Arkisto


Näkymä keski-ikään

20.12.2021 klo 23.19, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Perjantaina koittaa pitkään odotettu päivä: jouluaattona 24.12. kello 14.20 Suomen aikaa James Webb Space Telescope (JWST) nousee avaruuteen. JWST:stä kiinnostuneille voi suositella Natalie Wolchoverin monipuolista artikkelia Quantassa.

Teleskooppia on suunniteltu yli 30 vuotta, se on 14 vuotta myöhässä, ja projekti on ylittänyt alkuperäisen budjettinsa 20-kertaisesti. JWST:n hinta on nyt noin kymmenen miljardia, samaa suuruusluokkaa kuin maailman suurimman tieteellisen koelaitteen, CERNin LHC-kiihdyttimen.

Viivytykset ja kustannusten paisuminen ei ole isojen kokeiden kohdalla poikkeuksellista, etenkin kun kyse on avaruuteen menevästä teknologiasta. Vuonna 1990 aloittanut JWST:n edeltäjä Hubble Space Telescope oli laukaistaessa ylittänyt budjettinsa kuusinkertaisesti, ja sen pääpeilissä oli iso hiomavirhe, jonka korjaaminen maksoi paljon lisää.

JWST on hienostuneempi ja vaikeampi laite, jonka hintaa kasvattaa sekin, että teleskooppi on liian iso mahtuakseen sellaisenaan rakettiin. Teleskooppi avautuu vasta avaruudessa kahden viikon aikana matkalla havaintoasemaansa, joka on puolentoista miljoonan kilometrin päässä Maasta suoraan poispäin Auringosta, tähtitieteen ja kosmologian satelliittien keitaassa.

Yksi syy JWST:n kokoon on se, että teleskooppi ei havainnoi näkyvää valoa, vaan havainnoi pääasiassa infrapunavaloa. Infrapunavalon aallonpituus on isompi kuin näkyvän valon (minkä takia silmämme eivät sitä havaitse). Koska kuvan tarkkuus riippuu valon aallonpituuden ja teleskoopin koon suhteesta, infrapunateleskoopin pitää olla isompi kuin näkyvän valon teleskoopin.

Infrapunavalo läpäisee osan tomusta, jonka taakse ei näkyvällä valolla pysty katsomaan. Lisäksi se auttaa JWST:n tärkeässä tutkimuskohteessa, eksoplaneettojen ilmakehän koostumuksen mittaamisessa ja elämän merkkien etsimisessä. Tämä tehdään katsomalla miltä planeettaa kierrättävän tähden valo näyttää silloin, kun se kulkee planeetan ilmakehän läpi ja silloin kun se menee planeetasta ohi. Ilmakehän molekyylit imevät tehokkaasti eripituisia infrapuna-aaltoja, eli poistavat ne havaitsemastamme tähden valosta, jättäen siihen sormenjälkensä. Samasta syystä infrapunahavaintoja on vaikea tehdä Maan pinnalta.

Kosmologian kannalta infrapuna-alue on tärkeä keski-ikäisen maailmankaikkeuden ymmärtämiselle. Maailmankaikkeus on noin 14 miljardia vuotta vanha. Valon äärellisen nopeuden takia mitä kauemmas katsoo paikassa, sitä varhaisempiin aikoihin näkee. Meillä on hyviä havaintoja muutamalta viime miljardilta vuodelta – niitä on helppo havaita, koska kohteet ovat lähellä ja niitä on paljon. Meillä on myös hyviä havaintoja varhaisesta maailmankaikkeudesta muutaman ensimmäisen minuutin kohdalta kevyiden alkuaineiden kautta ja 380 000 vuoden kohdalta kosmisen mikroaaltotaustan kautta. Mutta siitä välistä, kymmenien tai satojen miljoonien vuosien ajalta, havaintomme ovat puutteelliset.

Yksi ongelma on se, että mitä varhaisempiin aikoihin katsoo, sitä himmeämpiä kohteet ovat, eli sitä kauemmin joutuu tuijottamaan samaa kohtaa taivaasta niiden kiilun näkemiseksi. Toinen ongelma on se, että keski-iässä ja sitä aiemmin galakseja ja muita aineklimppejä on vähemmän nähtäväksi, kun niitä ei ole vielä ehtinyt paljon muodostua.

JWST näkee galakseja ja tähtiä ajalta, jolloin maailmankaikkeus oli noin 200 miljoonaa vuotta vanha, kenties galaksien ja tähtien ensimmäisen sukupolven. Maailmankaikkeuden laajenemisen takia valon aallonpituus on noilta ajoilta venynyt noin 20-kertaiseksi, joten galakseista ja tähdistä näkyvän aallonpituuden alueella matkaan lähtenyt valo on nykyään infrapunavaloa. Samaan tapaan valo, joka irtosi aineesta maailmankaikkeuden ollessa 380 000 vuotta vanha, on venynyt tekijällä 1090, joten se on nykyään mikroaaltoja. JWST:n infrapunahavainnot paikkaavat aukkoa varhaisen ajan mikroaaltojen ja myöhäisen maailmankaikkeuden näkyvän valon välillä.

On epäselvää, miten galaksit ovat kasvaneet niin aikaisin niin isoiksi kuin mitä on havaittu, ja miksi niiden keskustojen mustat aukot ovat niin raskaita. Varhaisten galaksien näkeminen suoraan auttaa selvittämään näiden mustien aukkojen syntyä: miten ne ovat ehtineet kerätä romahtaneista tähdistä niin paljon massaa, vai tarvitaanko kenties niiden siemeniksi muinaisia mustia aukkoja, jotka ovat muodostuneet kauan ennen kuin tähtiä oli olemassa.

Tähtien saralla yksi eksoottinen ehdotus on se, että ensimmäisten tähtien pääasiallinen energianlähde ei ollut atomiydinten fuusio, vaan niiden keskustaan kertyneen pimeän aineen annihilaatio, ja JWST auttaa hylkäämään tai vahvistamaan tämän idean.

Näiden muutaman mainitsemani tutkimuskohteen lisäksi JWST:llä toteutetaan monia havaintoprojekteja ja luodataan useita tähtitieteen ja kosmologian kysymyksiä. JWST, kuten Hubble-teleskooppi, on yleislaite ja kiinnostavinta on se, mitä ei osata odottaa.

Jos kaikki sujuu suunnitelmien mukaan, JWST aloittaa datan keräämisen kesällä. Teleskoopin on määrä toimia vähintään 5 ja toivottavasti ainakin 10 vuotta, ja usein satelliitit kestävät suunniteltua pidempään. Mutta ensin saa jännittää sitä, saadaanko laite laukaistua onnistuneesti taivaalle ja avautuuko se ongelmitta.

Päivitys (21/12/21): Korjattu, että JWST havaitsee myös näkyvää valoa.

15 kommenttia “Näkymä keski-ikään”

  1. Anne Liljeström sanoo:

    Kyllä JWST itse asiassa havaitsee myös näkyvää valoa, ei vain niin laajalta kaistalta kuin Hubble. Lyhyimmät aallonpituudet jäävät näkemättä ja JWST havaitsee aallonpituudet 600 nanometristä 28,3 mikrometriin.

    1. Syksy Räsänen sanoo:

      Joo. Ja Hubble näkee myös infrapunaa, vaikka sen painopiste onkin näkyvässä valossa.

  2. Kari Ojala sanoo:

    Yksi asia ihmetyttää koskien JWST-teleskoopin sijoituspaikkaa. Aurinkotuulihan aiheuttaa Maan magneettikenttään ”hännän” joka ulottuu kauas Maan kiertoradan ulkopuolelle täsmälleen siihen suuntaan johon teleskooppi sijoitetaan. Jos teleskooppi osuu tähän heiluvaan magneettikentän häntään, siitä voisi seurata melkoisia sähkömagneettisia häiriöitä. Onko siis niin ettei magneettikentän häntä ulotu noin kauas missään olosuhteissa?

    1. Syksy Räsänen sanoo:

      Paikka on valittu siksi, että kyseessä on Lagrange-piste L2, joten rata on stabiili rataliikkeen suuntaisille häiriöille, ja Maa, Kuu ja Aurinko ovat kaikki samassa suunnassa, eli ne on helppo pitää poissa näkökentästä. Myös WMAP- ja Planck-satelliitit olivat L2:ssa (tai sen lähettyvillä), ja Euclidkin menee sinne.

      Hyvä tuo aurinkotuulikysymys, siihen en osaa vastata – en tunne Maan magneettikentän muotoa ja vaikutusta varattujen hiukkasten liikkeisiin L2:n tienoilla, joka on aika kaukana Maasta.

      1. Kari Ojala sanoo:

        Kysymys tuli mieleen yhdestä Juno-dokumentista. Jupiterillahan on erittäin voimakas magneettikenttä ja dokumentin mukaan kentän ”häntä” ulottuu jopa Saturnuksen radalle asti yli 650 miljoonan kilometrin päähän.
        Mitä Lagrangen pisteisiin tulee, L1 ja L3 eivät tietenkään käy koska ne ovat täsmälleen Auringon suunnassa (L1 Auringon edessä, L3 sen takana). L4 ja L5 voisivat olla parempia. Toki jos muut satelliitit ovat selvinneet L2:ssa, ongelmaa ei silloin ilmeisesti ole.

      2. Lentotaidoton sanoo:

        Olisko tossa vastausta:
        https://www.nasa.gov/feature/goddard/2017/how-hardy-is-webb-a-qa-about-the-toughness-of-nasa-s-webb-telescope
        Q: Webb’s orbit at Earth’s second Lagrange point (L2) is beyond the protective sheath of Earth’s magnetic field, meaning the telescope is more susceptible to the Sun’s radiation and to solar flares. How is Webb insulated from these threats?
        Paul: Earth’s magnetic field acts like a deflector shield for protons and electrons spewing all the time from the Sun. Protection for satellites within Earth’s magnetic field includes putting some metal—like aluminum panels—between electronics and the space environment, implementing good electrical grounding, and making electronic components resistant to radiation. Because Webb is outside Earth’s magnetic field, it will be bombarded by charged particles streaming from the Sun, and so it needs extra protection. These charged particles are hard on electronics, and they can accumulate on surfaces to build up static charge that can cause damaging discharges.
        Webb will also be vulnerable to the occasional massive “belch” from the Sun that happens with solar flares and coronal mass ejections, which are phenomena in which the Sun releases slugs of maybe a few years’ worth of protons and electrons in just hours. To enable Webb to weather such stormy solar weather as well as ordinary “nice days,” almost all of its electronics are shielded inside metal boxes and behind multiple layers of metal or metal-coated film.
        The electronics on the cold side of Webb’s sunshield get some benefit of being behind the shield’s five layers, which are coated in aluminum. The electronics inside the spacecraft bus, which faces the Sun, are hardened, shielded, and grounded. Webb used tried and true design practices and satellite building codes to ensure it will survive and function in the harshness of the L2 environment.

        1. Kari Ojala sanoo:

          Vielä lisäys tähän Maan magneettikentän häntäkeskusteluun. Katsoin erästä JWST-animaatiota siitä, miten JWST liikkuu lopullisessa sijoituspaikassaan. Sehän ei ole ”paikallaan”, vaan ikäänkuin kiertää ”pystysuunnassa” ympyrää sen pisteen ympäri, joka on täsmälleen Maa-Aurinko-linjan suunnassa. Näin JWST ei koskaan sijaitse täsmälleen sillä linjalla, jossa magneettisia häiriöitä voisi esiintyä.

  3. Kas sanoo:

    Kuka omistaa JWST:n tuottaman datan? Onko sen omistaja NASA, tutkimusryhmät tai onko data avointa? Ylipäätänsä onko teleskooppien keräämä dataa kerätty yhteen tietokantaan tai onko se ns jokaisen tutkijan kovalevyllä? Ilmeisesti kokeellisessa fysiikassa tutkimusdataa joskus piilotellaan mustasukkaisesti, eikä haluta luovuttaa edes vertaisarviointia varten.

    1. Syksy Räsänen sanoo:

      Käytännöt vaihtelevat, mutta tyypillisesti NASAn ja ESAn (joka on JWST:ssä mukana) kokeissa koeryhmän täytyy antaa data julkisesti saatavilla tietyn ajan kuluessa.

      Koeryhmä tekee ensin oman analyysinsä datasta, ja julkaisee sitten siitä erilaisia datatuotteita. Riippuu datan määrästä, julkaistaanko raakadataa ollenkaan (koska sitä voi olla niin paljon, että sitä ei kuitenkaan voi verkon yli siirtää), mutta sekin lienee periaatteessa saatavissa. Aniharva ryhmän ulkopuolinen tosin raakadataa tarvitsee.

  4. Seppo Nikkilä sanoo:

    Netissä liikkuu huhuja, että NASA suunnittelisi JWST:n ”robottitankkaamista” ennenkuin 10 vuoden kuluessaa, jotta toiminta voisi jatkua. Mitä tiedätte tästä?

    1. Syksy Räsänen sanoo:

      En tiedä siitä mitään.

  5. Martti V sanoo:

    Jänniä hetkiä. Tarkoitus on löytää jälkiä myös alkukantaisista mustista aukoista, jotka ovat yksi selitys pimeälle aineelle.

    1. Syksy Räsänen sanoo:

      JWST:hän on yleislaite, joka tutkii monia asioita, mutta mitä havaintojälkiä tässä tarkoitat?

  6. Erkki+Kolehmainen sanoo:

    JWST:n kymmenen miljardin hinta ei ole kova, koska Suomellakin oli yksinään vara allokoida sama määrä rahaa F-35-hävittäjiin. JWST oletettavasti antaa hyödyllistä dataa, mitä ei voi sanoa pimeän aineen hiukkasia metsäsätävistä ksenonpöntöistä, vaikka niihin kerättäissin kaiken maailman ksenon.

    1. Syksy Räsänen sanoo:

      JWST on yleislaite, joka varmasti tekee kiinnostavia mittauksia, pimeää ainetta suoraan etsivät kokeet ovat erikoistuneet yhden mahdollisen signaalin etsimiseen. (Vaikka ne voivat toki löytää jotain yllättävää – esimerkkinä se, miten protonin hajoamista löytämään rakennettu SuperKamiokande löysi sen, että neutriinoilla on massat.)

      Vertailussa on myös syytä ottaa huomioon, että pimeän aineen suoran havaitsemisen kokeet maksavat noin tuhannesosan tai alle JWST:n hinnasta.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Kehityskeskustelua

12.12.2021 klo 20.58, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Koska fysiikan tutkimuskysymykset ovat pitkälle erikoistuneita ja niiden setvimiseen käytetty matematiikan kieli on kovin erilainen hyvin inhimillisen ajattelun ja viestinnän välineiksi kehittyneet kielet (kuten suomi ja englanti), tutkimuksen ja sen populaarin esityksen välillä on kuilu. Tämän takia popularisoinnista ei ole juuri hyötyä tutkimuksen tekemiselle. Asian kääntöpuoli on se, että kun lähestyy fysiikkaa yleistajuisen selittämisen kannalta, tulee pohtineeksi sellaisia kysymyksiä, joita ei tutkiessa ajattele.

Esimerkki tästä on se, että kun valmistelin viime kuussa Harppi-festareille esitystä kosmisesta inflaatiosta, mietin pitäisikö minun sanoa, että fyysikot ovat löytäneet inflaation vai että he ovat kehittäneet sen.

Kehittämisen puolesta puhuu se, että fysiikan malleja ja teorioita ei voi suoraan havaita tai mitata kokeista kuin uusia saaria tai eläinlajeja. Lisäksi mallien ja teorioiden tekeminen on sosiaalista ja luovaa toimintaa, missä keksitään erilaisia ideoita, laitetaan tunnettuja palasia yhteen ja ehdotetaan uusia. Havainnoilla on touhussa joskus isompi ja joskus pienempi rooli. Toisinaan, kuten inflaation ja yleisen suhteellisuusteorian kohdalla, lähes kaikki havainnot tehdään vasta mallin tai teorian esittämisen jälkeen. Silloinkin kun havainnot ovat keskeisiä, niiden tehtävä on auttaa valitsemaan sopiva jatke tunnetuille teorioille.

Kehittämisestä sopisi puhua senkin takia, että suurin osa fyysikkojen malleista ja teorioista on väärin. On esitetty satoja erilaisia malleja siitä, miten inflaatio on täsmälleen tapahtunut: inflaatiosta vastuussa oleva kenttä voi vuorovaikuttaa eri tavalla ja johtaa erilaisiin ennusteisiin, tai kenttiä voi olla useita. Näistä malleista korkeintaan yksi kuvaa todellisuutta, tai koko idea inflaatiosta saattaa olla väärin. Tuntuisi oudolta sanoa, että voi löytää asian, jota ei ole olemassa.

Ilmaisu löytäminen voi toisaalta olla sopiva siksi, että fysiikan teoriat kuvaavat todellisuuden piirteitä, jotka eivät riipu siitä, ovatko ihmiset vielä ymmärtäneet niitä vaiko eivät. Asiaa voi hahmottaa siten, että on olemassa äärettömän monta erilaista matemaattista rakennetta, eli tapaa yhdistää asioita loogisesti toisiinsa. Niistä kuitenkin vain yksi kuvaa todellisuutta, eli on fysiikkaa. (Tämä on yksinkertaistettu kuva. Oikeasti fysiikan eri alueiden kuvaamisessa käytetään monia matemaattisia rakenteita, jotka eivät välttämättä ole täsmällisesti yhteensopivia, mutta kuvaavat joitakin piirteitä tarpeeksi tarkasti. Ilmiö nimeltä emergenssi liittyy tähän.)

Fysiikan tutkimuksen voi käsittää luonnonlakien etsimisenä matematiikan maastosta havaintoja apuna käyttäen, ja siten on sopivaa puhua löytämisestä. Käytännössä tämä näkyy siten, että kun ollaan oikeilla jäljillä, niin asiat loksahtavat kohdalleen rakenteen ohjatessa ajattelua.

Esimerkiksi kosmisen inflaation haluttiin kestävän pitkään, jotta se ehtisi tasoittaa avaruuden ja tehdä siitä saman näköisen kaikkialla. Siksi esitettiin, että inflaatiota ajavan kentän arvo muuttuu hyvin hitaasti, jotta siltä kestää kauan heikentyä niin paljon, että inflaatio loppuu. Koska kenttä on melkein samanlainen koko inflaation ajan, myös sen kvanttivärähtelyt ovat melkein samanlaisia. Mitä varhaisemmin kvanttivärähtelyt syntyvät, sitä pidemmäksi ne ehtivät venyä avaruuden koko ajan laajetessa.

Niinpä inflaatio ennustaa oikein, että kvanttivärähtelyistä periytyvät kosmisessa mikroaaltotaustassa ja galaksien ison mittakaavan jakaumassa näkyvät epätasaisuudet ovat melkein samanlaisia niiden pituudesta riippumatta. Vielä tarkemmin, koska inflaation aikana kentän arvo laskee hitaasti, sen energiatiheys pienenee ja kvanttivärähtelyt heikkenevät vähän. Inflaatio siis ennustaa, että varhaisempina aikoina syntyneet eli pidemmiksi venyneet epätasaisuudet ovat hieman voimakkaampia, minkä havainnot ovat osoittaneet oikeaksi.

Pimeän aineen kohdalla on käynyt samoin. Pimeän aineen näkymättömyys on selitetty sillä, että se koostuu hiukkasista, joilla ei ole sähkövarausta. Tästä seuraa se, että ne eivät voi muodostaa molekyylejä ja siksi jäähtyä ja klimppiytyä yhtä tehokkaasti kuin tavallinen aine. Tämä selittää sen, että tavallinen aine on tiivistynyt galaksien keskustaan ja pimeä aine on levittäytynyt laajemmalle.

Samalla tulee selväksi, miksi galaksit muodostuvat niin varhain. Kosmisesta mikroaaltotaustasta näkyy, että 14 miljardia vuotta sitten tavallisen aineen tiheys oli sama kaikkialla sadastuhannesosan tarkkuudella. 14 miljardia vuotta on liian lyhyt aika sille, että noin pienistä epätasaisuuksista syntyisi galakseja. Koska pimeä aine ei vuorovaikuta valon kanssa, se ei näy suoraan kosmisessa mikroaaltotaustassa, ja sen tiheyserot ovat isompia kuin tavallisessa aineessa, ja nopeuttavat galaksien muodostumista pimeän aineen kasojen vetäessä tavallista ainetta puoleensa.

Ainoa vaihtoehto pimeälle aineelle on se, että gravitaatiolaki on erilainen kuin yleisessä suhteellisuusteoriassa. Tässä tapauksessa on kuitenkin pitänyt keksiä erilaisia ideoita eri havaintojen selittämiselle, sen sijaan että kaikki seuraisi suoraan yhdestä ideasta. Tämä on yksi syy siihen, miksi pimeää ainetta pidetään huomattavasti todennäköisempänä selityksenä.

On tietysti myös matemaattisia rakenteita, jotka jonkin aikaa näyttävät sopivan havaintoihin mutta osoittautuvat sitten vääriksi. Esimerkki tästä on suurten yhtenäisteorioiden kosmiset säikeet vaihtoehtona inflaatiolle.

Voisi sanoa, että väärätkin teoriat on löydetty matematiikan maastosta. Mutta minusta tuntuu silti, että löytämisestä sopii puhua vain oikeaksi osoittautuneiden teorioiden ja mallien kohdalla. Inflaatio on hyvin onnistunut idea, mutta sitä voi vielä järkevästi epäillä. Ehkä minun olisi Harppi-festareilla pitänyt puhua kehittämisestä eikä löytämisestä, vaikka tuntuukin siltä, että ollaan lähellä aikaa, jolloin tuo sana on paikallaan.

16 kommenttia “Kehityskeskustelua”

  1. Cargo sanoo:

    ”Pimeän aineen näkymättömyys on selitetty sillä, että se koostuu hiukkasista, joilla ei ole sähkövarausta. Tästä seuraa se, että ne eivät voi muodostaa molekyylejä ja siksi jäähtyä ja klimppiytyä yhtä tehokkaasti kuin tavallinen aine. Tämä selittää sen, että tavallinen aine on tiivistynyt galaksien keskustaan ja pimeä aine on levittäytynyt laajemmalle.”

    Onko kukaan pellepeloton esittänyt sellaista, että sopivissa olosuhteissa ’näkyvä sähkövaras’ voisi flipata ’pimeäksi sähkövaraukseksi’, jota sitten vastaan ’pimeä valo’? Tuollainen pimeä vuorovaikutus olisi sitten huomattavasti heikompaa verrattuna näkyvään sähköiseen voimaan ja siten mahdollistaisi havainnot.

    1. Syksy Räsänen sanoo:

      Ei.

      Mutta on esitetty, että on olemassa toinen sähkömagneettisen vuorovaikutuksen kaltainen vuorovaikutus, jonka tuntevat ainoastaan toistaiseksi tuntemattomat hiukkaset. Tavallista sähkömagneettista vuorovaikutusta välittävät fotonit ja sitä välittävät ”pimeät fotonit” voivat sitten sekoittua hieman, jolloin pimeä aine vuorovaikuttaa sähkövarausten kanssa kuten sillä olisi erittäin pieni sähkövaraus.

  2. Kas sanoo:

    Mitä pimeän aineen tiheysjakaumasta tällä hetkellä tiedetään? Onko jotain pääteltävissä sen perusteella miten paljon pimeää ainetta on eri ”tyyppisissä” galakseissa (esim onko esim eroja sillä miten kaukana galaksit ovat meistä) ja toisaalta miten pimeä aine on jakaantunut galaksien sisällä?

    Ilmeisesti pimeä aine galaksien sisällä ei ole voimakkaasti ”klimpittynyt” tähtien ympärille, koska sen pitäisi varmaankin vaikuttaa mittaustietoon, mitä tähdistä tällä hetkellä kertyy (tai onko olemassa tähtitason mittaustietoa, jossa pimeän aineen vaikutus näkyy?)

    Ja tähän vielä jatkokysymys: jos oletetaan että pimeä aine on jakautunut tasaisesti esim linnunradan sisällä, niin kuinka suurta näkyvän aineen massaa se vastaisi aurinkokunnassa (vaikka pallon tilavuus, jonka säde on Pluton kiertoradan etäisyydellä auringosta)?

    1. Syksy Räsänen sanoo:

      Pimeän aineen ja näkyvän aineen suhde sekä jakauma vaihtelee galaksin koon ja tyypin mukaan.

      Karkeasti, Linnunradassa suunnilleen Maan radan sisällä näkyvä aine hallitse liikkeitä, ja kauempana pimeä aine on merkittävä. Pimeän aineen pienimpien klimppien kokoa ei tiedetä, se riippuu siitä, millaisista hiukkasista pimeä aine koostuu ja miten sen jakauma kehittyy. Tyypillisissä pimeän aineen malleissa pienimmät klimpit ovat noin valovuoden kokoisia (mutta tämä vaihtelee paljon).

      Pimeää ainetta on paljon pidemmälle kuin näkyvää ainetta, eli tuossa vertailussa pitäisi tarkentaa, ottaako huomioon kaiken pimeän aineen vain vain siltä osalta, missä on paljon myös näkyvää ainetta. Yleensä galakseissa ja kääpiögalakseissa on karkeasti muutamasta jokuseen kymmeneen kertaa enemmän pimeää ainetta kuin näkyvää ainetta.

      Pimeän aineen massatiheys Aurinkokunnan etäisyydella Linnunradasta on noin 10^(-21) kg/m^3.

      1. Kas sanoo:

        Eli periaatteessa jos pimeän aineen tiheysjakaumaa pystyttäisiin mittaamaan tarkemmin, voitaisiin ainakin sulkea pois jotkin vaihtoehdot pimeän aineen osalta? Onko tämän mittaustarkkuuden saavuttaminen millään muotoa realistista?

        1. Syksy Räsänen sanoo:

          Kyllä vain! Muun muassa kollegani Till Sawala Helsingin yliopistossa tutkii pimeän aineen klimppien vaikutuksen näkyvään aineeseen havaitsemista.

  3. Erkki+Kolehmainen sanoo:

    ”Ainoa vaihtoehto pimeälle aineelle on se, että gravitaatiolaki on erilainen kuin yleisessä suhteellisuusteoriassa. Tässä tapauksessa on kuitenkin pitänyt keksiä erilaisia ideoita eri havaintojen selittämiselle, sen sijaan että kaikki seuraisi suoraan yhdestä ideasta. Tämä on yksi syy siihen, miksi pimeää ainetta pidetään huomattavasti todennäköisempänä selityksenä.”

    Jospa nyt ollaankin tilanteessa, missä yleinen suhteellisuusteoria on kovattava vielä yleisemmällä teorialla kuten Newtonin mekaniikka kvanttiteorialla 1900-luvun alussa, jotta päästään eteenpäin?.

    1. Syksy Räsänen sanoo:

      Ei vaikuta luultavalta, että pimeän aineen sijaan kyse olisi gravitaatiolain muokkauksesta, mutta onhan se mahdollista.

      Ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

    2. Erkki Tietäväinen sanoo:

      Tämä on juuri sitä, mistä olen aina tilaisuuden tullen ”saarnannut”. Kun tutkijat pitävät jotain seikkaa (tässä tapauksessa gravitaatiolakia) annettuna totuutena, ilmiöiden – kuten pimeän aineen – selittämisessä, ei millään päästä eteen päin kun annettu lähtökohta on virheellinen. Gravitaatiolakia rustaamalla pimeän aineen dilemmasta ja monesta muustakin selittämättömästä voitaisiin hyvinkin päästä eroon.

      Mistä löytyisi se ”uusi Einstein”, joka korjaisi sukupolvien ajan tutkimusta jarruttaneet virheet?

      1. Syksy Räsänen sanoo:

        Kommenttiini linkatun blogimerkinnän lukemalla saa selville, että muutoksia gravitaatiolakiin on tutkittu. Niillä ei vain ole pystytty selittämään havaintoja eikä ennustamaan uusia, kun taas pimeä aine on tehnyt näin onnistuneesti kerta toisensa jälkeen.

        Tämä riittäköön tästä.

        1. Martti V sanoo:

          Alkuperäinen suuri yhtenäisteoria on matemaattisesti elegantti, mutta protonin hajoamattomuus on laskenut sen suosiota. B-mesonin hajoamiskokeet lisäsivät varmasti kiinnostusta uudelleen teoriaperheeseen. Onko myoniin vaikuttavaa hypoteettista leptokvarkkia varten kokeita suunnitteilla?

          1. Syksy Räsänen sanoo:

            Yhtenäisteorioissahan oli (ja on yhä) se esteettinen ongelma, että yhtenäisteorian ja Standardimallin isolle skaalaerolle ei ole vakuuttavaa selitystä.

            En tiedä onko suunnitteilla koetta etsimään B-mesonikokeen tulosten selitykseksi esitettyjä leptokvarkkeja.

            https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/parempi-vaarassa-kuin-sekaisin/

          2. Martti V sanoo:

            Energiaskaala on ulottumattomissa suorista leptokvarkin havainnosta. Jos protonin hajoaminen on mahdollista, sen aiheuttama bosoni on hyvin raskas ja näin ollen sen esiintyminen nykyään lienee erittäin epätodennäköistä. Voiko se olla mahdotonta ilman riittävää energiaskaalaa?

          3. Syksy Räsänen sanoo:

            En ymmärrä kysymystä.

            Mutta lienee paikallaan selventää, että B-mesonien hajoamisen selittämiseksi ehdotettu leptokvarkki on paljon kevyempi kuin suurten yhtenäisteorioden leptokvarkit. (Jotka tosiaan ovat kaukana nykyisten kokeiden ulottumattomissa.) Silloin pitää tietysti huolehtia siitä, että protoni ei hajoa liian nopeasti leptokvarkkien pienemmästä massasta huolimatta, mutta sellaista ideaa tuskin onkaan, joka olisi liian kiemurainen teoreetikkojen selitettäväksi.

  4. Lentotaidoton sanoo:

    Martti Vlle: Myös hypoteettisiä leptokvarkkeja käsittelee mainio Räsäsen aikaisempi blogi: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/suti-ja-vasara/

    Lue myös kommentoinnit.

    1. Martti V sanoo:

      Pahoittelut epäselvästä kysymyksestä, joka lähti ennen aikojaa, mutta vastaus taisi olla mitä hain. Tuohon aikasempaan blogiin juuri viitaten, kokeisiin sopiva leptokvarkki on liian kevyt (40Tev) yhtenäisteorioiden vaatimaan protonin hajoamisajan alarajaan, mikä varmaan vähentää kyseisten teorioiden tutkimusta.Toki korkeammilla energiaskaaloilla voi tapahtua tuntemattomia asioita kuten kolme leptokvarkkityyppiä vuorovaikuttavat keskenään vielä raskaamman bosonin kautta.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *