Arkisto
- joulukuu 2023
- marraskuu 2023
- lokakuu 2023
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- heinäkuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- marraskuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- syyskuu 2017
- elokuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Hyödystä
Puhuin Eteläsuomalaisen osakunnan 112. vuosijuhlassa 14.10.2017 tieteen tiimoilta. Puhe meni jokseenkin näin.
Arvoisa inspehtori, kunniajäsenet, esolaiset, edustajat ja muut vieraat.
Ensinnäkin, kiitos vuosijuhlatoimikunnalle kutsusta puhujaksi tänne Eteläsuomalaisen osakunnan vuosijuhlaan numero 112.
Minua pyydettiin puhumaan siitä, miten kaikilla tieteenaloilla on annettavaa yhteiskunnalle.
Nykyään ei ole tavatonta kysyä, mitä hyötyä tästä tutkimuksesta tai tuosta tieteenalasta on, ja Helsingin yliopiston johtokin haluaa karsia tarpeettomina pitämiään oppiaineita.
Puhuessani viime viikolla Kajaanin Planeetan 30-vuotistilaisuudessa omasta alastani, kosmologiasta, eräs yleisön jäsen kysyi, yrittävätkö Suomen hallitus tai teolliset yhteistyökumppanit vaikuttaa tutkimuksen sisältöön. Saatoin vastata, että kosmologiassa olemme siinä onnellisessa asemassa, että tutkimuksemme on täysin hyödytöntä.
Kosmologiasta ei voi täysin päin ja puhtain sydämin luvata ainuttakaan teknologista sovellusta. Maailmankaikkeuden synnyn, kehityksen ja koostumuksen tarkempi tuntemus ei välttämättä anna meille enemmän särvintä leivän päälle, juomaa lasiin tai kissoja kännykkään.
Tähtitieteen, kosmologian, luonnontieteen kautta olemme kuitenkin oppineet, että taivas on samaa ainetta kuin maa ja yhtenäisten lakien alainen, ja taivaan takana on toisia maailmoja, lukemattomia; eivätkä tähdet ole reikiä jurtassa vaan naapuriemme aurinkoja, ja arjen yllä avautuu kaikkeus täynnä asioita, jotka eivät ole ihmeitä, koska ne ovat todellisia; mutta kammottavia ja kauniita ihmisen mitan yli.
Olemme saaneet selville, miten kaikki tämä on syntynyt sattumanvaraisista kvanttivärähtelyistä yli aikakausien joiden pituuksia ei voi inhimillisesti hahmottaa, mutta jotka silti tiedämme täsmällisesti kuin viisarien liikkeet. Olemme oppineet, miten ytimet, atomit, planeetat ovat kietoutuneet kasaan ja miten yhdestä itseään kopioivasta molekyyliketjusta on kehittynyt apinoita, kuten me ja serkkulajimme.
Luonnontiede on mullistanut käsityksen maailmankaikkeudesta –siis ympäristöstä, sanan laajimmassa merkityksessä–, asemastamme siinä ja siitä millaisia olemme: keitä me olemme ja mihin me kuulumme.
Arvoisat kuulijat, kaikki tämä on hyödytöntä, jos ymmärryksellä ei ole itseisarvoa.
Luonnontiede on toki mullistanut myös arkemme: muuttanut leivän, muokannut lasia ja mahdollistanut kännykän, usein lähtien tutkimuskysymyksistä, joilla ei ole ollut mitään ilmeisiä sovelluksia. Mutta vaikka tutkimalla maailmaa perustavanlaatuisimmalla tasolla opimme muokkaamaan sitä, kaikki ymmärrys ei auta manipuloinnissa.
Mutta jos maailman ymmärtäminen sinänsä on hyödytöntä, niin miten arvotonta onkaan ihmisten ymmärtäminen: ei vain sen setviminen, miten käsityksemme ovat muuttuneet maailman ovien auetessa luonnontieteen myötä, vaan koko historian, kielten, kulttuurien moninaisuuden laittamisessa järjestykseen ja valaisemisessa eri kulmista.
Kuinka hyödytöntä, kuinka turhaa, jos tarkoituksena on valjastaa terävin ajattelu ja kriittisimmät oivallukset tuottavuuden vaunuihin, vetämään nykyhetkeä eteenpäin, ottaen yhteiskunnan valmiina.
Arvoisat kuulijat, kaikki ympärillämme on ollut tuntematonta, kiistanalaista ja kiellettyä. Jos mennään Roomaan asti, sellaiset muotoseikat kuten housut miehillä, tai myöhemmin, housut naisilla, tai naiset yliopistolla, tai ihmiset jotka eivät ole naisia eivätkä miehiä, tai se, että voimme arvostella vallanpitäjiä ja vaatia muutosta.
Jos puhutaan hyödystä ja sovelluksista, niin muistettakoon miten eri alojen tutkimus tuo esille sen mikä on ollut ja on, osoittaa vaihtoehtojen moninaisuuden. Ymmärrys ohi tavanomaisuuden näyttää miten rajoitettuja ovat ne tarinat mitä kerromme toisillemme menneisyydestä, siitä mikä olisi voinut olla toisin ja minkä pitäisi olla toisin.
Kriittinen katsaus yhteiskuntaan auttaa riisumaan paljaaksi sen uskomuksen, että juuri me olemme saavuttaneet sivilisaation lopullisen tasangon, että nyt riittää toistaa nykyisyyttä ja hyväksyä ne tarinat, joita annamme kertoa itsellemme ja säännöt, joilla niistä tehdään totta.
Mitään ei ole naulattu paikoilleen: yhteiskunta toisaalla edistyy, toisaalla suistuu, ja meillä kaikilla on osa suunnan määrittämisessä.
Ikiaikaisena normina esitetyt asiat keksittiin eilen ja yhteisten sääntöjen avulla puolustetaan tekoja, jotka ovat sääntöjen vastaisia.
Tällaisista asioista on helppo puhua yleisesti, mutta ne saavat sisältöä, ja vastustusta, vain kun mennään esimerkkeihin.
Suomen perustuslaki kieltää lähettämästä ketään ihmisarvoa loukkaavan kohtelun alle, mutta valtiolla on kokonainen koneisto turvaa hakevien kanssaihmistemme karkottamiseksi vainoon.
Toisena esimerkkinä yhteiskunnan suistumisesta ja sanoinkuvaamattoman normalisoitumisesta mainittakoon se, että Suomi ruokkii tämän hetken pahinta inhimillistä katastrofia myymällä Jemeniä tuhoaville Saudi-Arabialle ja Yhdistyneille Arabiemiirikunnille aseita, vaikka EU:n sitovat asevientisäännöt kieltävät viennin, jos on riski, että aseita käytetään hyökkäykseen toista maata vastaan tai ne pidentävät konfliktia.
Näitä lain rikkomuksia puolustetaan paitsi vetoamalla lakiin, myös hyötyyn. Kaiken tämän perkaaminen ja ikkunan avaaminen uuteen suuntaan, josta saattaa näkyä pala kirkasta taivasta, sitä sen sijaan ei lueta hyödyn piiriin
Arvoisat yliopistolaiset, teillä –meillä– on erityinen mahdollisuus kyseenalaistaa näitä tarinoita ja tekoja, tulla kuulluksi, muuttaa suuntaa, sanalla sanoen olla hyödyksi kamppailussa sivistyksen edistämisestä.
8 kommenttia “Hyödystä”
Vastaa
Useiden sanansaattajien aikakausi
LIGO/Virgo-tutkimusryhmällä pitää kiirettä. Syyskuun lopulla se ilmoitti uusimmasta havainnosta musta aukko –parin törmäyksestä syntyneistä gravitaatioaalloista. Kuusi päivää sen jälkeen Ruotsin kuninkaallinen tiedeakatemia julisti Reiner Weissin, Barry C. Barishin ja Kip. S. Thornen saavan Nobelin palkinnon LIGOn havaintojen tiimoilta. Vajaa kaksi viikkoa myöhemmin, viime maanantaina, LIGO/Virgo tiedotti ensimmäisestä koskaan havaitusta neutronitähtien törmäyksestä. (Kommentoin asiaa tuoreeltaan Ylelle.)
