Arkisto
- joulukuu 2023
- marraskuu 2023
- lokakuu 2023
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- heinäkuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- marraskuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- lokakuu 2017
- syyskuu 2017
- elokuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Viisareina tähdet
Kirjoitin kesäkuussa maailmankaikkeuden iän määrittämisestä. Mainitsin, että jos ”tiedetään miten jotkut kappaleet –vaikkapa tähdet tai galaksit– kehittyvät, niin sellaisen iän voi arvioida ulkonäön perusteella”. Palaan nyt tähän iän arviointiin.
Maailmankaikkeudessa on galakseja, joiden kehityksen avulla mitataan aikaa. Kosmologeille on tullut tavaksi kutsua niitä kosmisiksi ”kronometreiksi” eli aikamittareiksi. Tälle on kyllä arkisempikin sana: kello.
Viisarikello kertoo, montako kertaa viisari on liikkunut sovitun nollakohdan jälkeen (eli viimeisimmän keskiyön tai keskipäivän). Kun tiedetään, kauanko yksi viisarin liike kestää, tämä lukumäärä kertoo paljonko aikaa on kulunut.
Kun aikaa mitataan galakseista, viisareina ovat tähdet. Tähtien elämänkaari tunnetaan hyvin: tähti muodostuu kaasupilvien romahtaessa ja kehittyy eri vaiheiden läpi valkoiseksi kääpiöksi, neutronitähdeksi tai mustaksi aukoksi, riippuen siitä kuinka massiivinen se on.
Niinpä galaksin iän voi määrittää katsomalla missä kehitysvaiheessa olevia tähtiä siinä on. Erityisesti vanhimmat tähdet ovat tärkeitä, koska ne antavat alarajan galaksin iälle. Galaksien valo sisältää valtavan otoksen erilaisten tähtien valosta – esimerkiksi Linnunradassa noin 100 miljardia tähteä.
Tässä on se hyvä puoli, että ei ole niin väliä mitä joillekin yksittäisille tähdille on tapahtunut – poikkeamat hukkuvat isoon otokseen. Varjopuoli on se, että tähtien kehityksen lisäksi pitää tietää, miten tähtien jakauma kehittyy galaksissa.
Tämän takia yritetään keskittyä galakseihin, jotka eivät ole yhtyneet toisiin galakseihin. Galaksien sulautuminen sekoittaa niiden tähdet keskenään, minkä takia on vaikeampi selvittää millainen tähtien jakauma oli alun perin ja miten se on kehittynyt. Lisäksi pyritään valitsemaan galakseja, joissa ei enää juuri muodostu uusia tähtiä, tähtiväestö vain vanhenee tasaisesti.
Sen lisäksi, että yhdessä galaksissa on paljon tähtiä, vaihtelua suitsitaan käyttämällä kellona yhden galaksin sijaan tuhansia galakseja eri puolilla taivasta. Tällöin mahdollisesti poikkeuksellisten yksittäisten galaksien vaikutus on vähäinen, ja satunnaisten vaihtelujen merkitys pienenee otoksen koon kasvaessa.
Galaksin valosta on helppo mitata punasiirtymä, joka kertoo paljonko avaruus on laajentunut sen jälkeen kun valo lähti matkaan. Kun verrataan sitä, miten eri galaksien punasiirtymä riippuu niiden iästä, saadaan selville, miten maailmankaikkeus laajenee ajan kuluessa. Tämä on yksi suorimpia tapoja mitata avaruuden laajenemisnopeutta ja sen muutosta.
Usein laajenemisnopeus sen sijaan päätellään mittaamalla galaksien punasiirtymiä ja etäisyyksiä. Etäisyyden ja punasiirtymän suhdetta verrataan jonkin kosmologisen mallin ennusteeseen, ja mallista sitten lasketaan miten avaruus on laajennut. Tällainen päätelmä laajenemisnopeudesta on epäsuora ja riippuu käytetystä kosmologisesta mallista. Isoin epävarmuus liittyy siihen, millaista olettaa pimeän energian olevan.
