Arkisto
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- heinäkuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- lokakuu 2017
- syyskuu 2017
- elokuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Sormustimen verran
Maailmankaikkeuden koosta kysytään usein, joten avaan tässä asiaa hieman.
Keskeinen kysymys on se, onko maailmankaikkeus äärellinen vai ääretön. Mukaillen Arthur C. Clarken kommenttia kysymyksestä, onko Maapallon ulkopuolella elämää vai ei: kumpikin vaihtoehto on ihmeellinen. Ja tässäkään tapauksessa emme tiedä kumpi pitää paikkansa.
Maailmankaikkeuden ikä on äärellinen ja valo kulkee äärellisellä nopeudella, joten näemme vain äärellisen etäisyyden päähän. Tämä etäisyys rajaa kosmisen horisontin, jonka tuonpuoleisesta meillä ei ole mitään havaintoa. Maailmankaikkeus on 14 miljardia vuotta vanha, joten jos maailmankaikkeus ei laajenisi, horisontti olisi 14 miljardin valovuoden päässä.
Avaruuden laajeneminen muuttaa horisontin etäisyyttä kahdella tavalla. Ensinnäkin valo kulkee tietyssä ajassa lyhyemmän matkan: valoa hidastaa se, että sen reitille syntyy koko ajan lisää tilaa, joka pitää tarpoa. Toisaalta etäisyys valonsäteen alku- ja loppupisteen välillä kasvaa. Tämä seikka kasvattaa myös sitä osaa matkasta, jonka valo on jo kulkenut: koko väli alusta loppuun venyy kuin kumimatto.
Jälkimmäinen vaikutus on isompi: näemme nykyään 50 miljardin valovuoden päähän. Tämä ei tarkoita, että näkisimme maailmankaikkeuden laajenemisen takia kohteita, joita emme muuten olisi nähneet. Päin vastoin, jos maailmankaikkeus ei laajenisi, meille olisi ehtinyt tulla valoa useammasta galaksista kuin nyt. Mutta ne alueet, jotka olemme nähneet, ovat työntyneet kauemmas avaruuden laajetessa.
Jos maailmankaikkeus on äärellinen, niin kulkemalle tarpeeksi kauan samaan suuntaan palaa lopulta alkupisteeseen, kuin pallon tai donitsin pinnalla. Tämä pätee myös valonsäteisiin. Mitään merkkejä tällaisesta ei ole nähty, joten maailmankaikkeuden koko on isompi kuin näkemämme 50 miljardia valovuotta.
Meillä ei ole mitään varmaa tietoa siitä, millainen maailmankaikkeus on horisontin takana, hyvin perusteltuja arveluita kylläkin. Näkemämme osa maailmankaikkeutta on tilastollisesti samanlainen kaikkialla. Jos tarkastelee kuutiota, jonka sivun pituus on vähintään 500 miljoonaa valovuotta, niin sen keskimääräiset ominaisuudet ovat samanlaiset olipa kuutio missä tahansa: galakseja ja muuta ainetta on joka kuutiossa saman verran ja ne muodostavat samanlaisia kokonaisuuksia.
Kosminen inflaatio selittää miksi maailmankaikkeus on samanlainen joka puolella. Sen mukaan kiihtyvä laajeneminen ensimmäisen sekunnin murto-osan aikana paisutti nyt näkemämme alueen valtaviin mittoihin. Kiihtyvä laajeneminen pyyhki pois kaikki inflaatiota edeltäneet epätasaisuudet, jäljelle jäi vain inflaation kvanttivärähtelyissä syntyvät rakenteen siemenet. Ne ovat samanlaisia kaikkialla, joten niin ovat niistä myöhemmin kasvavat galaksit ja muut rakenteet.
Nykyään näkemämme maailmankaikkeuden osan säde oli inflaation alussa alle 10^(-23) metriä, eli sata miljoonaa kertaa protonia pienempi. Kun aine syntyi inflaation lopussa, alueen säde oli noin senttimetrin verran, koko tunnettu maailmankaikkeus mahtui sormustimeen. Kun maailmankaikkeuden kvarkit sitoutuivat protoneiksi ja neutroneiksi 30 mikrosekunnin aikaan, sen koko oli 20 valopäivää. Kun protonit ja neutronit muodostivat atomiytimiä neljän minuutin aikaan, koko oli 20 valovuotta. Kun atomiytimet yhtyivät elektroneihin muodostaen atomeita 380 000 vuoden iässä, nyt näkemämme alueen säde oli 50 miljoonaa valovuotta.
Emme tiedä kauanko inflaatio kesti tai paljonko se kaikkiaan venytti avaruutta. Emme siis osaa sanoa kuinka pitkälle maailmankaikkeudessa jatkuu inflaation tasoittama osuus ja samanlaiset rakenteet kuin ne mitä olemme nähneet. Olisi kuitenkin aikamoinen sattuma, jos näkisimme juuri nyt sen alueen reunalle, jonka inflaatio suurensi. Luultavasti maailmankaikkeus näyttää samanlaiselta vielä satojatuhansia kertoja isommalla mittakaavalla: vaikka matkaisimme miljoonien miljardien valovuosien etäisyyksille, siellä olisi samanlaista kuin täällä.
Se, millainen maailmankaikkeuden rakenne on kaikkein suurimmassa mittakaavassa –vai jatkuuko avaruus äärettömiin– liittyy siihen, millainen maailmankaikkeus oli ennen inflaatiota. Siitä meillä ei ole kunnollista teoreettista käsitystä eikä minkäänlaisia havaintoja.
40 kommenttia “Sormustimen verran”
Vastaa
Konservatiivisuuden nokareet
Olen kirjoittanut useista ehdotuksista pimeäksi aineeksi: nynnyt, aksionit, steriilit neutriinot ja heksakvarkit – vaihtoehtoja on tusinakaupalla. Kommenteissa kollegani Tommi Tenkanen on muistuttanut siitä, että gravitaatioaaltokokeiden LIGO ja Virgo havaitsemat vähän Aurinkoa raskaammat mustat aukot kelpaavat nekin pimeäksi aineeksi. Pimeän aineen ei siis välttämättä tarvitse olla hiukkasia, vaikka se onkin suosituin mahdollisuus.
LIGOn ja Virgon Nobel-palkitut gravitaatioaaltohavainnot ovat antaneet nostetta sille vuosikymmeniä pohditulle mahdollisuudelle, että pimeä aine koostuu mustista aukoista. Kyse ei ole niinkään siitä, että kokeet olisivat paljastaneet jotain uutta, mutta se että mustat aukot ovat huomion keskipisteessä innostaa miettimään mitä kaikkea niillä voikaan tehdä.
Nyt tulin itsekin tutkineeksi sitä, että pimeä aine koostuisi mustista aukoista, yhdessä ohjaamani väitöskirjatutkija Eemeli Tombergin kanssa (joka teki suurimman osan työstä). Päädyin aiheeseen kiertotietä, Higgsin kentän ja kosmisen inflaation kautta.
Usein pimeä aine ja kosminen inflaatio esitetään todisteina siitä, että on olemassa hiukkasfysiikkaa Standardimallin tuolla puolen, jotain kenttiä ja niiden hiukkasia joita emme ole vielä löytäneet. Fedor Bezrukov ja Mikhail Shaposhnikov näyttivät kuitenkin vuonna 2007, miten Higgsin kenttä voi ajaa kosmista inflaatiota. Higgs–inflaatiosta on sittemmin tullut yksi tutkituimpia inflaatiomalleja. Olen itse parina viime vuonna tutkinut sitä, mitä Higgs-inflaatio voi kertoa meille siitä, mistä aika-avaruus on tehty. Mutta sen lisäksi, että Higgs antaa hiukkasille massat ja voi olla vastuussa rakenteen alkuperästä, se saattaa myös tuottaa pimeän aineen. Tämä olisi konservatiivinen vaihtoehto, jossa selitetään tunnetuilla ainesosilla mahdollisimman paljon ennen kuin otetaan mukaan tuntemattomia osasia.
Maailmankaikkeudessa on pimeää ainetta noin viisi kertaa niin paljon kuin tavallista, atomiytimistä ja elektroneista koostuvaa ainetta. Jos pimeä aine koostuu mustista aukoista, pitää selittää miksi mustia aukkoja on niin paljon. Mustien aukkojen tuottaminen on periaatteessa helppoa: tarvitaan vain tarpeeksi tiheä kasa ainetta, joka romahtaa. Näin käy tähdille, jotka ovat vähintään noin kymmenen kertaa raskaampia kuin Aurinko. Pimeä aine ei kuitenkaan voi koostua tällä tavalla syntyneistä mustista aukoista. Kosmisesta mikroaaltotaustasta näkee, että pimeää ainetta oli yhtä paljon kuin nykyään jo silloin maailmankaikkeus oli 380 000 vuotta nuori. Tuolloin tähtiä ei vielä ollut.
Pitää siis olla jokin muu keino kehittää massaklimppejä. Tässä kosminen inflaatio tulee mukaan kuvaan. Inflaation aikana maailmankaikkeuden laajeneminen kiihtyy, ja inflaatiota ajavan kentän kvanttivärähtelyt venyvät hiukkasfysiikan mittakaavasta kosmisiin pituuksiin. Inflaation loputtua kenttä hajoaa hiukkaskaasuksi, joka perii kentän epätasaisuudet: sinne missä kentän arvo on isompi syntyy enemmän hiukkasia. Tämä selittää maailmankaikkeuden kaiken rakenteen (galaksien, planeettojen, ihmisten) alkuperän.
Inflaation synnyttämät epätasaisuudet ovat tyypillisesti hyvin pieniä, sadastuhannesosan kokoisia. Se ei riitä mustien aukkojen synnyttämiseen suoraan, näin pienten kuprujen tapauksessa pitää mennä galaksien ja tähtien hitaan kehityksen kautta. Epätasaisuuksien koko määräytyy siitä, miten nopeasti Higgsin kenttä (tai mikä kenttä inflaatiosta onkaan vastuussa) muuttuu inflaation aikana. Mitä nopeammin kenttä muuttuu, sitä tasaisempana se pysyy. Isompien epätasaisuuksien aikaansaamiseksi pitää siis kehittää tapa hidastaa kentän muutosta.
Inflaatiokentän muutos kuin mäkeä alas vierivän pallon liike. Pallon vierimisnopeuden määrää mäen jyrkkyys, inflaatiokentän muutosnopeus riippuu siitä, miten se vuorovaikuttaa itsensä kanssa. Jos vuorovaikutuksen voimakkuus muuttuu nopeasti kentän arvon myötä, liike on nopeaa kuin jyrkässä mäessä. Jos kentän vuorovaikutus on melkein riippumaton kentän arvosta, se liikuu hitaasti – tämä vastaa sitä, että mäessä on laakea osuus, joka viettää vain hyvin loivasti.
Kvanttikenttäteoria sanelee, että muut hiukkaset vaikuttavat siihen, miten Higgs vuorovaikuttaa, ja vuosina 2013-2014 oli pantu merkille, että tämän takia voi syntyä laakea alue, jota ehdotettiin muihin tarkoituksiin. Ajattelin, että sitä sitä voisi käyttää mustien aukkojen tuottamiseen. Osoittautui, että idea ei ollut niin omaperäinen kuin kuvittelin. Viime vuonna oli ilmestynyt jo yksi artikkeli, jossa laskettiin, miten Higgsin vuorovaikutuksen laakean alueen avulla saadaan tuotettua suunnilleen Auringon massaisia mustia aukkoja tarpeeksi selittämään pimeä aine. Aiheen tiimoilta. oli myös jokunen muu artikkeli, joissa käytettiin jotain muuta, spekulatiivista, kenttää, ei Higgsiä.
Tarkastelimme kuitenkin Higgs-tapausta edeltäjiämme perusteellisemmin ja huolellisemmin (ja kun sanon ”tarkastelimme”, tarkoitan lähinnä että jatko-opiskelijani Eemeli tarkasteli). Huomasimme, että laakea kohta ei hidasta kenttää tarpeeksi, että mustia aukkoja syntyisi merkittävästi, toisin kuin kollegamme olivat väittäneet. Mutta Eemeli keksi, että kvanttiefektit voivat saada aikaan myös matalan kuopan. Kenttä hidastuu noustessaan kuopasta ylös, ja kuopan syvyyttä säätämällä nopeutta saa laskettua miten paljon haluaa – eli kenttään saa miten isoja klimppejä tahansa.
Huomasimme kuitenkin (ks. edelliset sulut), että mustien aukkojen massan ja maailmankaikkeuden rakenteen välillä on yhteys, koska ne ovat molemmat peräisin Higgsin kentästä. Mitä raskaampia mustat aukot ovat, sitä enemmän galaksien jakauma ja kosmisen mikroaaltotaustan epätasaisuudet eroavat näkemästämme.
Tämän takia pimeä aine ei voi koostua LIGOn ja Virgon näkemistä mustista aukoista: syntyvien mustien aukkojen massan täytyy olla paljon pienempi, alle tonnin. Pienet mustat aukot höyrystyvät nopeasti, kuten Stephen Hawking osoitti. Ei tiedetä, mitä höyrystymisen loppuvaiheilla tapahtuu. Tämän selvittämiseen tarvittaisiin kunnollinen kvanttigravitaatioteoria, jota meillä ei vielä ole. Vaihtoehtoja lienee kaksi: joko musta aukko haihtuu kokonaan tai jäljelle jää Planckin massan (kymmenen mikrogrammaa) painoinen kvanttinokare. Ensimmäisessä tapauksessa mustat aukot olisivat kadonneet nykypäivään mennessä. Jälkimmäisessä tapauksessa pimeä aine voi koostua tällaisista nokareista.
Jos pimeä aine on mustien aukkojen nokareita, niin sitä ei luultavasti koskaan tulla havaitsemaan muuten kuin gravitaation kautta. Kymmenen mikrogrammaa on tähtien tai ihmisten mittakaavassa vähän, mutta hiukkasfysiikassa valtavan paljon, 10^(16) kertaa enemmän kuin tyypillisten nynnyjen massa. Pimeän aineen massatiheys tiedetään havainnoista, joten mitä isompi on yksittäisen nokareen massa, sitä vähemmän niitä on. Nokareita olisi siis 10^(16) kertaa vähemmän kuin tyypillisiä nynnyjä. Niinpä nokareiden törmäyksiä tavalliseen aineeseen tuskin koskaan nähdään, vaikka niiden vuorovaikutukset eivät olisikaan äärimmäisen heikkoja. Nokareet eivät enää säteile eivätkä hajoa, joten taivaalta ei näy mitään niistä tulevaa säteilyä, eivätkä ne vaikuta tähtien kehitykseen. Voisi siis olla hyvin vaikea osoittaa, että juuri ne ovat pimeää ainetta.
Ajatuksen mustien aukkojen nokareista pimeänä aineena esitti jatko-opiskelija Jane MacGibbon vuonna 1987, ehdotuksemme on ensimmäinen, missä niitä tuotetaan Higgsin kentän avulla. Pitipä idea paikkansa tai ei, se osoittaa, että pimeä aine ei vielä vaadi mitään uutta hiukkasfysiikkaa Standardimallin tuolta puolen.
33 kommenttia “Konservatiivisuuden nokareet”
-
Ovatko nuo kvanttinokareet jotain aitoja pistehiukkasia vai mitä niiden sielunelämästä tiedetään? Vaikuttaa aika ad hokkuspokkus -hiukkaselta. Ja millainen autisti alkaa metsästämään joitain teoreettisen aasinsillan mahdollistaman fluktuaation kautta loihdittuja näkymättömiä hiukkasia?
Mutta eiköhän pari uutta kvanttitermiä Lagrangen tiheyteen tuo valoa tähän pimeyteen 🙂
-
Hei. En ole varma olinko kärryillä aiempien tekstien kanssa, mutta eikö pimeän aineen pitäisi kasautua ”huonommin” kuin tavallinen aineen? Miten tämä sopii yhteen tuon musta-aukko selityksen kanssa?
Aimepi lainaus:
”Ajatus siitä, että pimeä aine olisi osa hiukkasfysiikan sektoria, joka on samanlainen kuin näkemämme, mutta vain meiltä piilossa, ei ole uusi. Se ei voi pitää paikkaansa, koska havaittu pimeän aineen klimppiytyminen on erilaista kuin näkyvän aineen. Näkyvä aine menee pimeää ainetta enemmän kasaan, koska se voi jäähtyä sähkömagneettisten vuorovaikutusten takia.” -
Kuinka hyvin pienet mustat aukot sopivat Luotijoukosta (Bullet Cluster) saatuihin havaintoihin?
-
Tämä saattaa olla tyhmä kysymys, mutta kysyn kuitenkin: Eikö mustan aukon ominaisuuksiin kuulu aina riittävän suuruinen massa ja painovoima, jolla se estäisi myös valon ”karkaamisen”? Miten kymmenen mikrogramman painoiseksi kutistunut mustan aukon nokare (kvanttinokare) voi olla painovoimaltaan niin suuri, että se pysyy mustana aukkona ja toimii selittäjänä pimeälle aineelle ?
-
Voiko aika-avaruudella olla hitaus/inertia, jolloin Luotiryppään kaasujen aiheuttamat gravitaatiokuopat jatkaisivat törmäystä edeltäneisiin liikesuuntiin? Hitauden voisi ehkä myös kuvailla aika-avaruuden vuorovaikutuksena itsensä kanssa.
-
Planckin massaisen mustan aukon maksimaalinen impulssimomentti (mPlanck*c*lPlanck) on luokkaa Planckin vakio. Herää kysymys mitä tapahtuu jos aukon impulssimomentti on puolilukuinen, eli jos meillä on fermioninen miniaukko. Bosoninen (pyörimätön, siis spin nolla) Planckin massainen aukko voi käsittääkseni hajota esimerkiksi kahdeksi fotoniksi, mutta ei liene yhtä selvää miten fermioninen Planckin massainen aukko voisi hajota. Vai onko? Kysymys taitaa palautua siihen että säilyttääkö aukko leptoniluvun kaltaisen ominaisuuden vai pitääkö no hair -teoreema ottaa kirjaimellisesti myös mikroskooppisille aukoille.
Ajatus olisi siis että jossain vaiheessa alkuräjähdystä sekä bosonisia että fermionisia pieniä aukkoja olisi muodostunut, vieläpä eri kokoisia, mutta bosoniset aukot olisivat sittemmin haihtuneet säteilyksi ja fermionisetkin melkein, paitsi että niistä olisi jäänyt Planckin massainen hajoamaton jäännös.
-
Mustan aukon haihtumisnopeus voittaa kasvamisen kun sen Hawkingin säteily on ympäristöä kuumempaa. Kun primordiaaliset aukot pienentyvät haihtumalla, ne siis kontribuoivat ympäristöään kuumempaa, ei-termistä säteilyä. Eli aukot loistavat kuin mikrotähdet ja kuumentavat ainetta uudelleen, vähän samoin kuin myöhemmin ensimmäiset tähdet ionisoivat kaasua uudelleen. Meneekö tämä aukkojen haihdunta ajallisesti päällekkäin Higgsiin liittyvän reheating-vaiheen kanssa, ja pystyykö aukkojen ja Higgsin suhteellisia kontribuutioita lämmitykseen vertaamaan kvantitatiivisesti?
-
Räsänen: Jos pimeä aine on mustien aukkojen nokareita, niin sitä ei luultavasti koskaan tulla havaitsemaan muuten kuin gravitaation kautta. Kymmenen mikrogrammaa on tähtien tai ihmisten mittakaavassa vähän, mutta hiukkasfysiikassa valtavan paljon, 10^(16) kertaa enemmän kuin tyypillisten nynnyjen massa. Pimeän aineen massatiheys tiedetään havainnoista, joten mitä isompi on yksittäisen nokareen massa, sitä vähemmän niitä on. Nokareita olisi siis 10^(16) kertaa vähemmän kuin tyypillisiä nynnyjä. Niinpä nokareiden törmäyksiä tavalliseen aineeseen tuskin koskaan nähdään, vaikka niiden vuorovaikutukset eivät olisikaan äärimmäisen heikkoja. Nokareet eivät enää säteile eivätkä hajoa, joten taivaalta ei näy mitään niistä tulevaa säteilyä, eivätkä ne vaikuta tähtien kehitykseen. Voisi siis olla hyvin vaikea osoittaa, että juuri ne ovat pimeää ainetta.
10 mikrogrammaa on hiukkasfysiikassa valtavan paljon. Kun kuitenkin WIMPejäkin (ja julmasti kevyempiä axionejakin) tietysti metsästetään, niin eikö periaatteessa myös älytömän julmasti raskaampia ”nokareitakin” voisi, vaikka niitä vastaavasti olisi häviävästi harvemmassa.
Osaatko kuvitella mitään metodia (joko standarditeorian puitteissa tai ulkopuolisten mallien puitteissa) joissa voisi edes teoreettisesti osoittaa niiden olevan pimeää ainetta (tai että niitä ylipäätään on olemassa)? Potku on potku vaikka niitä olisi harvassakin.Ymmärrän kuitenkin että nykykeinoin asia on (ehkä) mahdoton. Vai onko peli kokeellisesti menetetty?
-
-
Räsänen: ”tai jäljelle jää Planckin massan (kymmenen mikrogrammaa) painoinen kvanttinokare”.
”Kvanttinokare” on vähän epämääräisesti sanottu (ei ainakaan kuullosta minun korvaan kovin tieteelliseltä). Voitko selventää? Todennäköisesti on kuitenkin kysymys baryonisesta (?) aineesta, vai mistä? (eli minkä kentän ”nokare?). Kun kerta toinen vaihtoehto on ”haihtuu kokonaan”.
-
Andrei Linden kaoottisessa inflaatiomallissa havaittava maailmankaikkeutemme olisi tullut halkaisijaltaan 10^-35 metrin eli Planckin pituuden suuruisesta hipusta, johon yhtyi erittäin suuri energiatiheys noin 10^94 grammaa kuutiometrissä tuottaen kokonaismassan 10^-5 grammaa eli Planckin massan, eli saman ”pölyhiukkasen” massan. Ovatko nämä luvut vain yhteensattuma? Vai onko ero kuumuuden valtavassa energiassa?
-
Paluuviite: Kosmokseen kirjoitettua | Toisen kauden kuviot
-
Paluuviite: Kosmokseen kirjoitettua | Toismaailmallinen arki
Vastaa
Miksi on turha etsiä seuraavaa Einsteinia
Puhun Tieteen päivillä lauantaina 12. tammikuuta 2019 kello 14.30 Porthanian salissa PI luentosarjassa Rohkeaa tutkimusta luonnontieteissä otsikolla Rohkeus ja rakenteet: miksi on turha etsiä seuraavaa Einsteinia. Puheen tiivistelmä on seuraava (Tieteen päivien kirjassa on myös artikkelini aiheesta.)
Tänä vuonna tulee kuluneeksi sata vuotta siitä, kun kokeellisesti osoitettiin, että Auringon gravitaatio taivuttaa valonsäteitä. Havainto vahvisti yhden yleisen suhteellisuusteorian keskeisistä ennustuksista ja teki Albert Einsteinista maailman ensimmäisen tiedejulkkiksen.
Käsitys Einsteinista yksinäisenä nerona ja tieteilijän perikuvana on sittemmin riivannut tiedettä. Sikäli kun kuva pitää paikkansa, se on poikkeus. Siltä osin kun se ei pidä paikkaansa, se on huomattavasti opettavaisempi.
Yleisen suhteellisuusteorian, maailmankaikkeuden laajenemisen ja pimeän aineen ja maailmankaikkeuden laajenemisen tutkiminen halki vuosisadan osoittaa, millaista tieteen tekeminen on. Parhaatkin tutkijat ovat toisinaan täysin väärässä, edistys syntyy tutkijoiden tiiviistä vuorovaikutuksesta, ja havainnot ovat korvaamattomia sen selvittämisessä, mikä on totta ja mikä vain toivetta.
Ajatus tieteestä yksinäisten nerojen pelikenttänä vääristää yhä käsitystä tieteestä, niin tutkijoiden kuin rahoittajien parissa. Tutkimuksen vaaliminen on pitkäjänteinen prosessi, jossa pitää nostaa koko tutkijayhteisön valmiuksia ja luoda ympäristö, joka helpottaa myös vaikeiden, aikaa vievien ja kiistanalaisten ideoiden tutkimista. Sen sijaan yhä suurempi osa rahoituksesta on kilpailtua, ja tutkimusrahoitusta haettaessa tutkijoiden odotetaan lupaavan mahdollisia läpimurtoja ja liioittelevan tutkimuksen merkitystä. Mikä vaikutus tieteeseen on sillä, että tutkijoita ohjataan harkittuun ja järjestelmälliseen epärehellisyyteen asiassa, joka on keskeinen uralla etenemiselle?
Päivitys (19/01/19): Puhun samasta aiheesta myös Oulun ja Mikkelin Tieteen päivillä, ajat ja paikat täällä.
6 kommenttia “Miksi on turha etsiä seuraavaa Einsteinia”
-
Tässä saattaa olla merkittäviä alakohtaisia eroja. Oma kokemukseni on nimittäin suunnilleen päinvastainen, sikäli kun näissä ”pehmeissä” asioista vastakohdista on mielekästä puhua. Koen että maailma on siinä mielessä pieni että ”einsteineja” jotka vievät sitä eteenpäin on vähän, ehkä sama määrä kuin Einsteininkin aikana. Koen myös että rahoitus ohjautuu hyvin vahvasti vanhan viilaamiseen uuden keksimisen sijasta. Esimerkiksi paljon tutkimusrahaa käytetään vetytalouden moninaisten teknisten haasteiden voittamiseen, mutta juuri yhtään ei siihen että ammoniakkia käyttämällä niitä ongelmia ei tarvitsisi edes ratkaista. Vain yksi esimerkki.
Mutta kuten sanottu, alakohtaiset erot saattavat olla suuria. Jos ajattelen asiaa teoreettisen fysiikan ja kokeellisen hiukkasfysiikan näkökulmasta, luullakseni pystyn kuvittelemaan mitä kautta olet johtopäätökseen tullut. Molemmat taitavat olla aloja joissa työ lienee usein systemaattisenoloista puurtamista ja läpimurrot usein syntyvät sen puurtamisen pohjalta.
-
Kai nyt edes Newtonia saa kutsua ”yksinäiseksi neroksi”, kun kehittää toimivan painovoimateorian sellaisen pähkähullun ajatuksen pohjalta, että voima voi välittyä ilman suoraa kosketusta?
Mitä tähän päivään tulee, niin esim. Brian Greene tekee tieteelle karhunpalveluksen, kun maalaa täysin polarisoituneen kuvan tieteen eturintamasta. Sellainen Hollywood-meininki keskittää suuren yleisön huomion vain säikeisiin ja sankaritarinoihin, vaikka teknologisia ongelmia ratkovat tieteilijät olisivat juuri niitä, joita ihmisten tulisi lumoutuneina kuunnella. Asian toki ymmärtää, sillä nykymaailmassa tiede on ottanut uskonnon roolin.
Feynman sanoi, että Einstein ei saanu uransa toisella puoliskolla mitään aikaiseksi, koska lakkasi pohtimasta fysiikan perusilmiöitä. Ja kun ottaa huomioon tieteen nykytilan, niin itse suuntaisin rahoitusta matemaattisesta fantasiakirjallisuudesta kohti uusien teknologioiden kehittämistä.
-
Paluuviite: Kosmokseen kirjoitettua | Marssi ja päivät
Olisiko mitenkään mahdollista, että inflaation aikana referenssikellon viisarit pyörivät kuin hedelmäpeli ja sen takia avaruus laajeni nopeammin kuin tämänhetkinen valonnopeus? Jos siis aika määritellään entropian muutoksena, niin totta kai alkupamauksen aikana maailmankaikkeuden entropia lisääntyi vauhdilla, mutta tänäpäivänä entropia kasvaa suunnilleen samaa tahtiin kuin eilen.
Ja jos aineen jakauma on kaikkialla samanlainen by default, niin itse avaruuden tulee laajeta, että entropia voisi kasvaa? Maailmankaikkeus voi siis hyvinkin olla ääretön systeemi, joka toteuttaa universaalia entropiaperiaatetta?
No taas kerran sorruin nojatuolifysisointiin, mutta eiköhän Eusa tule jakamaan syntiä omalla aivokohinallaan 😉
Ei.
Joskus käytetty ilmaisu ”laajenee valoa nopeammin” on epämääräinen ja sitä pitäisi välttää. Se viittaa siihen, että jos avaruuden laajeneminen kiihtyy, niin kaukaiset havaitsijat eivät voi enää lähettää toisilleen valonsätietä, koska heidän väliinsä syntyy tilaa niin nopeasti.
Aikaa ei määritellä entropian muutoksena. Inflaation aikana havaittavan osan maailmankaikkeutta entropia laskee nopeasti.
OK. Mutta miten se aika fysiikassa sitten määritellään? Luulisi, että saman systeemin kahta eri entropiatilaa kuvataan ajan kautta, ja esim. vedyn perustilalla aika on pysähtynyt, koska elektroni ei voi liikkua eikä toisaalta olla paikoillaankaan (jos siis oletetaan muuten tyhjä maailmankaikkeus).
Voiko sitä inflaatiota ja koko maailmankaikkeuden systeemiä tarkastella niin yleisellä tasolla, että se entropia todellakin kasvaa? Eli jos otetaan kaikki energiamuodot ja vuorovaikutukset huomioon? Ja onko kukaan edes yrittänyt selittää avaruuden laajenemista siten, että se mahdollistaa suljetun systeemin entropian kasvun?
Yleisessä suhteellisuusteoriassa aika on yksi osa aika-avaruudetta, eikä sen olemassaololla tai eteenpäin kulkemisella ole mitään tekemistä entropian kanssa.
Mutta sitä, miksi yleisessä suhteellisuusteoriassa on yksi ulottuvuus joka on erilainen kuin muut, ei tiedetä. Kuten ei myöskään sitä, miksi signaalit kulkevat ajassa vain yhteen suuntaan.
Kiitokset mielenkiintoisesta blogista, tätä on hauska lukea!
Kaikkialla (populäärikirjallisuudessa) aina sanotaan, että on väärin ajatella avaruuden laajenevan johonkin, mutta mikä todistaa, että näin on? Tai miksei voida ajatella avaruuden olevan ääretön ja siellä sattumalta ”klöntti” ainetta lähti laajenemaan?
Kiitos, mukava kuulla.
Maailmankaikkeuden laajenemista on selitetty täällä: https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu
Jatkan tyhmien kysymysteni sarjaa: Näemme nykyään kohteen, josta lähteneellä valolla on kulunut yli 13 miljardia vuotta saavuttaa meidät. Olemme siis tänään noin pitkän matkan päässä paikasta, jossa kohde sijaitsi yli 13 miljardia vuotta sitten. Nythän se sijaitsee ties missä. Miten on mahdollista, että olemme niin kaukana toisistamme? Ymmärtäisin asian, jos inflaatio olisi loitontanut avaruuden osia toisistaan huikeasti valoa nopeammin, mutta niinhän ei ole tapahtunut. Jos kerran nyt näkemämme maailmankaikkeus oli alkuräjähdystä seuranneen inflaation alussa sata miljoonaa kertaa protonia pienempi, selitykseksi ei taida käydä se, että ”maailmankaikkeus ei syntynyt yhdessä pisteessä, vaan joka paikassa samaan aikaan”.
”Miten on mahdollista, että olemme niin kaukana toisistamme?”
Koska maailmankaikkeus on laajentunut.
Toki minäkin ymmärrän, että maailmankaikkeus on laajentunut. Se ei kuitenkaan ole vastaus kysymykseeni. Yritän tehdä kysymykseni uudella tavalla:
Kun maailmankaikkeudella on ollut aikaa laajeta (reippaasti valoa hitaammin) vain 13,8 miljardia vuotta, niin en ymmärrä, miten voimme sijaita jo yli 13 miljardin päässä jostain kohteesta puhumattakaan, että näkemämme maailmankaikkeuden koko on peräti 50 miljardia valovuotta. Millä nopeudella laajeneminen siis on tapahtunut?
Maailmankaikkeuden laajenemisessa ei ole kyse siitä, että kappaleet liikkuisivat poispäin toisistaan. Sen sijaan avaruuden tilavuus kasvaa. (Valonnopeudella ei siis ole mitään tekemistä asian kanssa.)
Laajenemisnopeus muuttuu ajan myötä. Tällä hetkellä se on noin 70 km/s/Mpc, missä Mpc on noin 3 miljoonaa valovuotta. Mitä kauempana kohde on, sitä nopeammin se näyttää etääntyvän meistä, koska sitä enemmän väliimme tulee uutta tilaa.
Inflaation jälkeen laajenemisnopeus on ollut kaikkina aikoina suuruusluokkaa 1/t, missä t on maailmankaikkeuden ikä.
Sanot näin: ”Maailmankaikkeuden laajenemisessa ei ole kyse siitä, että kappaleet liikkuisivat poispäin toisistaan. Sen sijaan avaruuden tilavuus kasvaa.”
Tarkoitatko siis, että varhaisin toistaiseksi näkemämme kohde yli 13 miljardin valovuoden päässä on ollut koko ajan yhtä kaukana meistä? Avaruusko vain on kasvattanut tilavuuttaan, mutta kohteen ja maapallon välinen etäisyys on pysynyt samana? Eihän se nyt näin voi olla, kun kertomasi mukaan kaikki alkoi sata miljoonaa kertaa protonia pienemmästä tilasta.
”Maailmankaikkeuden laajenemisessa ei ole kyse siitä, että kappaleet liikkuisivat poispäin toisistaan.” Hmm. Sanoisin että totta kai kaukaiset galaksit liikkuvat meistä poispäin: jos sellaisen kanssa vaihtaa radioviestejä, viestien aikaväli kasvaa. Tilan syntymisellä väliin tarkoitetaan kai sitä että kumpikin etääntyjä pysyy levossa universaalin lepokoordinaatiston eli mikroaaltotaustan suhteen. Mutta sen voi kai ajatella johtuvan homogeenisuudesta ja isotrooppisuudesta.
Maailmankaikkeuden laajenemista ei voi ymmärtää havaitsijoiden liikkeenä pois toisistaan, eikä homogeenisuudella ja isotrooppisuudella ole mitään tekemistä asian kanssa.
”Maailmankaikkeuden laajenemista ei voi ymmärtää havaitsijoiden liikkeenä pois toisistaan.” Jos näin on, missä kulkee raja paikallisen ja globaalin välillä? Pitääkö esimerkiksi paikallisen galaksiryhmän galakseja ajatella normaalisti liikkuvina, mutta jostain isommasta pituusskaalasta lähtien pitääkin alkaa ajatella että väliin syntyy sen sijaan uutta avaruutta?
Ainoastaan neliulotteinen aika-avaruus on määritelty yksikäsitteisesti, sen voi siivuttaa avaruudeksi ja ajaksi eri tavoilla.
Kun on valittu tietty siivutus, paikallisesti yhdessä pisteessä havaitsija voi liikkua avaruuden (tai muiden havaitsijoiden) suhteen tai olla liikkumatta. Sen sijaan kysymys siitä, liikkuuko havaitsija jonkun sellaisen havaitsijan suhteen, joka ei ole samassa pisteessä ei ole mielekäs, koska ei ole yksikäsitteistä tapaa verrata eri pisteissä olevia nopeuksia.
Jos valitsee joukon havaitsijoita, avaruuden voi määritellä siten, että he ovat aina paikallaan. Tällöin heidän suhteellisten etäisyyksiensä ja paikkojensa muutos selittyy avaruuden laajenemisella, muodon muuttumisella (kutistumisella ja venymisellä eri suuntiin) ja pyörimisellä.
Ymmärrän vastauksesi muut osat, mutta jäin miettimään miksei eri pisteiden nopeuksia voisi verrata. Nelinopeus on maailmanviivan tangentti, ja nelinopeusvektoreita voi yrittää verrata yhdensuuntaissiirtämällä ne samaan pisteeseen. Siirto ei riipu tiestä kun avaruus on laakea. Olen ymmärtänyt että havaintojen mukaan avaruus on laakea.
Siirto ei riipu tiestä kun aika-avaruus on laakea.
Maailmankaikkeudessa aika-avaruus ei ole laakea: maailmankaikkeuden laajeneminen on tämän ilmentymä.
Avaruus (ei aika-avaruus) on laakea keskimäärin, ei sekään paikallisesti.
Aivan, niinhän se on. Kiitos vastauksista.
Olen näissä(kin) tähtitieteen asioissa amatööri ja alkutaipaleen harrastelija, ja hiukan hävettää näin hölmö kysymykseni, liekö jo vastattu monia monituisia kertoja samanlasiin, paremmin muotoiltuihin kysymyksiin. Mutta kysyn silti.
Koska aika on suhteellista, niin millä kellolla on avaruuden ikä ja muut ajallisesti määritellyt välimatkat mitattu?
Sellaisen havaitsijan kellolla, joka liikkuu aineen mukana. (Näkyvän aineen ja pimeän aineen välinen nopeusero on niin pieni, että ei juuri ole väliä, kumman valitsee.)
Räsänen: ”Kuten ei myöskään sitä, miksi signaalit kulkevat ajassa vain yhteen suuntaan”.
Eikö tämä ole (vakava) probleema? Fysiikan lait itsessään eivät tee eroa tulevaisuuden ja menneisyyden välillä, ajan suunnalle ei esitetä objektiivista fysikaalista perustaa. Tiedämme kuitenkin että heikko voima rikkoo CP-symmetriaa, mutta että yhdistetty CPT-symmetria (eli CPT–invarianssi) on rikkoutumaton (esim K- ja B-mesonien kohdalla) mutta että esim T-symmetria yksinään ei ole invariantti. Ja että CP-symmetrian on rikkouduttava, jotta CPT-symmetria ei rikkoutuisi. Eli nämä hiukkaset tunnistavat menneen ja tulevan (eli ajan ”nuolen”)?
On. Ei tiedetä, miksi ajalla on määrätty suunta. Klassisessa sähkömagnetismissa ja yleisessä suhteellisuusteoriassa on yhtä lailla ajassa taaksepäin meneviä kuin ajassa eteenpäin kulkevia signaaleja, mutta jostain syystä maailmankaikkeudessa on ainoastaan jälkimmäisiä.
Voihan vapaata putoamista pitää retrokausaalisuutena; kappale putoaa siten kuin putoaa, jotta menneisyydessä voisi olla olemassa harvaa kaasua, josta tihentynyt alue ja jyrkentynyt kaarevuus. Jotta elliptisten kiertoratojen perusperihelikiertymä, vuorovaikutuksena mallinnettavien staattista gravitaatiokenttää ylläpitävien signaalien on kuljettava tulevaisuudesta menneisyyteen.
Tätä ei toki selitetä näin fysiikassa, mutta voitaisiin selittää, jos esim. olisimme eri havaintotarkkuustilanteessa. Ainahan olemme jossain havaintotarkkuudessa kiinni – on havaitsematonta ilmiötä, joihin päästään käsiksi vasta kehittymisen myötä…
Ei, kausaalisuuden suuntaa ei voi kääntää tuolla tavalla.
On havaittu vain ajassa eteenpäin kulkevia signaaleja, ei koskaan ajassa taaksepäin kulkevia. Tämän takia menneisyys vaikuttaa tulevaisuuteen, mutta ei toisin päin.
Tämä riittäköön tästä.
Voisiko ajan yksisuuntaisuutta perustella entropian ohella myös kvanttimekaniikalla? Kun hiukkasta havainnoidaan, niin aaltofuntio romahtaa ja uusi aaltofunktio muodostuu ajanhetkellä t=0 ja lähtee leviämään, eikä tällöin ole mitään mahdollisuutta saada tietoa menneisyydestä. Ottamalla lisäksi huomioon, että hiukkasta havainnoi aina ”jokin”, sillä maailmankaikkeus ei ole tyhjä, niin jokainen ajanhetki on tavallaan uusi t=0 ja näin ollen ajalla voi olla vain yksi suunta ja se on eteenpäin sarjana diskreettejä tilannekuvia. Ehkäpä yleinen suhteellisuusteoria on niin arkaainen viritelmä, ettei siihen pysty sovittamaan epädeterministisen entropian/informaation aiheuttamia dynaamisia muutoksia.
Markiisi de Laplace pitää nyt lopullisesti heittää niska-perse-otteella ulos häiritsemästä tieteen kehitystä.
Voi olla, että kvanttimekaniikalla on tekemistä asian kanssa. Tämän selvittämiseen tarvittaisiin ymmärrys kvanttimekaniikan mittausongelmasta ja/tai kvanttigravitaatiosta, mitä kumpaakaan meillä ei ole.
Olen kirjoittanut täällä siitä, mitä tiedämme ajasta:
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaksi-tarinaa-ajasta/
https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/ajan_kanssa
https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/ajankayton_hallinta
Onko mahdollista, että emme ole vielä keksineet vääntää universumia kuvaavia yhtälöitä sellaiseen muotoon, jossa tunnetut dimensiot xyzt korvautuvat uusilla ja jotka selittävät meille nykyään tuntemattomia ilmiöitä paremmin, vaikka eivät olekaan etäisyyksiin ja aikaan nähden yhtä käytännönläheisiä dimensioita?
Yleisen suhteellisuusteorian mukainen neliulotteinen aika-avaruus kuvaa havaintojamme erinomaisesti.
On tutkittu ideaa, jonka mukaan aika-avaruus on approksimaatio jostain perustavanlaatuisemmasta, mutta toistaiseksi asiasta ei tiedetä mitään varmaa, ks.
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikki-tai-ei-mitaan/
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/aika-avaruuden-atomit/
Aiheeseen liittyen eräs mieltäni askarruttava kysymys: kosminen taustasäteily syntyi kun maailmankaikkeus oli 380.000 vuoden ikäinen.
Eli yli 13 miljardia vuotta sitten.
Miten pystymme edelleen havaitsemaan sitä, luulisi nimittäin että tuossa ajassa fotonit olisivat ehtineet joko suihkimaan ohitsemme, tai osumaan johonkin kohteeseen. Eli ei pitäisi olla enää mitään havaittavaa taustasäteilyä.
Mutta on, miten se on mahdollista?
Kosminen mikroaaltotausta syntyi kaikkialla. Näemme siis nyt kosmisen mikroaaltotaustasäteilyn fotoneita, jotka lähtivät liikkeelle paikasta, joka on meistä nyut 50 miljardin valovuoden päässä. Miljardi vuotta sitten tästä pyyhkivät ohi fotonit, jotka olivat lähteneet liikkeelle hieman lähempää meitä, ja niin edelleen.
Kosminen mikroaaltotausta siis muuttuu koko ajan, koska näemme eri hetkinä eri fotoneita, mutta muutosnopeus on hyvin pieni, koska lähellä toisiaan liikkeelle lähteneet (ja melkein saman ajan kulkeneet) fotonit ovat hyvin samanlaisia.
Tuohon inflaatioon ja aineen kasautumiseen liittyen; Millaisia ilmiöitä avaruuden kaarevuuden muutos aiheuttaa, vai aiheuttaako minkäälaisia? Esim. jos mustan-aukon aine jostain kumman syystä äkillisesti levittäytyisi laajalle alueelle tasaisesti, olisiko sillä mitään yhteyttä ilmiöiden kanssa, jotka liittyvät avaruuden laajenemiseen (punasirrtymä tms.)?
Avaruuden laajeneminen on aika-avaruuden kaarevuuden ilmentymä, ei avaruuden kaarevuuden.
Kaikki gravitaation ilmiöt (avaruuden laajeneminen, kappaleiden välinen näennäinen vetovoima, valon taipuminen jne.) ovat aika-avaruuden kaarevuuden ilmentymiä. Aineen jakauma määrää aika-avaruuden kaarevuuden.
Kiitos taas mielenkiintoisesta blogista, tämä on yksi parhaita suomenkielisiä tiedeblogeja.
Jatkan hiukan samasta aiheesta aiemman kommentoijan kanssa, ja kysyisin, että kun kirjoitat ”Kun aine syntyi inflaation lopussa, alueen säde oli noin senttimetrin verran, koko tunnettu maailmankaikkeus mahtui sormustimeen.” ja taas toisaalta 30 mikrosekunnin aikaan koko oli jo 20 valopäivää ja 380 000 vuoden kohdalla 50 miljoonaa valovuotta, niin onko alkuvaiheessa inflaation jälkeen laajeneminen ollut vielä nopeampaa ja pikkuhiljaa hidastunut, kunnes alkoi taas kiihtyä myöhemmin?
Mikäli näin on, niin mikä sai aikaan tuon nopean laajenemisen inflaation jälkeen? Jäikö inflaatiosta jonkinlaista laajenemisenergiaa jota gravitaatio pikkuhiljaa hidasti?
Kiitos, mukava kuulla.
Yltä siteerattua:
”Laajenemisnopeus muuttuu ajan myötä. Tällä hetkellä se on noin 70 km/s/Mpc, missä Mpc on noin 3 miljoonaa valovuotta. Mitä kauempana kohde on, sitä nopeammin se näyttää etääntyvän meistä, koska sitä enemmän väliimme tulee uutta tilaa.
Inflaation jälkeen laajenemisnopeus on ollut kaikkina aikoina suuruusluokkaa 1/t, missä t on maailmankaikkeuden ikä.”
Viimeisen muutaman miljardin vuoden kuluttua laajeneminen on tosiaan taas kiihtynyt.
Laajeneminen on inflaation jälkeen nopeaa, koska se oli inflaation aikaan nopeaa. Inflaation aikaan se oli nopeaa, koska laajenemisnopeus riippuu inflaation aikaisesta energiatiheydesta, mikä oli hyvin iso.
Sen jälkeen laajeneminen hidastuu, koska gravitaatio on puoleensavetävä, eli avaruuden eri osat vetävät toisiaan puoleensa.
Pahoittelen, jos tämä kysymys ei ihan täsmälleen asiaan liity. Kerroit tuossa kaksi tarinaa ajasta jutussa, että suhteellisuusteoria on deterministinen, mutta kvanttifysiikka ei ole deterministinen. Voidaanko sanoa jo mitään ennusteita siitä tuleeko kvanttigravitaatio tai muu perustavamman laatuinen teoria olemaan deterministinen vai ei-deterministinen?
Yleensä ajatellaan, että epädeterministinen, mutta emme tiedä. Nobel-voittaja ’t Hooft on esittänyt malleja siitä, millainen deterministinen fysiikka voisi olla kvanttimekaniikan takana, mutta ne ovat melko lapsenkengissään.
Pahoittelen, että vähän raihnaisena vanhuksena kysyn tätä jo vähän myöhässä. Jos valoa nopeamman inflaation jälkeen maailmankaikkeuden (tai havaitsemamme mailmankaikkeuden osan) koko oli yksi sentti, miten se oli 4 minuutin kuluttua 20 valovuotta? Sehän tarkoittaa valoa nopeamman laajenemisen jatkumista.
Kysymykseen on vastattu aiempien kommenttien yhteydessä.