Toisiaan kohti suistuvien tähtien synnyttämä gravitaatioaalto pyyhkäisi läpi Maan 17. elokuuta, vain kolme päivää syyskuussa ilmoitetun musta aukko –parin aikaansaaman aallon jälkeen. Tämä havainto neutronitähdistä on LIGOn toistaiseksi merkittävin löytö (LIGOn ensimmäistä gravitaatioaaltohavaintoa kenties lukuun ottamatta). Samalla se on paluu gravitaatioaaltohavaintojen juurille.
Gravitaatioaaltojen olemassaolo osoitettiin kokeellisesti ensimmäistä kertaa juuri toisiaan kiertävien neutronitähtien avulla. Vuonna 1974 Russell Hulse ja Joseph Taylor löysivät kaksoisneutronitähtijärjestelmän, joka on sittemmin nimetty heidän mukaansa. Seuraamalla näitä toistensa ympärillä vinhasti kieppuvia tähtiä huomattiin, että ne lähestyvät toisiaan, mistä voi päätellä niiden menettävän energiaa. Yleisestä suhteellisuusteoriasta voidaan laskea, millä tahdilla tähtien pitäisi lähettää energiaa mukanaan vieviä gravitaatioaaltoja, ja tulos vastaa havaintoja. Hulse ja Taylor saivatkin tästä Nobelin palkinnon.
Hulse-Taylorin neutronitähtiparin suhde on melko vakaa, ja kestää satoja miljoonia vuosia ennen kuin ne törmäävät. LIGO ja Virgo näki sen sijaan nyt havaitun parin elämän viimeiset 100 sekuntia, joiden lopussa ne tuhoavat toisensa väkivaltaisesti. Signaali oli voimakkain toistaiseksi nähty gravitaatioaalto, koska kohde oli kosmologisesti ottaen hyvin lähellä, vain 100 miljoonan valovuoden päässä.
Ei itse asiassa ole varmuutta siitä, olivatko molemmat parin jäsenet neutronitähtiä, mutta ainakin toinen luultavasti oli. Tämä on päätelty kahdesta seikasta.
Ensinnäkin molemmat kohteet olivat kevyitä: toisen massa oli noin yhden Auringon massan verran, toisen yhdestä kahteen. Tämä on oikea suuruusluokka neutronitähdille, kun taas tähtien romahduksesta syntyneiden mustien aukkojen odotetaan olevan raskaampia. Toisekseen, paljon tärkeämpää on se, että ensimmäistä kertaa nähtiin törmäykseen liittyvää sähkömagneettista säteilyä, niin näkyvää kuin näkymätöntäkin valoa.
Gravitaatioaallot saapuivat Maahan ensin, 1.7 sekuntia niiden jälkeen tuli gammasädepurkaus (eli korkeaenerginen sähkömagneettinen säteily), 11 tuntia sen jälkeen näkyvä valo, 9 päivän kuluttua röntgensäteet ja 16 päivää myöhemmin radioaallot. Mustien aukkojen törmäyksestä ei synny tällaisia signaaleja, joten ainakin toinen kappaleista oli neutronitähti (ellei sitten jokin toistaiseksi tuntematon vielä eksoottisempi kappale).
Siinä, että LIGO löysi gravitaatioaallot toissavuonna ei ollut mitään yllättävää; olisi hämmästyttävää, jos niitä ei olisi olemassa. Kuten olen maininnut, gravitaatioaallot ovat merkittäviä siksi, että ne avaavat aivan uuden kanavan maailmankaikkeuteen. Nyt julkistettu neutronitähtihavainto on ensimmäinen esimerkki tutkimustavasta, joka on saanut muodikkaan nimen multimessenger astronomy, suomeksi siis ”useiden sanansaattajien tähtitiede”, mikä tarkoittaa saman ilmiön havaitsemista erilaisia riippumattomia reittejä pitkin.