Laajenemisnopeuden määrittäminen kosmisten kellojen avulla ei riipu siitä millaista pimeä energia on, mutta se on herkkä sille, miten tähtisisällön kehitystä mallinnetaan. Galaksit ovat monimutkaisempia kappaleita kuin tähdet, ja niiden tähtiväestön synnystä ja kehityksestä on kilpailevia malleja. Mallit johtavat erilaisiin tuloksiin galaksien iästä ja siten maailmankaikkeuden laajenemisnopeudesta.
Jotkut suositut kehitysmallit ennustavat maailmankaikkeuden iän aivan pieleen. Voi sanoa, että laajenemisnopeuden kannalta tällä ei ole väliä, koska se riippuu vain siitä, miten ikä muuttuu punasiirtymän myötä, ei iän nollakohdasta. Kello voi mitata ajan kulumista tarkasti, vaikka se olisi väärässä ajassa. Mutta se, että malli ennustaa yhden asian väärin herättää epäilyksen siitä, osuuko oikeaan muissa asioissa.
Yksi kosmologian pohdituimpia kysymyksiä tällä hetkellä on se, että kosmisesta mikroaaltotaustasta päätelty avaruuden laajenemisnopeus on pienempi kuin lähellä olevien supernovien avulla mitattu. Kosmiset kellot sopivat paremmin yhteen supernovien tulosten kanssa kuin kosmisen mikroaaltotaustan, mikä viittaa siihen, että ristiriitaa ei voi ratkaista peukaloimalla mikroaaltotaustaa. Tilastolliset virherajat sekä tähtiväestön kehitysmallien epävarmuus ovat tosin vielä liian isoja, jotta tästä voisi tehdä varmoja päätelmiä.
Eteenpäin pääsemiseksi ei riitä että mitataan lisää galakseja, tarvitaan parempi ymmärrys niiden tähtiväestön kehityksestä. Tämä on esimerkki kosmologian ja tähtitieteen (hienommin sanottuna astrofysiikan) erosta. Tähtitieteilijät tutkivat galakseja niiden itsensä takia, kosmologit käyttävät niitä kelloina.
18 kommenttia “Viisareina tähdet”
Vastaa
Fysiikkaa runoilijoille ja kosmologiaa
Luennoin taas tänä syksynä kurssin Fysiikkaa runoilijoille Helsingin yliopistolla. Sen voi suorittaa myös Avoimessa yliopistossa. Ilmoittautuminen kurssille on auki.
Luennot ovat paikan päällä maanantaisin kello 14-16 ja tiistaisin kello 12-14, alkaen tiistaina 6. syyskuuta. Luennoille ovat tervetulleita myös yliopiston ulkopuoliset. Luentoja ei nauhoiteta eikä striimata.
Kurssilla kuvataan fysiikan teorioiden kehitystä ja sisältöä fyysikon näkökulmasta, ja avataan niiden käsitteitä ja maailmankuvallista merkitystä. Aiheina ovat Newtonin klassinen mekaniikka, suhteellisuusteoria, kvanttifysiikka, kosmologia, ja lopussa muutama lyhyesti yritykset kohti kaiken teoriaa. Kurssi ei edellytä esitietoja fysiikasta eikä sisällä laskemista.
Kurssin sivuilla on palautetta edellisten vuosien opiskelijoilta sekä neuvoja kurssin käymiseen, tässä poiminta:
”Kurssi oli todella antoisa, kiitos! Tällaisia tieteenalojen välisiä kädenojennuksia kaivattaisiin enemmän. Tuntuu, että noin yleisesti ottaen fysiikasta kiinnostunut humanisti voi joko tyytyä populaarikirjallisuuteen tarjoamaan pintaraapaisuun tai vaihtoehtoisesti aloittaa fysiikan opiskelun aivan a:sta; välimuotoa on vaikea löytää. Tämä kurssi täytti tämän puutteen erinomaisesti.”
Luennoin syksyllä myös Ursalle kosmologiasta kurssin kerran paikan päällä Tieteiden talolla ja kerran etänä. Edellisinä vuosina liput on myyty loppuun nopeasti, eli jos haluaa mukaan, niin kannattanee ostaa pian. Kurssien sisältö on sama, Ursan sivujen kuvauksen mukaan kumpikin kurssi
”tarjoaa napakan katsauksen moderniin kosmologiaan, sen oleellisimpiin teorioihin sekä hieman myös kosmologian historiaan. Kurssilla käsitellään mm. maailmankaikkeuden historia, ison mittakaavan rakenteet, kosmisen mikroaaltotausta, pimeä aine, pimeä energia ja kosminen inflaatio.”
Vastaa
Yhteyksiä ja unelmia
Olin heinä-elokuun vaihteessa matemaatikkojen ja fyysikoiden yhteisessä konferenssissa Palestiinassa. Konferenssi jatkoi vuonna 2008 alkanutta sarjaa, jossa järjestetään tapaaminen joka toinen vuosi eri yliopistossa Miehitetyillä palestiinalaisalueilla. Nyt vuorossa oli Birzeitin yliopisto, missä luennoin syksyllä 2018 kosmologiaa. Konferenssia edelsi järjestön Scientists for Palestine järjestämä opiskelijoille suunnattu kesäkoulu koneoppimisesta.
Konferenssiin osallistui palestiinalaisia Länsirannalta ja Gazasta –jälkimmäisestä etänä, koska Gaza on Israelin 15 vuotta kestäneen saarron alla– ja ulkomailta, sekä parikymmentä muuta ulkomaista kutsuttua puhujaa. Olin kutsuttujen joukossa ja konferenssin tieteellisessä komiteassa.
Kuten minulla on tullut tavaksi todeta, konferenssien tärkein anti on kohtaamiset ja keskustelut. Sen lisäksi, että kohtaa uusia tutkijoita ja kuulee odottamattomia näkökulmia, myös tapaa vanhoja tuttuja. Tohtoriksi valmistumisen ja pysyvän työpaikan saamisen välisinä vuosina tutkijat matkaavat maasta toiseen kisällien tapaan, joten kollega- ja ystäväpiiri kasvaa ja hajaantuu ympäri maailmaa; konferenssit kokoavat väkeä yhteen.
Palestiinalaisten kohdalla tämä korostuu, koska miljoonat heistä ovat pakolaisina ympäri maailmaa, ja Israel estää heitä muuttamasta kotimaahansa, koska he kuuluvat väärään etniseen ryhmään. Fysiikassa yksi ongelma on se, että Länsirannan yliopistoissa ei ole alan tohtoriohjelmaa, joten pitää lähteä ulkomaille jos haluaa tehdä väitöskirjan. Oli mukava tavata taas opiskelijoita, jotka olivat käyneet kosmologiakurssini vuonna 2018 ja kuulla mitä he ovat tehneet valmistuttuaan maisteriksi, mutta ikävä havaita, että kaikki jotka olisivat halunneet jatkaa opintojaan eivät olleet niin tehneet.
Nuoremmat opiskelijat kysyivät, koska tulisin luennoimaan kurssin uudelleen. Israel on tehnyt siitä entistä vaikeampaa tiukentamalla rajoituksia, joilla se eristää miehitettyä Länsirantaa muusta maailmasta. Luennoitsijan täytyy jättää hakemus Israelin miehityshallinnolle, jonka sotilaat päättävät, onko luentojen aihe oleellinen palestiinalaisille ja onko luennoitsija pätevä. Lisäksi ulkomaisille luennoitsijoille on 100 hengen yläraja: useampi ei saa tulla opettamaan, vaikka Länsirannalla asuu kolme miljoonaa palestiinalaista.
