5. mennessä jo 16 mahdollista havaintoa!
https://gracedb.ligo.org/superevents/public/#O4
Monien todennäköisyys on tosin aika pieni.
Kiitos selvennyksestä. Olen vähän ihmetellyt, että on puhuttu vain LIGO-havainnoista ja samalla kuitenkin Virgosta ja KAGRAsta aina mainitaan. Miettinyt, paljonko tässä (jenkeissä) osataan korostaa tiettyä paikkaa ja kuka mitäkin on tehnyt, mutta kirjoituksesi perusteella siihen on perusteet..
Virgo on vanhempi ja vähemmän herkkä. Sen pääasiallinen merkitys on siinä, että heikkokin signaali Virgossa LIGOn signaalien lisäksi auttaa paikallistamaan gravitaatioaallon lähteen taivaalla, mikä on tärkeää sähkömagneettisten signaalien tarkkailemista varten.
Havainnollinen kuva LIGOn, Virgon ja KAGRAn herkkyyden (mikä määrää sen, kuinka kaukaa tulevia signaaleja ne näkevät) kehityksestä ajan myötä:
https://www.ligo.caltech.edu/news/ligo20220123
Tähän ihan löyhästi liittyen (eli ei liity mitenkään) on yksi immunologian artikkeli Sciencessä, jonka otsikko kaduttaa, etten sitä keksinyt. ”Express yourself or die”. Liittyy siis solujen biologiaan. Taitaa liittyä nykyään moniin tieteisiin. Varmaan poikkeukset löytyvät muualta kuin luonnontieteistä, mikä olisi tärkeä oivaltaa kylläkin.
https://www.science.org/doi/10.1126/science.7863341
Milloinkohan herkkyys riittää gravitaatiotaustan havaitsemiseen?
Tarkoitatko inflaation aikana syntyneen gravitaatiotaustan? Sen havaitsemisessa ongelmana ei ole herkkyys inflaation synnyttämien gravitaatioaaltojen voimakkuus on noin 10^16 kertaa isompi kuin musta-aukko-parien. Mutta niiden aallonpituus on kosmologista mittaluokkaa, joten niitä ei voi havaita tällaisilla laitteilla, joiden koko on paljon pienempi kuin niiden aallonpituus.
Jos olisi mittauslaitteet aurinkokunnan vastapuolilla olisiko inflaatiosta lähteneet aallot vielä havaittavissa?
Ei. Kosmista mikroaaltotaustaa voi käyttää isona havaintolaitteena. Inflaation synnyttämät gravitaatioaallot vääristävät mikroaaltotaustan kuvioita.
Kymmenen vuotta sitten niitä virheellisesti väitettiin jo havaitunkin.
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/poly-on-laskeutunut/
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/askel-taaksepain/
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/portaat-muinaiseen-maailmaan-askelmista-4-ja-5/
https://www.ursa.fi/blogit/kosmokseen-kirjoitettua/index.php/portaat-muinaiseen-maailmaan-askelma-3
https://www.ursa.fi/blogit/kosmokseen-kirjoitettua/index.php/portaat-muinaiseen-maailmaan-askelmat-1
https://www.ursa.fi/blogit/kosmokseen-kirjoitettua/index.php/ensimmaisen-sekunnin-perukoilta
eli tarvisiko olla 1000 AU (linnunradan kokoinen halkaisijaltaan oleva) hiukkakiihdytin että maailmankaikkeuden pienimmät
asiat tulisivat näkyviin ? gravitonit ym jos semmonen on olemassa ylipäätään
Emme tiedä, mikä on raskaimpien olemassa olevien hiukkasten massa. Mitä isompi massa, sitä enemmän energiaa niiden tuottamiseen tarvitaan, eli sitä isompi hiukkaskiihdytin. Mutta on toki muitakin tapoja luodata korkeita energioita, kuten inflaatio.
Gravitoneista, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/painon-valittajasta/