Gravitaatioaallot ja erilaiset sähkömagneettiset signaalit syntyvät törmäyksen ja siitä syntyneen jäänteen (joka saattaa olla neutronitähti tai musta aukko) kehityksen eri vaiheissa. Niinpä katsomalla taivasta eri signaalien avulla voi seurata tapahtuman eri vaiheita.
Erilaisten signaalien mittaaminen samasta kohteesta edellyttää tehokasta koordinaatiota. Ensimmäiseksi Fermi-satelliitti havaitsi gammasäteet ja lähetti ilmoituksen siitä 14 sekuntia myöhemmin. LIGO/Virgo huomasi kuuden minuutin kuluttua, että yhdessä heidän kolmesta detektoristaan oli signaali 1.7 sekuntia ennen gammasäteitä. Koska aika oli hyvin lähellä gammasäteiden tuloaikaa eli gravitaatioaalloilla luultavasti oli sama alkuperä, LIGO/Virgo lähetti 34 minuutin kuluttua hälytyksen tapahtuneesta, jotta kymmenet tutkimusryhmät ympäri maailmaa osasivat suunnata teleskooppinsa maan päällä ja avaruudessa sinne mistä gammasäteet olivat tulleet. Neljän tunnin ja 33 minuutin kuluttua LIGO/Virgo oli saanut analysoitua kaikkien kolmen havaintolaitteensa datan ja vahvisti, että gravitaatioaaltosignaali tuli samasta paikasta kuin gammasädepurkaus, vahvistaen, että ne ovat osa samaa tapahtumaa.
Gravitaatioaaltojen ja valon lisäksi tapahtumaa yritettiin nähdä myös neutriinojen avulla: Etelänavan alla oleva IceCube-detektori, Välimeren syvyydessä oleva Antares ja 3 000 neliökilometriä Argentiinan pampaa yli kilometrin korkeudessa kattava Pierre Auger –observatorio yrittivät kukin nähdä törmäyksen jälkeen syntyneissä hiukkasvirroissa syntyneitä neutriinoja, mutta niitä ei ilmeisesti syntynyt tarpeeksi, koska mitään ei havaittu. Tämäkin on hyödyllistä tietoa, koska se rajoittaa sitä, mitä törmäyksen jälkeen voi tapahtua.
Usean sanansaattajan tähtitiede mahdollistaa uudenlaiset tarkkuustestit, joita ei voi tehdä pelkästään yhdenlaisella signaalilla.
Yksi esimerkki on sellaisten mallien tutkiminen, missä maailmankaikkeuden kiihtyvää laajenemista yritetään selittää muokkaamalla yleistä suhteellisuusteoriaa. Yleisessä suhteellisuusteoriassa valoaallot ja gravitaatioaallot kulkevat samalla nopeudella. Kun gravitaatiopuoleen lisää kaikenlaista kommervenkkiä, niin tämä muuttaa gravitaatioaaltojen kulkua, mutta ei valon (tai ainakin ne muuttuvat eri tavalla). Se, että valoaallot ja gravitaatioaallot saapuivat Maahan 1.7 s päässä toisistaan kuljettuaan 100 miljoonaa valovuotta tarkoittaa sitä, että niiden nopeudet voivat erota toisistaan vain sen verran kuin pari sekuntia eroaa 100 miljoonasta vuodesta, eli miljardisosan miljoonasosan verran. Tämä on niin tiukka raja, että se osoittaa vääräksi tämän kokonaisen luokan malleja kiihtyvän laajenemisen syistä.
