Arkisto


Käänteitä taivaankannen selityksessä

30.5.2016 klo 21.26, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Puhuin toukokuussa inflaation ja Higgsin kentän mahdollisesta yhteydestä (esityksen kalvot ovat täällä), joten kirjoitanpa siitä jotakin tänne.
Inflaatio on yksi kosmologian tärkeimmistä tutkimuskohteista. Inflaatioidean mukaan maailmankaikkeuden laajeneminen kiihtyi ensimmäisen sekunnin murto-osan aikana ja maailmankaikkeus venyi miljardeja miljardeja miljardeja kertoja isommaksi. Inflaation aikaiset kvanttivärähtelyt muodostivat siemenet, joista maailmankaikkeuden kaikki rakenne on syntynyt. Niiden alkuperäinen muoto näkyy selkeimmin kosmisessa mikroaaltotaustassa.

Inflaatiosta arvellaan olevan vastuussa jokin koko avaruuden täyttävä kenttä. On esitetty satoja erilaisia ideoita siitä, millainen tämä kenttä tismalleen on. Voi olla, että kyseessä on jokin toistaiseksi tuntematon kenttä, mutta kokeellisesti työhön sopivia ehdokkaita tunnetaan tismalleen yksi: Higgsin kenttä, johon liittyvän Higgsin hiukkasen CERNin LHC-kiihdytin löysi vuonna 2012. Higgsin kenttä täyttää koko avaruuden tasaisesti, ja se antaa tunnetuille alkeishiukkasille (paitsi ehkä neutriinoille) massat.

Ajatuksen siitä, että Higgs olisi vastuussa inflaatiosta, esittivät Lausannessa Sveitsissä työskentelevät Fedor Bezrukov ja Mikhail Shaposhnikov vuonna 2007. Ajatus herätti paljon mielenkiintoa, ja sitä kohtaan esitettiin pian kritiikkiä. Yksi asia, josta on erityisesti kiistelty on se, miten inflaation, ja sen myötä kosmisen mikroaaltotaustan, yksityiskohdat riippuvat Higgsin massasta. Tuolloin LHC ei ollut vielä käynnistynyt, eikä Higgsin hiukkasen massaa tunnettu tarkkaan, oli vain laaja alue, missä sen tiedettiin olevan.

Bezrukovin ja Shaposhnikovin alkuperäisessä ehdotuksessa inflaatio tapahtuu jokseenkin samalla tavalla riippumatta siitä, mikä Higgsin massa tarkalleen on. Arvostelijat kuitenkin huomauttivat heti vuonna 2008, että kun otetaan huomioon muiden hiukkasten kvanttimekaaninen vaikutus Higgsin kenttään, sen käytös muuttuu siten, että inflaation yksityiskohdat riippuvat herkästi Higgsin massasta. Katsomalla taivaalta tulevia mikroaaltoja ja sitä, miten galaksit ovat jakautuneet miljoonien ja miljardien valovuosien mittakaavassa voidaan ennustaa, mikä Higgsin massan pitäisi olla. Arvostelijoiden mukaan muutos on vieläpä sellainen, että taivaankannen näkymät selittääkseen Higgsin pitäisi olla raskaampi kuin mitä kiihdytinhavainnot sallivat.

Higgs-inflaation kehittäjät ja muut tutkijat vastasivat tähän tekemällä entistä tarkempia laskuja siitä, miten kvanttiefektit vaikuttavat Higgsiin. Heidän tuloksensa vahvistivat, että inflaation kulku tosiaan riippuu Higgsin massasta, mutta osoittivat, että Higgsin ei tarvitse olla niin raskas kuin mitä oli väitetty: taivaan kuviot ovat sopusoinnussa kiihdytinten hiukkastörmäysten kanssa. Kun Higgsin massa saatiin vuonna 2012 tarkkaan selville, se oli niissä rajoissa, mitä Higgs-inflaatiomalli ennustaa.

Seuraava koettelemus oli se, että BICEP2-tutkimusryhmä väitti havainneensa inflaatiossa syntyneitä gravitaatioaaltoja. Ne olivat paljon voimakkaampia kuin ne, mitä Higgs-inflaatiossa oli ennustettu syntyvän. Bezrukov ja Shaposhnikov vastasivat osoittamalla, että on olemassa tapa saada Higgs-inflaatiosta voimakkaampia gravitaatioaaltoja, säätämällä muiden hiukkasten kvanttivaikutuksen yksityiskohtia tismalleen oikealla tavalla. Kun osoittautui, että BICEP2 oli nähnyt Linnunradan pölyä eikä muinaisten aikojen gravitaatioaaltoja, niin vanhakin versio Higgs-inflaatiosta kelpasi taas. Itse asiassa Higgs-inflaation ennusteet näyttivät sopivan Planck-satelliitin tekemiin tarkkoihin mittauksiin aivan erinomaisesti.

Kvanttimekaanisiin vaikutuksiin Higgsin kenttään on kuitenkin pitänyt vielä palata, ja ne ovat osoittautuneet odottamattoman kiperiksi. Higgsin käytös LHC:n törmäysenergioilla tunnetaan tarkkaan, mutta Higgs-inflaatiossa on kyse ainakin sata miljardia kertaa isommista energioista. Kun mennään korkeampiin energioihin, Higgsin käytös muuttuu, eikä se ole enää niin sävyisä kuin LHC:ssä.

Hiukkasfysiikan Standardimallin kertoo kauniisti, miten tunnettujen kenttien ja hiukkasten vuorovaikutukset riippuvat energiasta. Niinpä LHC:n mittausten pohjalta pitäisi olla mahdollista laskea, miten Higgs toimii inflaation aikana (olettaen, että välissä ei ole mitään toistaiseksi tuntematonta Standardimallin tuonpuoleista fysiikkaa, joka vaikuttaisi Higgsiin liikaa). Ongelmana on se, että inflaatiota tutkittaessa pitää ottaa huomioon hiukkasfysiikan lisäksi myös gravitaatio. Vuosikymmenten yrityksistä huolimatta ei ole saatu selville, miten gravitaatio ja kvanttiteoria oikein yhdistetään kvanttigravitaatioksi.

Inflaatio on toistaiseksi ainoa alue, missä kvanttigravitaatiota on pystytty kokeellisesti tutkimaan, eikä useimmissa inflaatiomalleissa tarvitse tietää tarkkaan, mistä kvanttigravitaatiossa on kysymys, pari yksityiskohtaa riittää ennustusten tekemiseen. Higgs-inflaation tapauksessa tarvitaan kuitenkin tavallista tarkempi ymmärrys siitä, miten gravitaatiota pitää kvanttimekaanisesti käsitellä. Asia on vielä tutkimuksen ja kiistelyn aiheena, eikä ole selvää, mitä Higgs-inflaation ennusteille käy.

Maaliskuussa Vera-Maria Enckell ja Kari Enqvist Helsingin yliopistosta sekä Sami Nurmi Jyväskylän yliopistosta julkistivat tutkimuksensa, jossa he lähestyvät asiaa agnostikon näkökulmasta. He jättävät avoimeksi sen, mikä kvanttikorjausten vaikutus tarkalleen on, ja käyvät läpi kokonaisen kirjojan vaihtoehtoja selvittääkseen sen, millaisia ennusteita Higgs-inflaatiosta ylipäänsä voi saada.

Toinen Higgs-inflaation mielenkiintoinen piirre on se, että sen ennusteet riippuvat gravitaatioteorian yksityiskohdista enemmän kuin useimpien inflaatiomallien, vaikka kvanttimekaniikkaa ei otettaisi huomioon. Jos inflaatiosta on vastuussa on Higgs, niin se voi tarjota ikkunan hiukkasfysiikan lisäksi myös gravitaatioon, mikä on eräs tämänhetkinen tutkimusaiheeni, jatko-opiskelija Pyry Wahlmanin kanssa.

Higgs-inflaation käänteet ovat esimerkki siitä, miten tutkimus etenee. Alkuperäistä ideaa kritisoidaa joskus rankastikin; osa huomioista on oikein, osa väärin, jotkut ristiriitaisia ja paljon on hämärää. Sen lisäksi, että teoreetikot ovat usein väärässä, niin BICEP2:n tapaus osoitti, että väitetyt havainnotkin ovat joskus pielessä, joten ei kannata heittää roskakoriin turhan helposti. Kun asioiden oikea laita lopulta saadaan selville, niin historian voi kirjoittaa yksinkertaiseen muotoon ja osa menneistä huolista voidaan pyyhkiä pois, mutta tutkimusta tehdessä asiat eivät ole ollenkaan niin selkeitä.