Miehityshallinnon sallimissa puitteissa osassa Länsirantaa paikallishallintona toimivan Palestiinalaishallinnon opetusministeri Marwan Awartani avasi konferenssin. Awartani piti epämuodollisen puheen, missä hän muisteli menneitä ja patisti yliopistolaisia yhteistyöhön kouluopettajien kanssa. Opettajille on yliopistoissa järjestetty kesäkouluja tietojen päivittämiseksi, ja hän kehotti fyysikkojen ja matemaatikkojen seuroja perustamaan omia jaostoja opettajille, jotta näillä olisi tiiviimpi yhteys yliopistoihin ja tieteeseen.
Tämä ei ollut ulkopuolisen lausunto: Awartani on taustaltaan matemaatikko, ja hän oli perustamassa ensimmäistä palestiinalaisten matemaatikkojen seuraa ja järjestämässä ensimmäistä palestiinalaista matematiikan konferenssia. Awartani myös valitti, että useampia opiskelijoita pitäisi saada kiinnostumaan matematiikasta ja luonnontieteistä ja niihin liittyvästä kriittisestä ajattelusta.
Tieteellisen ohjelman avasi Cambridgen yliopiston ja Texas A&M -yliopiston Edriss Titi, joka puhui siitä, miten turbulenssin tutkiminen yhdistää fysiikkaa ja matematiikkaa. Turbulenssi on nesteissä ja kaasuissa esiintyvä kaoottinen ilmiö, jossa energiaa siirtyy isosta mittakaavasta pieneen ja syntyy pyörteitä. Turbulenssi on tärkeä osa monia fysiikan käytännön sovelluksia (esimerkiksi polttomoottorien palamisessa ja lentokoneiden liikkeissä), ja sen ymmärtämisessä on vielä merkittäviä aukkoja.
Matemaatikko kun on, Titi kuitenkin käsitteli turbulenssia esimerkkinä ilmiöstä, jota tutkittaessa löydetyt matemaattiset rakenteet ovat kiinnostavampia kuin sovellukset, joita varten asiaa mallinnetaan. Hän vertasi tätä siihen, miten persialainen matemaatikko Muhammad ibn Musa al-Khwarizmi kehitti 800-luvulla algebran ratkaistakseen islamilaiseen perintölakiin liittyviä ongelmia.
Muussa ohjelmassa fysiikan ja matematiikan puheet olivat erikseen. Fysiikan aiheissa oli laaja kirjo: säieteorian uudesta muotivirtauksesta kaksiulotteisiin materiaaleihin, joita voidaan käyttää muuttamaan hiilidioksidia metanoliksi; uusista Higgsin hiukkasista tuulivoimaloiden tehokkuuden arviointiin. Oli mukava huomata, että mukana oli paljon gradun tai väitöskirjan tekijöitä puhumassa työstään. Konferensseihin osallistuminen ja oman työn esittäminen on tärkeä oppimisen väline.
Eri aloja yhdistävissä konferensseissa (myös Suomen Fysiikan päivillä) on usein se ongelma, että suurin osa puheista on laadittu oman alan tutkijoille. Koska tutkimus on hyvin erikoistunutta, on raskasta ja vaikeaa yrittää seurata kaukana omasta alasta olevia esityksiä, vaikka aihe kiinnostaisikin. Toisaalta joskus voi ilmetä hyödyllisiä yhteyksiä. Esimerkiksi konferenssissa oli kokeellisten fyysikkojen puheita perovskiitti-mineraalin käytöstä tehokkaampien ja ympäristöystävällisempien aurinkokennojen valmistamisessa, ja paikalla olleiden teoreetikkojen osaamisesta voi olla hyötyä tuon paljolti kokeisiin perustuvan tutkimuksen viemisessä eteenpäin.
Jocelyn Bell Burner Oxfordin yliopistosta puhui etänä otsikolla ”Naisena (astro)fysiikassa”. Bell Burner löysi ensimmäiset pulsarit vuonna 1967 ollessaan Antony Hewishin jatko-opiskelija. Löydöstä myönnettiin Nobelin palkinto vuonna 1974, mutta Bell Burner ei ollut palkinnonsaajien joukossa. Muun muassa tähtitieteilijä Fred Hoyle, joka ensimmäisten joukossa ymmärsi että pulsarit ovat supernovien jäänteitä, arvosteli päätöstä. Bell Burner on itse ollut sitä mieltä, että päätös johtui ennemmin siitä, että hän oli opiskelija kuin siitä että hän on nainen, ja on sanonut ymmärtäneensä sen. Bell Burnerin taustasta ja pulsarien löytämisestä voi kuulla enemmän New York Timesin minidokumentista, mihin häntä haastateltiin vuonna 2018.
Konferenssissa Bell Burner ei puhunut tuosta menneisyydestä, mutta kävi läpi siitä, miten hänen aikanaan naiset kasvatettiin palvelemaan muita ja arvioimaan menestymistään aviomiehensä kautta, ja millaisia esteitä naispuolisten tieteilijöiden tiellä vieläkin on. (Lisää aiheesta täällä, täällä, täällä, täällä, täällä, täällä, täällä ja täällä.)
Puheessaan Bell Burner esitteli kansainvälisen tähtitieteellisen järjestön IAU:n tilastoja naisten osuudesta tähtitieteilijöistä ei maissa. Hän totesi osuuden kasvaneen hitaasti ajan myötä. Hän myös kiinnitti huomiota siihen, että monet maat joissa naisten osuus on isoin ovat etelässä. Maista, joissa on yli 100 IAU:n jäsentä eniten naisia on Argentiinassa (41%), Italiassa (31%), Etelä-Afrikassa (29%) sekä Indonesiassa ja Ranskassa (26%). Suomessa osuus on 20%, Ruotsissa 16%, ja Bell Burnerin asuinmaassa Iso-Britanniassa 18%.
Mahdollisiksi syiksi Bell Burner ehdotti sitä, että näissä maissa tähtitiede olisi vähemmän arvostettua, eikä siksi kiinnostaisi miehiä niin paljon, ja että lastenhoitoon olisi helpommin saatavilla palkattua apua ja tukea isovanhemmilta. Hän suositteli vasta ilmestynyttä kirjaa The Sky Is for Everyone, johon on koottu naistähtitieteilijöiden kertomuksia urastaan. (Tähän blogiin saattaa jossain vaiheessa ilmestyä arvostelu kirjasta.)
Ilmiö ei rajoitu tähtitieteeseen. Esimerkiksi tässä palestiinalaisessa konferenssissa naisten osuus oli isompi kuin yleensä vastaavissa eurooppalaisissa konferensseissa, ja Birzeitin yliopiston matemaattis-luonnontieteellisen tiedekunnan dekaani ja konferenssin pääjärjestäjä Wafaa Khater on nainen. (Birzeitissakin kyllä ylivoimainen enemmistö professoreista ja muista korkeamman aseman fyysikoista on miehiä.)
Toinen asia mitä Bell Burner korosti oli se, että tieteen esittämisessä jää yleensä liian pieneen rooliin se, miten tärkeitä ovat mielikuvitus, intuitio ja unelmat, jotka auttavat kehittämään ideoita siitä mitä tehdä ja miten.
4 kommenttia “Yhteyksiä ja unelmia”
-
Monet noista maista, joissa naisten osuus on suurempi, ovat sellaisia, joissa vain varakkaiden vanhempien lapsilla on mahdollisuus kouluttautua pitkälle. Voisiko olla, että stereotypia ”miesten ja naisten aloista” ei elä niin vahvana maassa, jossa pienemmällä osuudella ihmisistä on ylipäätään mahdollisuus edetä akateemisella uralla? Onkohan tätä tutkittu ja millaisin tuloksin? (Ja minkä tieteenalan alle kysymys edes kuuluu? Antropologia vai sosiologia?)
-
Nobel-komitean ehkä suurin möhläys oli Lise Meitnerin jättäminen ilman fysiikan palkintoa silloin kun Otto Hahn sen sai. Syy oli Meitnerin väärä sukupuoli! Nyt Israelissa on Meitnerin nimeä kantava tutkimuslaitos. Somessakin vaikutti huomattava tähtitietelijä prof. Liisi Oterma, jonka ansioita kannattaisi tähtitietelijöiden tuoda enemmän esiin. Oterma oli vaatimaton ja kiinnostunut myös kielistä. Tanskalainen kollega luonnehti häntä, että Oterma vaikenee yhdellätoista kielellä!
-
Tässä hyviä ja mielenkiintoisia pätkiä turbulenssista (kun mainittiin merkinnässä) meille maallikoille. Tompassa on ehkä hieman sellaista Syksymäistä habitusta.
Navier-Stokes
https://www.youtube.com/watch?v=ERBVFcutl3M
Reynolds Number
https://www.youtube.com/watch?v=wtIhVwPruwY
Käytäntö, Tompan PhD.
https://www.youtube.com/watch?v=5mGh0r3zC6Y
Pallomaiset tähtijoukot saattaisivat olla yksinkertaisempia kohteita mallintaa kuin galaksit. Olisikohan niiden havaitseminen mahdollista tulevaisuudessa jopa kosmologisilta etäisyyksiltä? Jollei suoraan, niin ehkä käyttäen painovoimalinssejä apuna(?)
En osaa sanoa – nehän ovat merkittävästi himmeämpiä kuin galaksit (koska niissä on vähemmän töhtiä).
Painovoimalinsseistä ei ole sikäli apua, että tällaisiin havaintoihin tarvitaan suuri määrä kohteita. On harvinaista, että meidän ja kohteen väliin sattuu tarpeeksi iso linssi tarpeeksi keskelle, että kirkkaus kasvaa merkittävästi.
Olen nähnyt tulkintoja, että Linnunradan pallomaisissa tähtijoukoissa tähdet olisivat vanhimpia tunnettuja tähtiä – siis useita miljardeja valovuosia sitten muodostuneina.
Jotenkin niin, että niissä olisi sitä alkuperäistä vetyä runsaasti ja siksi eivät olisi räjähdelleet niin usein supernovina.
Mietin, että jos silloin alkuaikoina muodostuneena olisi pienehköt mustat aukot kerryttäneet pallomaisia muotoja keskimäärin tiheämmästä tähtimäärästä ja siten niitä pallomuodostelmia kehittynyt paljon – jääden sitten kiertämään myöhemmin isompien galaksimuodostelmien kehille – niiden painovoimien nopeudet riittäneet pysyttäytymiseen etäällä.
Vaikka vielä ei tarkoin tiedettänekään mitä niiden palomuodostelmien keskuksiin kehittynyt – lienevät kuitenkin samankaltaisiksi lähtöasetelminaan kehittyneet, pitkäikäisiksi kertymiksi.
Kyllä, pallomaisissa tähtijoukoissa on vanhoja tähtiä. Mustia aukkoja ei tarvita pallomaisten tähtijoukkojen synnyn selittämiseen.
Onko mahdollista, että mikroaaltotaustan syntyaikana laajeneminen oli hitaampaa kuin myöhemmin galaksien syntymisen jälkeen?
Ei. Maailmankaikkeuden laajeneminen hidastuu siihen asti, kunnes pimeä energia (tai mikä sitten onkaan vastuussa kiihtyvästä laajenemisesta) ottaa vallan vajaan 10 miljardin vuoden iässä. (Lukuun ottamatta kosmista inflaatiota ensimmäisen sekunnin perukoilla.)
Maailmankaikkeuden laajenemisnopeus kosmisen mikroaaltotaustan syntyessä oli paljon isompi kuin nyt.
Siitäkö johtuu, että kosminen taustasäteily on mikroaalto säteilyä, mutta Jjames Webb teleskoopin näkemät vanhimmat galaksit, jotka ovat lähes yhtä vanhoja mitä taustasäteily näkyvät infrapuna alueella?
Aallonpituuden määräytyy siitä, kuinka paljon maailmankaikkeus on kaikkiaan venynyt, ei siitä hidastuuko laajenemisnopeus.
Havainnot mikroaaltotaustasta näyttää siltä, että laajeneminen oli hitaampaa. Uskotaanko edelleen, että kyse on systemaattisesta mittausvirheestä?
Ei oikein tiedetä mitä ajatella. Monia mahdollisia virheitä on tutkittu, eikä mitään ole löytynyt. Toisaalta myöskään vakuuttavaa teoreettista selitystä, joka sopisi kaikkiin havaintoihin, ei ole löytynyt.
ei varsinaisesti liity aiheeseen, nöyrät pahoittelut;
voivatko eräissä teorioissa mainitut lisäulottuvuudet olla aikaulottuvuuksia, tilaulottuvuuksien sijaan? Esim 10-ulottuvuutta muodostuisi 3 tila- & 7 aikaulottuvuudesta? Matemaattisesti tällä ei liene eroa; mutta käytännön erona se, ettei lisää tilaulottuvuuksia tarvitse ”etsiä”
Entä voiko olla muun tyyppisiä ulottuvuuksia kuin aika- tai tilaulottuvuudet?
kiitos
Teorioita, joissa on useampi kuin yksi aikaulottuvuus on tutkittu. Käsittääkseni tosin säieteorian ulottuvuuksien luku 10 on oikeasti 1+9, eli mukana on oletus siitä, että on tasan yksi aikaulottuvuus.
On iso matemaattinen ero siinä onko kyseessä aika- vai paikkaulottuvuus (tai ainakin sillä on isot matemaattiset seuraukset). Erosta suppeassa suhteellisuusteoriassa: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/yhden-merkin-varassa/
Aika- ja paikkasuuntien lisäksi on olemassa valonkaltaisia suuntia, mutta valonkaltaisia ulottuvuuksia ei kaiketi ole olemassa. (Valonkaltainen suunta tarkoittaa karkeasti sitä, että liikutaan yhtä paljon aika- ja paikkasuunnassa yhtä aikaa. Valonkaltaiset suunnat voi siis ymmärtää yhdistelmänä paikka- ja aikasuuntia.)
Kun ei liity merkinnän aiheeseen, niin ei tästä sen enempää.
Jos oletetaan, että kiihtyvä laajeneminen johtuu kosmisen rakenneverkon tiivistymisestä, niin saisiko eritavalla mitattujen laajenemisnopeuksien ero jonkin luonnollisen selityksen, vai olisiko asia edelleen mysteeri?
Pitää olla kädessä tarkka lasku, ennen kuin voi verrata sen ennusteita havaintoihin.
Utamin kysymyksiä: Muuttuuko asia lisäämällä ulottuvuuksia olettamalla aika yhdeksi niistä? Miten ns. suunnat poikkeavat ulottuvuuksista? Miten paljon on yhtä paljon aika- ja paikkasuunnassa? Liikutaanko aika- ja paikkasuunnassa yhtä aikaa, siis mitä yhtä aikaa? Einsteinin aika-avarusjatkumo lienee koordinaatisto, missä hiljaista on kuin huopatossutehtaassa.
Kun kysymykset eivät liity merkinnän aiheeseen, niin ei niistä sen enempää.
Voiko universumin muoto olla epähomogeeninen, jolloin ΛCDM malli antaisi eri vastauksen Hubblen vakiolle mikroaaltotaustasta ja supernovista mitattuna. Eli jos mikroaaltotaustasta mitattu avaruuden muoto on lievästi postiviinen, voi se olla hieman erilainen supernova mittausten alueessa.
Avaruuden epähomogeenisuuden vaikutusta on tutkittu, mutta siitä ei ole löytynyt tyydyttävää selitystä.