Saman tyyppistä ideaa voi soveltaa myös yrityksiin korvata pimeä aine gravitaatiolain muutoksella. Tällaisissa malleissa tehdään jossain mielessä vastakkaisesti kuin kiihtyvän laajenemisen selityksissä: niissä muutetaan gravitaatiota siten, että aine ja valo liikkuvat eri tavalla, mutta gravitaatioaallot käyttäytyvät kuten ennen. Jotta mallit sopivat havaintoihin, niiden ennusteiden pitää olla hyvin samanlaiset kuin pimeän aineen, eli aine ja valo tuntevat isomman gravitaation kuin mitä pelkästään tavallinen aine synnyttää. Mitä voimakkaampi gravitaatiokenttä on, sitä hitaammin aika kulkee. Tällaisissa malleissa valo kulkee siis hitaammin kuin gravitaatioaallot. Yleisessä suhteellisuusteoriassa sen sijaan ne tuntevat saman gravitaatiokentän ja kulkevat siksi samalla nopeudella. Meidän ja neutronitähtiparin välissä oleva aine aiheuttaa kuukausien viiveen, mutta havaittu ero gammasäteiden ja gravitaatioaaltojen kulkuun on vain 1.7 sekuntia. Tästä voi päätellä, että tällaiset pimeää ainetta korvaavat mallit ovat väärässä, ainakin nykymuodossaan. Jos ne haluaa pelastaa, niitä pitää muokata siten, että myös gravitaatioaallot hidastuvat kuin pimeää ainetta olisi olemassa, mikä ei ole aivan yksinkertaista.
Jos havaitsijat työskentelivät kuumeisesti kun gravitaatioaaltosignaali jäi haaviin, niin teoreetikot ovat kiivaasti kirjanneet johtopäätöksiään ylös havainnon julkistamisen aikoihin. Ensimmäiset teoreettiset artikkelit laitettiin nettiarkisto arXiviin samana päivänä kun havainnot julkistettiin (jotkut jopa ennen julkistamista), huhujen levittyä laajalle. Olen par’aikaa vierailulla Oxfordissa, ja täällä työskentelevä Pedro Ferreira ja hänen yhteistyökumppaninsa aloittivat muokatun gravitaatiolain mallit vääräksi osoittavan artikkelin tekemisen perjantaina ja saivat sen valmiiksi maanantaina, laittaen sen arXiviin kaksi tuntia ja kolme minuuttia LIGO/Virgon lehdistötilaisuuden alkamisen jälkeen. Samaa asiaa käsittelevät kahden muun ryhmän hyvin samanlaiset artikkelit laitettiin arXiviin 13 ja 53 minuuttia myöhemmin, ja ne kaikki ilmestyivät tiistaina.
LIGO/Virgo ja muut havaintoja tehneet ryhmät olivat sikäli ihailtavan hillittyjä, että ne julkistivat tuloksensa vasta niiden käytyä läpi vertaisarvioinnin, toisin kuin gravitaatioaaltoja löytäneensä luullut BICEP2-ryhmä vuonna 2014.
Näillä havainnoilla voi tehdä paljon muutakin, esimerkiksi mitata maailmankaikkeuden laajenemisnopeutta ja asettaa rajoja neutronitähtien mahdolliselle pimeästä aineesta muodostuvalle ytimelle. Data-analyysi jatkuu, ja päivitystauolla olevat LIGO/Virgo käynnistyvät ensi vuonna entistä ehompina. Perustavanlaatuista fysiikkaa luotaavien havaintojen kärki on siirtynyt maanalaisista hiukkaskiihdyttimistä taivaan katsomiseen. LIGO/Virgon artikkelin sanoin: ”Alle kaksi vuotta gravitaatioaaltotähtitieteen ensi-illasta [nyt havaittu aalto] GW170817 merkitsee uusien löytöjen aikakauden alkua.”
29 kommenttia “Useiden sanansaattajien aikakausi”
-
Onko tässä gravitaatiotähtitieteessä mitään mainittavaa suomalaisen tiedeyhteisön edustusta ?
-
Merkittävä falsfioituminen tuo, että massakenttä ja gravitaatio ovat ekvivalentteja ja muu teoreettinen lähtökohta voidaan unohtaa.
Onko tiedossa muunnetun gravitaation teorioita, joissa massaa generoituu muuten kuin ainehiukkasin eli massakenttää muodostuu samalla kuin lisägravitaatiotakin, esim. hiukkasta laajempina resonaatioina?
-
Tulkitsin Baker, Bellini, Ferreira et al -paperista, että havainto poissulkee nimenomaan bigravitaation ja tukee GR-monogravitaatiota, mutta antaapa olla tästä sen enempää.
Sen sijaan kiinnostaa näkemyksesi tuosta 1,7 sekunnin viiveestä – pidätkö todennäköisempänä viiveen syyksi gamma-aaltojen irtoamista neutronitähtien törmäysalueelta vapaaseen avaruuteen tuon verran myöhemmin vai eron syntymistä matkan aikana?
-
”Gravitaatioaallot saapuivat Maahan ensin, 1.7 sekuntia niiden jälkeen tuli gammasädepurkaus (eli korkeaenerginen sähkömagneettinen säteily), 11 tuntia sen jälkeen näkyvä valo, 9 päivän kuluttua röntgensäteet ja 16 päivää myöhemmin radioaallot. Mustien aukkojen törmäyksestä ei synny tällaisia signaaleja, joten ainakin toinen kappaleista oli neutronitähti (ellei sitten jokin toistaiseksi tuntematon vielä eksoottisempi kappale).”
Minusta tässä järjestyksessä ei kaikki natsaa? Röntgensäteet ovat energeettisempiä kuin näkyvä valo, mutta miksi ne saapuvat valon jälkeen?
-
Avaatko vielä Syksy hieman sitä, miksi näkyvän valon havaitsemiseen meni tunteja (ilmeisesti näkyvä valo syntyi ”hitaasti” tapahtuman seurauksena”)?
Entä mikä selittää röntgensäteiden ja radioaaltojen päiviä kestäneen saapumisviiveen, kun maallikon mielestä ”kaikki” sähkömagneettisen spektrin jaksot liikkuvat samalla valonnopeudella?
-
”Gravitaatioaallot ja erilaiset sähkömagneettiset signaalit syntyvät törmäyksen ja siitä syntyneen jäänteen (joka saattaa olla neutronitähti tai musta aukko) kehityksen eri vaiheissa. Niinpä katsomalla taivasta eri signaalien avulla voi seurata tapahtuman eri vaiheita.”
Tämä selvää. Koska ja miten voimme tietää oliko tuloksena neutronitähti vai musta aukko? Vai meneekö siihen todennäköisesti vuosia/vuosikymmeniä? Mustan aukon neutriinojen mahdollista havaitsemista vaikeuttanee kohteen kaukaisuus allaolevaan verrattuna. Nythän itse kohde lienee selvä.
Vaikka onkin eri asia niin eihän SN 1987A:stakaan tiedetä (vielä) mitä jäi jäljelle. Neutronitähti (pulsari) tai myöhemmän materiaaliputouksen ansiosta syntynyt musta aukko.
-
Mainitsit että gravitaatiofysiikan tutkijat Oxfordissa kirjoittivat artikkelin heti viimeisimmän LIGO:n tuloksen jälkeen, ja laittoivat sen arXiv:iin mielettömällä kiireellä (normaaliin julkaisukäytäntöön nähden). Miksi tarkalleen moinen kiire ? Väistämättä kovin kova tahti syö laatua. Onko syynä sitaatiotilastot ja siis h-indeksistä huolehtiminen, vai miksi ?
-
Syntyykö mahdollisesti havaittavia gravitaatioaaltoja supernovaräjähdysten yhteydessä ?
-
Paluuviite: Kosmokseen kirjoitettua | Pastaa syvemmälle
-
Paluuviite: Kosmokseen kirjoitettua | Pimeä sydän
-
Paluuviite: Kosmokseen kirjoitettua | Toisen kauden kuviot
Vastaa
Totuus, tiede ja toiminta
Kirjoitin Helsingin opettajien ammattiyhdistyksen lehteen Rihveli 2/2017 kolumnin ”Totuus, tiede ja toiminta” faktoista tieteessä ja politiikassa. Arvostelen siinä mm. huhtikuun tiedemarssia, jossa itsekin puhuin. Kolumni on lehden sivuilla 6-9 ja alkaa näin:
On tullut tavaksi sanoa, että elämme ”totuuden jälkeistä aikaa”, jossa tosiseikat hukkuvat valheiden mereen. Selkeimpänä tapauksena esitellään Yhdysvaltojen nykyistä hallitusta, jonka kärkimies Donald Trumpilla on tosiaan erikoislaatuinen suhde faktoihin. Tilanne on kirvoittanut vetoomuksia ja tempauksia sen puolesta, että päätöksenteko pohjaisi enemmän tutkimustietoon, yhtenä niistä huhtikuun tiedemarssi.
2 kommenttia “Totuus, tiede ja toiminta”
-
Olen samaa mieltä Rihveli-kirjoituksen kanssa. Tosin lisäisin että olen törmännyt tieteessä myös ”urbaaneihin legendoihin” eli uskomuksiin joille ei ole perusteita mutta joita toistetaan vuosikymmenestä toiseen, ilman että on selvää oliko taustalla alunperin joku arvovaltainen hahmo.
Tyypillinen esimerkki tästä on urbaani legenda siitä että aurinkotuuli veisi planeetan ilmakehän mukanaan ellei magneettikenttä ole planeettaa suojaamassa. Legendasta on vähän eri versioita, joskus puhutaan vedestä, joskus vain Marsista, ja yhdessä variantissa väitetään että Maan elämä tarvitsisi magneettikentän tarjoamaa säteilysuojaa.
Aurinkotuulen aiheuttama ilmakehän pako on mitattu avaruusluotaimilla, lukuarvo on samaa luokkaa Venukselle, Maalle ja Marsille, ja se on geologiselta kannalta pieni. Väitteessä että Marsin ilmakehä olisi ohut koska aurinkotuuli on sen vienyt, on lisäksi sellainen looginen ongelma että se ei selitä miksi prosessi olisi loppunut juuri vähän ennen kuin ilmakehä loppuu kokonaan.
-
Sekoittaminen on ajallemme tyypillistä. Uutisoinnissa hämärtyy milloin on kyse hypoteesista, matemaattisesta teorialöydöstä, todennetusta lainalaisuudesta tai vajaan luotettavuuden mittauksesta.
Keskimääräiselle uutiskuluttajalle harva tiedeuutinen saadaan annettua ulos niin, ettei sitä sekoitettaisi ns. faktaan.
Tällä ei tosiaan olisi suurtakaan merkitystä tieteenteon kannalta, mutta kun tutkijoistakin useimmat altistuvat jonkinasteiselle vahvistusharhalle…
Hiukan sivuten puheen alkua, kuten kohtaa ”Helsingin yliopiston johtokin haluaa karsia tarpeettomina pitämiään oppiaineita”, onko mielestäsi olemassa sellaisia oppiaineita tai tutkimussuuntia, jotka olisivat ns. tarpeettomia tai turhia siinä merkityksessä, missä näitä sanoja populaarissa keskustelussa joskus käytetään? Tarkoittaen siis, että kyseiseen asiaan ei kannattaisi ”tuhlata” yhteiskunnan resursseja eivätkä ne kuuluisi yliopistolle.
Ei tarvitse välttämättä nimetä sellaisia, mutta pidätkö edes mahdollisena, että tällaisia voisi (suomalaisissa) yliopistoissa esiintyä nyt tai tulevaisuudessa?
Populaarissa keskustelussa käsitys tutkimuksen turhuudesta on kaukana kriteereistä, jotka ovat tiedemaailmassa merkityksellisiä, ja käsitys hyödystä on usein kapea.
Tämä ei tietenkään tarkoita sitä, etteikö tieteellisillä kriteetereillä arvioituna turhaa tai tarpeetonta tutkimusta olisi. Kokonaisten oppiaineiden ja tutkimussuuntien suhteen kysymys onkin vaikeampi, eikä sitä voi arvioida ilman tuntemusta ko. alasta. (Itse voisin kyseenalaistaa dogmatiikan tieteellisen arvon -sillä voi toki olla muita arvoja-, mutta asiaa pitäisi tarkastella tarkemmin kuin minun puutteellisten tietojeni pohjalta.)
Mitä yliopiston johtoon tulee, se ei nähdäkseni ole tehnyt päätöksiään karsinnoista huolellisen harkinnan ja tieteellisten kriteerien pohjalta.
Jos käyn läpi niitä asioita joista olen (tieteellisesti) kiinnostunut, niin huomaan että useimmissa tai ehkä jopa kaikissa niistä taustalla on hyöty – mutta usein hyvin pitkän ajan varsin spekulatiivinen hyöty. Esimerkiksi kosmologia on kiinnostavaa koska on hyödyllistä lajin säilymisen kannalta osata ennustaa miten maailmankaikkeudelle tulevaisuudessa tulee käymään. Tai astrofysiikassa gammapurkaukset ovat kiinnostavia koska jossain vaiheessa niiltä pitää ehkä osata suojautua. Jne.
”Itse voisin kyseenalaistaa dogmatiikan tieteellisen arvon.” Usein dogmatiikka liitetään teologiaan, mutta valitettavasti se pyrkii laajentamaan reviiriään myös tieteeseen. Silloin puhutaan paradigmasta, mikä tarkoittaa vain yhtä hyväksyttyä tapaa ajatella. Vaihtoehtoisen tavan esittäjät ovat kerettiläisiä, jotka joko vaietaan kuoliaaksi tai potkitaan pois yhteisöstä.
”Mitä yliopiston johtoon tulee, se ei nähdäkseni ole tehnyt päätöksiään karsinnoista huolellisen harkinnan ja tieteellisten kriteerien pohjalta.” Tästä olen ehdottomasti samaa mieltä, koska yliopiston tulisi olla suvaitsevainen ja antaa motivoituneille ihmisille mahdollisuus toimia ja yrittää murtaa vallitseva paradigma. Se on ainoa keino, jolla tieteellinen ajattelutapa ja maailmankuva muuttuu ja kehittyy.
Off-topic: Äskettäin ilmestyi vuoden 2017 Nobel-palkitun Kip S. Thornen ja Roger D. Blandfordin järkäle ”Modern Classical Physics; Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics”
Kuten otsikko lupaa, niin siinä on tukevana osana mukana Einsteinin suhteellisuusteoria.
Minua hämmästyttää tuo käsitteiden sekoittaminen. Olen tottunut siihen että ”klassinen fysiikka” ehdottomasti sisältää Newtonin mekaniikan, Maxwellin kenttäteorian ja Boltzmannin jalostaman statistisen fysiikan.
Ja yhtä ehdottomasti ”moderni fysiikka” alkaa siitä missä klassinen fysiikka lyö päätä seinään, eli kun kehään heitetään fysikaalisten suureiden kvantittuminen (Planckin vakion määräämällä skaalalla) sekä hiukkas-aaltodualismi, ja sitten toisaalla Einsteinin teoriat lähtien liikkeelle siitä että valon nopeus on universaali vakio.
Kysymykseni on siis miten nykyään määritellään ”klassinen fysiikka” ? Alustavasti tuntuu aika onnettomalta jos vakiintuneita käsitteitä lähdetään sekoittamaan !
Termiä klassinen käytetään yleensä kvattifysikaalisen vastakohtana, kuten epärelativistinen (tai newtonilainen) on relativistisen vastakohta.
Kyllä, noinhan se tosiaan usein sanotaan.
Mutta silti hämmästelen että ”relativistinen” saadaan ”klassisen” käsitteellisen sateenvarjon alle. Mielestäni usein mielletään Newtonilainen = klassinen.
Mainitsemasi Maxwellin sähkömagnetismi on relativistinen teoria, se on ristiriidassa Newtonin mekaniikan kanssa. Tuollaisen määritelmän mukaan se ei kuuluisi klassiseen fysiikkaan.