17 kommenttia “Käänteitä taivaankannen selityksessä”

  1. Eusa sanoo:

    Kiitos katsauksesta!

    Harmi, etten voi kommentoida ilman, että samalla tulen esitelleeksi omaa tutkimusta ja teoriankehittelyä.

    Yhden kysymyksen esitän: Onko Higgsin kertautumisesta sidosvuorovaikutuksissa koostettujen hiukkasten massaksi tiedossasi vakavasti otettavia hypoteeseja?

    1. Syksy Räsänen sanoo:

      En ymmärrä kysymystä.

  2. Toisen alan fyysikko sanoo:

    Kiitokset blogista! Olenko ymmärtänyt oikein, että Higgsin potentiaaliin pitää tulla oikeanlaisia kvanttikorjauksia korkeammilla kentän arvoilla, jotta se olisi voinut toimia inflatonikenttänä? Eli toisin sanoen Higgsin kentän siirtyminen yksinkertaisesti meksikolaishatun päältä minimiin (nollaodotusarvosta energiaminimiin) ei sellaisenaan voi toimia ”slow-roll”-inflaationa?

  3. Syksy Räsänen sanoo:

    Toisen alan fyysikko:

    Higgs-inflaatio toimisi loistavasti ilman kvanttikorjauksia.

    (Mutta jos haluaisi saada niin voimakkaita gravitaatioaaltoja kuin mitä BICEP2 väitti havainneensa, niin kvanttikorjausten pitää olla merkittäviä.)

    1. Syksy Räsänen sanoo:

      Ehkä pitää vähän tarkentaa vastausta.

      Tavallinen Higgsin meksikolaishattupotentiaali ei kelpaa. Sillä saa aikaan slow-roll -inflaation, mutta kentän itseisvuorovaikutuksen pitäisi olla paljon heikompi kuin mitä LHC:ssä on mitattu, jotta kvanttivärähtelyt olisivat yhtä pieniä kuin mitä kosmisessa mikroaaltotaustassa näkyy. Inflaatipotentiaalin pitää olla hyvin tasainen.

      (Standardimallissa potentiaali on isoilla kentän arvoilla lambda*phi^4, ja lambda=0.1. Inflaatiossa pitäisi olla lambda=10^(-11).)

      Tämän voi ratkaista siten, että kvanttikorjaukset pienentävät lambdan arvoa kentän kasvaessa, niin että inflaation energiaskaalalla se on tarvittavan pieni. Silloin kuitenkin syntyy paljon voimakkaampia gravitaatioaaltoja kuin mitä on havaittu.

      Standardi-Higgs-inflaatiossa asia sen sijaan ratkaistaan siten, että Higgsin ja gravitaation välistä vuorovaikutusta muutetaan, ja tämä efektiivisesti muuttaa Higgsin potentiaalia isoilla kentän arvoilla siten, että se on A*phi^4/(1+a*phi^2)^2, eli lähestyy vakiota. Tämä kelpaa hyvin inflaatiolle.

  4. Lentotaidoton sanoo:

    Räsänen: ”Toinen Higgs-inflaation mielenkiintoinen piirre on se, että sen ennusteet riippuvat gravitaatioteorian yksityiskohdista enemmän kuin useimpien inflaatiomallien, vaikka kvanttimekaniikkaa ei otettaisi huomioon. Jos inflaatiosta on vastuussa on Higgs, niin se voi tarjota ikkunan hiukkasfysiikan lisäksi myös gravitaatioon, mikä on eräs tämänhetkinen tutkimusaiheeni, jatko-opiskelija Pyry Wahlmaninkanssa.”

    Eli käsittääkseni tuo Fedor Bezrukovin ja Mikhail Shaposhnikovin teoria lähtee siitä, että gravitaatio voisi kohdistua Higgsin bosoniin toisella lailla kuin muihin hiukkasiin. Onko tämä se ”ikkuna”? Mitä tästä ikkunasta nyt näkyy (vaikka alustavasti) tutkimuksessanne. Aina kun edes vihjataan uutta tietä gravitaation ymmärtämiseen, niin sensorit herkistyvät.

    Toinen kysymys: jonkinlaiset inflatonikentät lienevät kuitenkin enemmistön ehdotus. Osaatko sanoa, kuinka moni (suhteellisesti) kannattaa toista tai toista?

  5. Syksy Räsänen sanoo:

    Lentotaidoton:

    Higgs joka tapauksessa käyttäytyy eri tavalla kuin muut Standardimallin kentät, koska se on sen ainoa skalaarikenttä.

    Skalaarikenttien on mahdollista vuorovaikuttaa gravitaation kanssa eri tavalla (en lähde tässä avaamaan miten – sanotaan vaikka ”suoremmin”) kuin muiden kenttien. Yleisestä suhteellisuusteoriasta on erilaisia muotoiluja, jotka ovat fysikaalisesti identtisiä silloin, kun tällaista ”suoraa” vuorovaikutusta ei ole mukana. Kun ”suora” kytkentä gravitaation ja skalaarikenttien välillä otetaan huomioon, ne antavat kuitenkin erilaiset ennusteet.

    Inflatoni on vain nimi kentälle, joka ajaa inflaatiota, ei sen enempää. Higgs-inflaatiossa siis Higgs on inflatoni.

  6. Lentotaidoton sanoo:

    Räsänen: Inflatoni on vain nimi kentälle, joka ajaa inflaatiota, ei sen enempää. Higgs-inflaatiossa siis Higgs on inflatoni.

    Tämä tietysti täysin selvää, kysyin vähän epäselvästi. Kysytään uudestaan: kuinka paljon on suhteessa sellaisia, jotka pitävät nimenomaan Higgsin kenttää inflatonina? Kysyn sentähden, että he ilmeisesti kuitenkin ovat vähemmistönä. Vai kuinka?

    Vielä: jos mennään yli standarditeorian supersymmetriaan niin Higgsejä on viisi (+,- ja kolme neutr). Muuttaisiko tämä asetelmaa? Ja miten?

    Kysynpä vieläkin: on esitetty, että inflaation aikana Higgsin kenttä on voinut olla muutaman(kin) kerran on/off. Silloinhan Higgs ilmeisesti ei ole voinut esiintyä laajenemisen inflatonina?

  7. Syksy Räsänen sanoo:

    Lentotaidoton:

    Higgs-inflaatiota pidetään yhtenä mallina muiden joukossa. Mitään inflaatiomallia ei enemmistö kosmologeista pidä parempana kuin muita, maut vaihtelevat.

    Yksinkertaisimmassa supersymmetrisessä Standardimallin laajennuksessa on viisi Higgsin kenttää. Jos haluaisi toteuttaa Higgs-inflaation, niin se pitää laajentaa kattamaan gravitaation, supergravitaatioteoriaksi. Tämän minimaalisen mallisen supergravitaatiolaajennuksessa Higgs-inflaatio ei kuitenkaan toimi. Higgsin kenttien ja gravitaation vuorovaikutus on siinä erilainen.

    Viimeistä kysymystä en ymmärrä. Vaikka Higgs ei olisi inflatoni, niin sen arvo inflaation aikana ei ole tasaisen nolla, koska sillä on kvanttifluktuaatioita.

  8. Lentotaidoton sanoo:

    Räsänen: ”Viimeistä kysymystä en ymmärrä. Vaikka Higgs ei olisi inflatoni, niin sen arvo inflaation aikana ei ole tasaisen nolla, koska sillä on kvanttifluktuaatioita”.

    Olen ymmärtänyt näin: inflation aikaanhan oli superkylmää ja tuolloin Higgsin kenttä oli “päällä” (tosin heikko ja siksi melkein irrelevantti) ja hiukkasilla massa. Inflaation loppu (HBB) oli superkuuma ja kenttä ”pois päältä” ja hiukkaset massattomia. Ja sitten taas sähköheikossa symmetriarikossa jälleen ”päällä” (kylmää Higgsin näkökulmasta) ja hiukkaset saivat massan. Ja tilanne on pysynyt ”päällä” siitä lähtien. Ja universumin jäähtyessä on systeemien vaikeampi jättää tätä alimman energian tilaa. ”Päällä” siis sentähden koska päälläolo vaatii vähemmän energiaa kuin ”ei-päällä”. Higgsin kentän saattaminen taas nollaenergiaan (tai lähelle) vaatisi järjettömät energiat, eli palautuminen eri energiaminimeihin.

  9. Syksy Räsänen sanoo:

    Lentotaidoton:

    Melkein noin. (Oikeastaan tosin inflaation aikana ei ollut mitään lämpötilaa.) Inflaation aikana Higgsin kentän tyypillinen arvo oli kuitenkin paljon isompi kuin nykyään.

    Viimeisessa virkkeessä taitaa mennä sekaisin nollaenergia ja kentän nolla-arvo.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Isoja aukkoja, nopeita räjähdyksiä ja pieniä vuoria

23.5.2016 klo 17.30, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Viime viikolla tuttuni Stefano Foffa Geneven yliopistosta käväisi Helsingissä puhumassa gravitaatioaalloista. Stefano kuuluu LIGO-tutkimusryhmään, joka helmikuussa ilmoitti tehneensä syyskuussa historiallisen löydön ja havainneensa kahden mustan aukon törmäyksestä noin miljardi vuotta sitten syntyneet gravitaatioaallot.

Jo helmikuussa oli huhuja, että LIGOlla on pussissa enemmänkin havaintoja, joita ei oltu ehditty käydä kokonaan läpi. Stefano vahvisti tämän sanomalla, että oli toivonut voivansa kertoa meille uusista tuloksista, mutta valitettavasti niiden julkistaminen on viivästynyt kesäkuulle.

LIGO-havaintolaitteiden nykyinen versio advanced LIGO näki gravitaatioaaltoja jo vähän ennen kuin se varsinaisesti edes oli tiedekäytössä. Tämä voi viitata siihen, että musta aukko –pareja onkin luultua enemmän ja havaintoja saadaan paljon, mutta nyt niitä odotellaan tulevan noin kerran kuukaudessa. LIGOn havaitsemien mustien aukkojen massa oli myös yllättävän iso, noin 30 Auringon massaa, ja on kiinnostavaa katsoa, onko tällaisia keskikokoisia mustia aukkoja olemassa paljon, vai oliko tämä poikkeus.

LIGO on avannut gravitaatioaaltotähtitieteen aikakauden, ja suuri havaintomäärä mahdollistaa asioiden tutkimisen uudella tavalla. Esimerkiksi syyskuun havainnon perusteella ei vielä pysty kovin hyvin rajoittamaan mahdollisia poikkeamia yleisestä suhteellisuusteoriasta. Ongelmana on se, että jos muokkaa suhteellisuusteoriaa jollain tavalla, niin signaalia voi säätää toiseen suuntaan muuttamalla sitä, millainen mustien aukkojen järjestelmä on – mikä on niiden pyörimissuuntien suhde, missä kulmassa ne lähestyvät toisiaan, missä asennossa niiden pyörimistaso on meihin nähden, ja niin edelleen. Kun havaitaan suuri määrä erilaisia järjestelmiä, tämä epävarmuus saadaan poistettua, koska teorian muutokset vaikuttavat kaikkiin niistä samalla tavalla, mutta yksilölliset piirteet eri tavalla.

Mustien aukkojen ja neutronitähtien törmäysten lisäksi LIGOlla on mahdollisuus nähdä gravitaatioaaltoja nopeasti pyörivien neutronitähtien vuorista sekä kenties supernovaräjähdyksistä. Jälkimmäistä rajoittaa se, että supernovaräjähdysten yksityiskohtia ei vielä ymmärretä, vaikka niillä on keskeinen asema maailmankaikkeuden kiihtyvän laajenemisen luotaamisessa. Mustat aukot ovat gravitaation kannalta äärimmäisiä ilmiöitä, alueita joissa tila kaartuu itseensä, niin että sieltä ei pääse pois. Niiden käsitteleminen on kuitenkin sikäli suoraviivaista, että voi vain laittaa yleisen suhteellisuusteorian lait ohjelmaan ja pistää koneen raksuttamaan. (Tämä ei ole ihan niin helppoa kuin miltä se kuulostaa.) Supernovissa pitää seurata gravitaation lisäksi myös ydinräjähdysten syttymistä ja räjähdysrintaman etenemistä sekä valon ja neutriinoiden kulkua tähden sisällä. Vaikka kaikki tähän liittyvä fysiikka tunnetaan periaatteessa, on näiden monimutkaisten tapahtumien tarkka laskeminen hankalaa.

Gravitaatioaallot ovat heikkoja, joten on suuri apu, jos tietää tarkkaan, mitä etsii. LIGOlla on mustien aukkojen törmäyksistä satojen tapahtumien kirjasto, johon havaintoja verrataan. Odotettua signaalia käytetään suodattimena, jolla kohinasta seulotaan signaalia. Ideana on se, että koska kohina ei ole korreloitunut signaalin kanssa, niin mitä pidempi havaintojakso on, sitä selvemmin signaali näkyy kohinan seasta. Mustien aukkojen tapauksessa seuranta-aikaa rajoittaa se, että niiden lähettämien gravitaatioaaltojen taajuus riippuu siitä, miten lähellä ne ovat toisiaan: mitä lähempänä aukot ovat, sitä nopeammin ne kieppuvat ja sitä isompi on aaltojen taajuus. Kun aukot ovat liian kaukana toisistaan, niiden lähettämien aaltojen taajuus on liian pieni, eli aallonpituus on liian iso, että LIGO näkisi niitä. Supernovien tilanne on vielä hankalampi, koska niiden gravitaatioaaltosignaalista puuttuu aukkojen lähestymistä vastaava osuus, jonka avulla signaali löytyy kohinasta, siinä on vain loppukiihdytys.

Neutronitähtien vuorien kohdalla tilanne on päinvastainen. Neutronitähdet ovat eläkkeelle siirtyneitä tähtiä, jotka ovat kutistuneet hyvin pieniksi, suunnilleen kymmenen kilometrin kokoisiksi. Tämän takia ne pyörivät hyvin nopeasti – kun pyörivä kappale pienenee, se pyörii nopeammin, kuten taitoluistelussa näkee. Neutronitähdet ovat hyvin tasaisia, mutta niiden pinnalla saattaa olla millimetrin kokoisia poikkeamia pallon muodosta. Nopean pyörimisliikkeen takia näiden pienten epätasaisuuksien lähettämät gravitaatioaallot saattavat olla havaittavissa LIGOlla. Niiden tilanne on päinvastainen kuin supernovilla: signaalissa ei ole mitään erityistä huippua, se on kokonaan kohinan alla, mutta toisaalta juuri siksi, että signaali ei muutu, sitä voidaan seurata vuosien ajan, niin että mitä pidempään havaintoja tehdään, sitä paremmin neutronitähtiä pitäisi näkyä.

Havaintoja on tulossa paljon lisää. LIGOn havaintoasemien verkkoon palaa kahden Yhdysvalloissa olevan aseman lisäksi tänä syksynä kolmas, Italiassa oleva Virgo. Rakenteilla on myös ainakin kaksi uutta havaintoasemaa. Viikon sisällä siitä, kun LIGO helmikuussa ilmoitti onnistumisestaan Intian hallitus päätti, että Intiaan rakennetaan LIGOn kanssa yhteistyössä uusi havaintoasema LIGO-India. Japaniin rakennetaan par’aikaa havaintolaitetta nimeltä KAGRA, joka aloittanee toimintansa vuoden 2020 tienoilla.

Havaintoasemien määrä ei auta vain kohinan vaimentamisessa, niiden avulla saadaan myös paremmin selville gravitaatioaaltojen tulosuunta. LIGOn kahden havaintoaseman avulla pystyy vain määrittämään taivaalla kaaren, jolla aaltojen lähde sijaitsee. Kolmella detektorilla lähteen paikan saa rajoitettua kahden kaaren risteyksiin, ja neljällä yhteen pisteeseen, tai käytännössä pieneen läiskään. Tästä on apua, jos halutaan selvittää, näkyykö taivaalla gravitaatioaaltolähteen lähettämää sähkömagneettista säteilyä. Supernovien pitäisi näkyä taivaalla, kun taas kahden mustan aukon paikalla lähettämän säteilyn odottaisi olevan liian heikkoa, että sen näkisi satojen miljoonien valovuosien päästä. On tosin väitetty, että kiertoradalla oleva Fermi-teleskooppi olisi nähnyt gammasäteitä (eli korkeaenergistä sähkömagneettista säteilyä), jotka olisivat peräisin LIGOn näkemästä kahden mustan aukon törmäyksestä. Tämä olisi hyvin yllättävää, ja tulevilla havainnoilla saadaan varmistettua asian laita.

10 kommenttia “Isoja aukkoja, nopeita räjähdyksiä ja pieniä vuoria”

  1. Kimmo Metso sanoo:

    Pohditutti tuo ”suodatin”. Tarkoittaako ”suodatin” tässä kohinan ja vertailusignaalin summaa, joka nostaa (korreloimalla) tunnistettavan signaalin kohinasta esiin?
    Onko neutronitähtien toistuvan signaalin mahdollinen ”työväline” autokorrelaatio tai miten on tarkoitus hakea tunnistamatonta toistuvaa signaalia kohinan sisältä?

  2. Syksy Räsänen sanoo:

    Kimmo Metso:

    Suodatin on teoreettisesti laskettu signaali. Se kerrotaan datalla ja integroidaan ajan yli. Jos data=kohina+signaali, niin integraalissa on termit kohina*signaali ja signaali*signaali. Koska kohina ja signaali eivät ole korreloituneet, ensimmäisen termin amplitudi laskee suhteessa toiseen sitä enemmän, mitä pidemmälle integroidaan (eli mitä pidemmältä ajalta on dataa, jossa signaali näkyy).

    Myös neutronitähtien tapauksessa halutaan verrata teoreettista signaalia dataan.

    Sanottakoon, että selkeitä signaaleja voi kyllä nähdä datasta ilman, että tarkalleen tietää, mitä ne ovat. Esimerkiksi syyskuun signaali näkyy datassa, vaikka ei käyttäisi teoreettisesti laskettua aaltoa suodattimena. (Jotain pitää tietysti silti tietää siitä, mitä etsii.)

    En tiedä, kuinka tarkkaan neutronitähtien odotettu signaali pitää tuntea, onko sitä mahdollista löytää vain jaksollisuuden ja taajuuden perusteella.

  3. Lentotaidoton sanoo:

    https://www.ligo.caltech.edu/system/media_files/binaries/306/original/ligo-press-kit.pdf

    Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al.* (LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

    Sivu: 061102-7: The waveform model [77,78] assumes that the spins of the merging objects are aligned with the orbital angular momentum, but the resulting templates can, nonetheless, effectively recover systems with misaligned spins in the parameter region of GW150914 [44]. Approximately 250 000 template waveforms are used to cover this parameter space

    Räsänen: “Gravitaatioaallot ovat heikkoja, joten on suuri apu, jos tietää tarkkaan, mitä etsii. LIGOlla on mustien aukkojen törmäyksistä satojen tapahtumien kirjasto, johon havaintoja verrataan”.

    Puhutaanko tässä nyt samasta asiasta?

  4. Syksy Räsänen sanoo:

    Lentotaidoton:

    Kyllä.

    Käyttämäni lukumäärä on paljon alakanttiin, koska ajattelin sitä, kuinka monia erilaisia numeerisia laskuja mustien aukkojen törmäyksistä on tehty. Yksi lasku vastaa useampaa kuin yhtä mahdollista tapahtumaa, koska tapahtumat, joissa kappaleiden suhteelliset koot ja etäisyydet ovat samat, tuottavat samanlaisen signaalin, mutta eri taajuudella, ja eri etäisyydellä olevien muuten samanlaisten tapahtumien signaali on erilainen, mutta niissä voi käyttää samaa aallontuottolaskua.

    En itse asiassa tarkkaan tiedä, montako täyttä numeerista törmäyslaskua LIGO-ryhmä on tehnyt – niitä voi olla tuhansia, mutta tuskin satoja tuhansia.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *