Arkisto


Kolmekätinen kaukoputki

27.2.2021 klo 17.10, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Toissaviikolla oli etäkonferenssi muinaisista mustista aukoista ja gravitaatioaalloista. Sana ”muinainen” viittaa siihen, ne ovat muodostuneet kauan ennen tähtien syntyä. Ei tiedetä, onko tällaisia mustia aukkoja olemassa. LIGOn ja Virgon havainnot mustista aukoista ovat kuitenkin innoittaneet paljon tutkimusta erilaisista tavoista niiden tuottamiseksi. (Minäkin olen mennyt mukaan touhuun.)

Jos muinaisia mustia aukkoja on olemassa, isoin kysymys on se, miten ne voi erottaa tähtisistä mustista aukoista. Tai toisin päin: mistä tiedämme, että LIGOn ja Virgon näkemät kymmenet toisiinsa törmäävät mustat aukot ovat peräisin tähtien romahduksesta?

Johtopäätös siitä, että törmäysten osapuolet ylipäänsä ovat mustia aukkoja perustuu kahteen seikkaan. Ensinnäkin gravitaatioaalloissa ei näy merkkejä siitä, että niillä olisi monimutkaista rakennetta. Kaikki tähtitieteelliset kappaleet ovat monimutkaisempia kuin mustat aukot – neutronitähdetkin litistyvät enemmän. Toisekseen havaittujen törmäyksen osapuolten massat ovat jokusesta muutamaan kymmeneen Auringon massaa, mitä tähtien romahdukselta odottaisikin.

On tosin havaittu muutamia yllättävän kevyitä ja raskaita mustia aukkoja, joiden alkuperä ei ole selvä. Jos nähtäisiin Aurinkoa kevyempiä mustia aukkoja, niiden olisi pakko olla muinaisia. Mikään tähtitieteellinen tapahtuma ei pysty saamaan aikaan niin pieniä mustia aukkoja, ja syntymän jälkeen mustat aukot voivat vain kasvaa. (Ellei höyrystymistä Hawkingin säteilyn takia oteta huomioon – se on kuitenkin merkittävää vain paljon Auringon massaa kevyempien aukkojen tapauksessa.)

Toinen tapa erottaa muinaiset ja tähtiset mustat aukot olisi nähdä gravitaatioaaltoja ajalta ennen tähtiä. Tämä tarkoittaa kurkottamista ensimmäiseen 100 miljoonaan vuoteen, yli 13 miljardin vuoden päähän ajassa ja 35 miljardin valovuoden päähän paikassa. Nykyiset toisen sukupolven gravitaatioaaltolaitteet eivät näe niin kauas. Konferenssissa Geneven yliopiston Michele Maggiore esitteli suunnitelmia eurooppalaisesta kolmannen sukupolven laitteesta nimeltä Einstein Telescope (yksityiskohtia täällä), joka näkisi noin 50 miljoonaan vuoteen asti.

Kaikissa nykyisissä ja vakavasti suunnitelluissa gravitaatioaaltodetektoreissa (NANOGravia ja muita pulsareiden tarkkailuun perustuvia kokeita lukuun ottamatta) on sama idea: lähetetään valosignaali eri suuntiin, heijastetaan takaisin ja mitataan pituuden tai matka-ajan muutos eri suunnissa.

Einstein Telescope lisäisi herkkyyttä ensinnäkin nykyistä pidemmillä käsivarsilla. LIGOn tunnelit ovat nelikilometrisiä, Einstein Telescopen olisivat kymmenen kilometriä pitkiä. Oleellisempaa on se, että Einstein Telescope sijoitettaisiin 100-300 metriä maan alle. Kuten vuoren sisälle rakennetun japanilaisen toisen sukupolven laitteen KAGRAn tapauksessa, tämä vaimentaa taustamelua. Yhteistä KAGRAn kanssa on myös se, että lämpökohinan minimoimiseksi valosäteitä heijastavat peilit jäähdytettäisiin hyvin kylmiksi, Einstein Telescopen tapauksessa kymmeneen Kelvin-asteeseen, eli -263 Celsius-asteeseen. Ja kuten jo hyväksytyllä kolmannen sukupolven gravitaatioaaltodetektorilla LISA (ja sen kilpailijoilla), Einstein Telescopella olisi kolme kättä LIGOn, Virgon ja KAGRAn kahden sijaan.

Einstein Telescopen odotettaisiin näkevän miljoona mustien aukkojen törmäystä vuodessa. Tämä olisi jatkoa päivitetyn LIGOn, Virgon ja KAGRAn aloittamalle siirtymälle yksittäisten mustien aukkojen tutkimisesta niiden populaation ominaisuuksien selvittämiseen: kuinka paljon ja millaisia mustia aukkoja löytyy eri ajoista ja paikoista. Jos mustat aukot ovat peräisin tähdistä, niiden lukumäärän muutos ajassa seuraa tähtien kehitystä, tietyllä viiveellä. Kaukaisten törmäysten tapahtumahetken selvittäminen gravitaatioaalloista on tosin vaikeaa. Gravitaatioaaltojen muodosta on helppo mitata kohteen etäisyys, mutta ajankohdan kertovan punasiirtymän mittaaminen on hankalampaa.

Samaa periaatetta voi soveltaa mustien aukkojen jakaumaan avaruudessa ajan sijaan. Jos mustat aukot ovat kuolleita tähtiä, niitä on samoissa paikoissa kuin eläviäkin tähtiä. Jos mustilla aukoilla on eri alkuperä, niiden sijaintikin on erilainen. Erityisesti jos mustat aukot muodostavat osan tai kaiken pimeästä aineesta, niiden jakauma on sama kuin pimeän aineen. Galakseissa pimeä aine on levittäytynyt paljon laajemmalle kuin tähdet ja muu näkyvä aine.

Muinaiset mustat aukot eivät ole Einstein Telescopen tärkein kohde. Teleskooppi antaisi myös tarkempaa tietoa neutronitähtien sisärakenteesta sekä paljastaisi galaksien keskustoissa olevien jättimäisten mustien aukkojen siemenet. Kiinnostavaa on myös mustien aukkojen tapahtumahorisontin syynääminen.

Kun musta aukko muodostuu, se väreilee hetken aikaa, kun tapahtumahorisontti säteilee ryppynsä pois ja asettuu aloilleen. Säteiltyjen gravitaatioaaltojen muoto riippuu yleisen suhteellisuusteorian yksityiskohdista, eikä sitä ole vielä saatu mitattua kovin tarkkaan. Törmäyksessä syntyneen mustan aukon rauhoittumisvaihe on lyhyempi ja vähemmän äänekäs kuin mustien aukkojen kiepunta toistensa ympärillä ennen yhtymistä, ja siksi vaikeampi havaita.

Joiden ehdotusten mukaan tapahtumahorisontin säteilyssä voisi nähdä kvanttigravitaation sormenjälkiä. Tämä on vielä spekulatiivisempi idea kuin muinaiset mustat aukot, mutta sen saa tarkistettua Einstein Telescopen muiden mittausten ohella. Toistaiseksi ainoastaan kosmisessa inflaatiossa on päästy kokeellisesti kiinni kvanttigravitaatioon, mutta mustat aukot ovat seuraavaksi lupaavin alue.

Osa Einstein Telescopen kohteista on samanlaisia kuin LISAlla, ja niiden käyttäminen samaan aikaan tehostaisi kummankin toimintaa. Einstein Telescopen kaavaillaan aloittavan vuoden 2035 tienoilla, samoihin aikoihin LISAn kanssa. Mutta LISA on jo hyväksytty, kun taas Einstein Telescope on vasta suunnitteluasteella. Yhdysvalloissa on myös suunnitelma isosta maanpäällisestä gravitaatioaaltoteleskoopista nimeltä Cosmic Explorer, ja molempia tuskin rakennetaan.

Mustien aukkojen ylistettyjen havaintojen ja gravitaatioaaltojen kunnianhimoisten suunnitelmien äärellä on hyvä pysähtyä toteamaan mitä todella on tehty ja mitä luvassa. Toistaiseksi gravitaatioaaltojen kautta ei ole nähty mitään uutta perustavanlaatuista fysiikkaa, eivätkä ne ole myöskään mullistaneet käsityksiä tähtien rakenteesta ja kehityksestä.

Hiukkaskiihdyttimiä rakennettiin vuosikymmeniä löytämään jotain uutta. 1970-luvulta alkaen hiukkasfysiikan Standardimalli ennusti kaikki kiihdytinhavainnot onnistuneesti, mutta silti jokaisen hiukkasen löytäminen kertoi jotain uutta maailmankaikkeudesta. Tämä voittokulku tuli tiensä päähän vuonna 2012, kun Higgsin hiukkanen jäi haaviin. Kiihdyttimien oli jo pitkään toivottu löytävän jotain Standardimallin tuolta puolen, ja oli syitä uskoa, että CERNin LHC-kiihdyttimen energioilla vastaan tulisi viimein supersymmetriaa, tekniväriä, ylimääräisiä ulottuvuuksia tai jotain muuta ennennäkemätöntä, vaikka kävikin toisin.

Gravitaatioaallot ovat uusi ikkuna maailmankaikkeuteen, ja ne voivat paljastaa jotain odottamatonta. Mutta toisin kuin LHC:n tapauksessa, ei ole mitään erityistä syytä ajatella, että nykyisten tai suunnitteilla olevien kokeiden ulottuvilla olisi uutta perustavanlaatuista fysiikkaa, kuten muinaisia mustia aukkoja. Tiedämme vain, että Einstein Telescope tarkentaisi ymmärrystämme tähdistä, mustista aukoista ja gravitaatiosta, ei että se paljastaisi jotain täysin uutta – vaikka läpimurtoja nykyään pitäisikin rutiinilla luvata.

11 kommenttia “Kolmekätinen kaukoputki”

  1. Lentotaidoton sanoo:

    “To reduce gravity gradient noise and seismic noise, and therefore extend significantly the sensitivity toward low frequencies, ET will be built a few hundred meters underground. Two candidate sites remain and are currently under investigation: one in Sardinia, near the former Sos Enattos mine, and one at the three-border region of Belgium-Germany-Netherlands”

    Ihmetyttää esim tuo Sardinia sijoituspaikkana (to reduce…seismic noice). Onkohan missään vaiheessa harkittu maapallon seismisesti vakainta kalliota eli Suomen peruskalliota? Olisi varmaan tuhat kertaa vakaampaa kuin Sardiniassa. Sen tähdenhän täällä esim. ensimmäisenä maailmassa käytetty ydinpolttoaine varastoidaan nimenomaan vakaaksi tunnettuun kallioperään. Muistelen että joskus harkittiin neutriinovastaanottolaboratorioiden sijoittamista Suomen kaivosluoliin.

    1. Syksy Räsänen sanoo:

      En tiedä. Pyhäsalmen kaivokseen tosiaan haluttiin CERNistä tulevan neutriinosäteen detektori, mutta sitä ei saatu sinne. Joitakin pieniä fysiikan kokeita siellä on tehtykin.

      Vaikuttaisikohan Einstein Telescopen tapauksessa sekin, kuinka vaikea on kaivaa satojen metrien syvyyteen?

      Toisaalta oleellisia ovat vain ne seismisen kohinan taajuudet, jotka osuvat detektorin herkkyysalueelle, enkä tiedä miten paljon ne vaihtelevat kivilaadun ja alueen yleisen vakauden myötä,

  2. Lentotaidoton sanoo:

    ”Vaikuttaisikohan Einstein Telescopen tapauksessa sekin, kuinka vaikea on kaivaa satojen metrien syvyyteen?”

    Olkiluodon ydinjätteen loppusijoitussyvyys Onkalossa on 420 metriä, ja valmistuessaan sen suurin syvyys on 520 metriä.
    Sinne vähän sivuonkaloita. Tiet, hissit ja muu infrastruktuuri jne on jo valmiina. Luulisi olevan hyvä tienestilähde Suomelle.

    1. Syksy Räsänen sanoo:

      Paikan valintaan vaikuttaa sekin, mitkä instituutit ovat mukana projektissa. Suomesta ei olla mukana Einstein Telescopessa, joten eipä tänne instrumenttiakaan rakenneta. Gravitaatioaaltodetektorien saralla Suomessa osallistutaan vain LISAan.

  3. Eusa sanoo:

    Olen kuullut, että Lagunan väistymiseen Pyhäsalmen kaivokseen sijoittumisesta vaikutti merkittävästi suomalaisten tiederahoituksen nurkkakuntainen mustasukkaisuus. Ajateltiin, että valtio olisi voinut laittaa reilusti lisärahaa tieteelle, eikä se olisi ollut muualta pois. Noinhan rahoitus ei toimi – intressipiirien pitää pystyä uhraamaan ”omaa rahaa” merkittävästi, jotta kannattaisi kohdentaa yhteisiä verovaroja…

    1. Syksy Räsänen sanoo:

      Mitä tarkoitat ”omalla rahalla”? Kaikki isot fysiikan projektit Suomessa ovat pääosin julkisesti rahoitettuja.

      1. Eusa sanoo:

        Tarkoitan jo tutkimukseen ja koulutukseen korvamerkittyä julkista resurssia.

  4. Lentotaidoton sanoo:

    http://www.et-gw.eu : “new quantum technologies to reduce the fluctuations of the light,”
    Mitä nämä olisivat?

    1. Syksy Räsänen sanoo:

      En ole varma. Einstein Telescopesta puhunut Michele Maggiore on teoreetikko, ja hän keskittyi siihen, mitä laitteella voisi nähdä, ja käsitteli teknologiaa vain lyhyesti. Mutta laitteessa on käsittääkseni tarkoitus parantaa valosignaalien puristamista (squeezing) ja sitä kautta tarkkuutta, kentias tuo viittaa siihen.

  5. Erkki Kolehmainen sanoo:

    ”Mustien aukkojen ylistettyjen havaintojen ja gravitaatioaaltojen kunnianhimoisten suunnitelmien äärellä on hyvä pysähtyä toteamaan mitä todella on tehty ja mitä luvassa.”

    Paljon on tehty ja paljon resursseja käytetty ja löydetty se, mitä haettiin eli Higgsin hiukkanen v. 2012. Syksyn toiveet jonkin uuden ja mullistavan löytymisestä näyttävät melko vaatimattomilta, koska hiukkasfysiikan Standardimalli ei pysty enää ennustamaan uutta. Se tarkoittaa, että Standardimallista on luovuttava ja etsittävä parempaa selittäjää, koska selitettävää kyllä on. Tuo Einstein Telescope ja muut vielä isommat gravitaatioaaltodetektorit ovat kuin maakeskisen maailmankuvan korjausepisyklejä, jotka eivät ratkaise asiaa, koska itse malli on väärä.

    1. Syksy Räsänen sanoo:

      Ongelmana ei ole se, että ei nähtäisi Hiukkasfysiikan Standardimallin tuolle puolen – sen laajennuksia on jo esitetty satoja, vuosikymmenien ajan.

      Mitä Einstein Telescopeen ja muihin gravitaatioaaltokokeisiin tulee, Standardimalli ei kata gravitaatiota, joten nuo kokeet eivät suoraan liity siihen. (Vaikka epäsuorasti kyllä, esimerkiksi neutronitähtien käytös riippuu hiukkasfysiikasta.) Gravitaatioaallot ovat yleisen suhteellisuusteorian osa, ja yleisen suhteellisuusteorian ennusteet on todettu paikkansapitäviksi useissa kokeissa vuosikymmenien ajan. Samalla on esitetty siihenkin monia laajennuksia, joista osaa voidaan näillä kokeilla testata.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Maljat ennen vai jälkeen

19.2.2021 klo 23.40, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Seuratessani eilen Perseverance-luotaimen laskeutumista monitorilta mietin samaa kuin katsoessani kahdeksan vuotta aiemmin Curiosityn laskeutumista Heurekan planetaariossa: ajan suhteellisuutta.

Mönkijän putoaminen ilmakehän reunalta Marsin pinnalle kestää seitsemän minuuttia. Eilen Mars oli yhdentoista valominuutin päässä Maasta, eli mönkijän ja sitä kantaneen avaruusaluksen radiosignaaleilla kesti yksitoista minuuttia matkata tänne.

Valonnopeutta ei voi ylittää, joten kun NASAn kontrollihuoneeseen tulee viesti, että alus on saapunut ilmakehään, on liian myöhäistä vaikuttaa laskeutumiseen mitenkään. Helposti siis ajattelee, että mönkijä on laskeutunut jo neljä minuuttia sitten, nyt vain odotetaan tietoa siitä, miten kävi. Voi jopa tuntua siltä, että olisi johdonmukaisempaa kilistellä laseja silloin, kun kellon mukaan mönkijä koskettaa Marsin kamaraa, ja tarkistaa vain radioviesteistä myöhemmin, että kaikki tosiaan oli sujunut hyvin.

Ei kuitenkaan ole mielekästä sanoa, että mönkijä oli jo laskeutunut, ennen kuin viesti siitä ehtii meille, koska samanaikaisuus on suhteellista.

Jos kaksi eri paikoissa tapahtuvaa asiaa –mönkijä koskettaa Marsin pintaa, Maassa maljojen reunat kohtaavat sen juhlistamiseksi– ovat meidän kellomme mukaan samanaikaisia, niin ne tapahtuvat kaikkien meidän suhteemme liikkuvien havaitsijoiden mukaan eri aikaan. Tämä on esimerkki siitä, että suppean suhteellisuusteorian mukaan kaikki aikavälit ovat suhteellisia, eli erilaisia eri havaitsijoille. Samanaikaisuushan tarkoittaa sitä, että kahden tapahtuman aikaväli on nolla.

Aikavälien suhteellisuus on mitättömän pieni, elleivät nopeudet ole lähellä valonnopeutta. Yllämme 4 kilometriä sekunnissa kiitävästä GPS-satelliitista katsottuna kilistämme maljoja 0.03 nanosekuntia ennen mönkijän laskeutumista; tai 0.03 nanosekuntia sen jälkeen, jos satelliitti liikkuu vastakkaiseen suuntaan.

Aikavälien muutos on iso vain lähellä valonnopeutta. CERNin LHC-kiihdyttimessä, missä protonit matkaavat kohti toisiaan 99.999998% valonnopeudella, niiden törmäykset tapahtuvat meidän silmissämme 6900 kertaa hitaammin kuin protoneille itselleen.

Periaate on kuitenkin sama, riippumatta siitä onko vaikutus iso vai pieni: asioiden voi sanoa tapahtuneen vasta sitten, kun ne ovat niin kaukana menneisyydessä, että niistä olisi ehtinyt tulla meille signaali. Kysymys siitä, mitä Perseverance puuhaa Marsin pinnalla juuri nyt, tai mitä Auringon magneettikenttä tekee juuri nyt, tai mitä viereisessä huoneessa tapahtuu juuri nyt, ei ole hyvin määritelty.

23 kommenttia “Maljat ennen vai jälkeen”

  1. Erkki Kolehmainen sanoo:

    Entä miksei Einsteininkin ihmettelemää aavemaista (spooky) kaukovaikutusta otettu käyttöön, jolloin tuo samanaikaisuuden pohdinta olisi turhaa jorinaa?

    1. Syksy Räsänen sanoo:

      Kvanttifysiikan kaukovaikutuksen ei liity informaation siirtyminen valoa nopeammin.

      Tarkemmin:

      https://journal.fi/tt/article/view/8261/6268

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/miksei-kukaan-ymmarra/

  2. Joksa sanoo:

    Aika-avaruus on teoreettinen käsite eikä sisällä yleistä referensikelloa eri liiketiloissa oleville, mutta eikös sellainen ole maailmankaikkeudessa? Eikö esim. taustasäteilyn lämpötila tai sen keskimääräinen aallonpituus mittaa maailmankaikkeuden aikaa yhtenevästi kaikkialla mikäli maailmankaikkeus laajenee samaa tahtia kaikkialla ja mittaukset voitaisiin tehdä tarkalla tasolla. Eikö sen avulla voi määritellä periaatteellisen kosmisen yhtäaikaisuuden tyyliin ”juuri silloin kun taustasätelyin lämpötila oli/tulee olemaan se ja se”, riipumatta siitä mitä kunkin havainnoijan omat kellot näyttävät ko ajankohtana?

    1. Syksy Räsänen sanoo:

      Kyllä tosiaan. Ja tällaista ajan määritelmää käytetäänkin kosmologiassa. Kun sanotaan, että maailmankaikkeus on 14 miljardia vuotta vanha, niin tarkoitetaan sellaisten havaitsijoiden kelloja, jotka näkevät kosmisen mikroaaltotaustan tilastollisesti samanlaisena joka suunnassa (tai yksinkertaisemmin, joille sen dipoli on nolla).

      Mutta yhtä hyvin voi sitoa ajan määritelmän mihin tahansa muuhun fyysiseen tapahtumaan. Kosmisessa mikroaaltotaustassa ei ole tässä suhteessa mitään erityistä.

      1. Joksa sanoo:

        Aristoteles piti aikaa pragmaattisena muutoksen mittana. Tarvitaan vaan jotakin, kappaleita, aine, joka voi muuttua ja joka luo ja määrittää ajan kulun. Jos ei ole ainetta, ei ole eikä tapahdu mitään eikä aika kulu. Koska kukin peraatteessa voi mitata aikaa haluamillaan enemmän tai vähemmän säännöllisillä muutoksilla, ja jos viestinvälitys ottaa aikansa niin samanaikaisuuden määrittäminen voi olla pahasti hukassa, suorastaan mahdotonta, etenkin jos ei ole käytössä mitään yhteistä synkronointilähdettä.

        Suhtiksen ajan luonne esitetään useimmiten juuri tällaisena, eri havainnoijien yhteismitattomina ajankulkuina, hyvin Aristoteleen aikäkäsityksen oloisena ilmiönä. Esim. Carlo Rovelli sanoo kirjassaan ”Ajan luonne” että ”Maailmankaikkeuden nykyhetki on merkityksetön käsite”.

        Newton oli ajasta päinvastaista mieltä, eli että aika on ”absoluuttinen, todellinen ja matemaattinen”, ja että aika kuluu vaikka ei olisi mitään eikä mikään muuttuisi. Tuo taustasäteilyn nolladipoliaika vaikuttaisi melkolailla Newtonilaisen luonteiselta universaaliselta ajalta. Ei ehkä täydellisen absoluuttista koska ajan kulkuvauhti noin mitattuna voi muuttua maailmankaikkeuden laajenemisnopeuden myötä ja niillä joilla tuo dipoli ei ole nolla ajan, itseisajan, kulku voi on jotain muuta. Koska mikään maailmankaikkeudessa ei ole täysin paikallaan niin kaikkien itseisajat poikkeavat ainakin hitusen nolladipoliajasta, mutta silti se vaikuttaisi luovan pohjan universaalille samanaikaisuudelle.

        Katsoisin ajan luonteeseen sisältyvän nuo molemmat kompponentit, sekä Aristoteelisen että Newtonin näkemysten luonteiset. Suhtis matematisoi Aristoteelisen osuuden ja täydentää siten Newtonilaista näkemyksen samaan tapaan kuin kappaleiden radan laskennassa. Samanaikaisuushan on loppujen lopuksi aina aproksimaatio koska Planckin tarkuudella eivät atomikellotkaan toimi, taustasäteilystä laskettu aika on vaan näistä karkeampi. Ainakin toistaiseksi.

        Toivottavasti tästä on jotakin iloa ajan luonteesta kiinnostuneille.

  3. Minusta näyttää että ollakseen suhteellisuusteorian mielessä jotenkin Lorentz-invariantti, kaukovaikutuksen pitäisi toimia mistä tahansa menneisyyden valokartion ulkopuolelta, ei pelkästään nykyhetkestä jolle ei pitäisi antaa mitään erityisasemaa. Siis myös tulevaisuudesta. Paitsi että se ei ole vaikutus siinä mielessä että informaatiota ei siirry. Mitään ei ehkä siirry, mutta jotain on, nimittäin ne korrelaatiot.

    En ole varma onko tämä oikein ajateltu. Se että Schrödingerin yhtälö on ainakin muodollisesti ei-relativistinen on ymmärrykselleni edelleen jonkinlainen jarru.

    1. Syksy Räsänen sanoo:

      Kyllä, jos ajattelee tilan romahduksen tapahtuvan kaikkialla välittömästi, se menee valokartion ulkopuolelle. Tällöin eri havaitsijoille tila romahtaa eri ajanhetkinä, eli tilan romahdus ei ole absoluuttinen.

      1. Cargo sanoo:

        Mutta eikö tilan romahdus ole lähinnä jakautuneen systeemin ominaisuus, ja koko systeemiä kuvaa vain yksi kello, jolloin mitään suhteellisuutta ei voi ollakaan? Lisäksi tuon romahtamisen havaitseminen taitaa olla hieman ”unusual process”, sillä mitään signaalia siitä ei lähde kaikkien ulkopuolisten havaitsijoiden rekisteröitäväksi. Taas toisaalta, jos havaitsijat ovat lomittuneet havainnoitavan tilan kanssa, niin miten jako suhteelliseen ja absoluuttiseen tapahtuu?

        1. Syksy Räsänen sanoo:

          En tiedä mitä tarkoitat sanoessasi, että ”koko systeemiä kuvaa yksi kello”. Eri havaitsijoilla on kullakin oma kellonsa, jonka käynti riippuu heidän liiketilastaan. Ei ole mitään absoluuttista aikaa.

  4. Lentotaidoton sanoo:

    Räsänen: ”Mutta yhtä hyvin voi sitoa ajan määritelmän mihin tahansa muuhun fyysiseen tapahtumaan. Kosmisessa mikroaaltotaustassa ei ole tässä suhteessa mitään erityistä.”

    Esim. entropiaan. Sehän on ehkä se yleisin käyttämämme ja tajuamamme ”ajan määritelmä”. Tai millä tahansa tähtitieteen ”kellolla”, esim. tähtisukupolvien metallipitoisuudella ja vastaavasti vedyn ja heliumin määrän muutoksilla kosmologisten eonien saatossa. Esim. triljoona vuotta eteenpäin niin vetyä 20%, heliumia 60% ja muita 20%.

    1. Syksy Räsänen sanoo:

      Entropia liittyy tosiaan siihen, että aika menee eteenpäin. Mutta jos halutaan määritellä paljonko se menee eteenpäin, pitää eri havaitsijoilla olla joku asia, jonka kulkua he voivat verrata. Tämä voi olla kosmisen mikroaaltotausta lämpötila, tai samanlainen kaappikello tai jotain. Jos entropian kasvua haluaa käyttää, havaitsijoilla kuitenkin pitää olla samanlainen systeemi, jonka entropian etenemistä tarkastellaan, mikä lienee käytännössä hankalaa.

  5. Cargo sanoo:

    Jos tällainen ajan suhteellisuuden pohdiskelu kiirii filosofian laitoksen kahvihuoneeseen saakka, niin luvassa lienee moderni pythagoralainen tragedia, kun modaalisuuden metafysiikkaa tuskaisina pohdiskelevat filosofit tajuavat, etteivät heidän klassiset teoriansa vastaa todellisuutta kuin rajatapauksina. Vielä kun lisätään syy-seuraussuhteiden kvanttimekaaninen epädeterministisyys, niin näiden maailmanselittäjien ilmeet ovat kuin norjalaisen black metal -bändin promootiokuvastosta.

    1. Syksy Räsänen sanoo:

      Tieteenfilosofit toki tuntevat suhteellisuusteorian ja ovat kirjoittaneet siitä paljon.

  6. Pekka Suikki sanoo:

    Perinteisessä kvanttifysiikassa kahden hiukkasen välisen lomittumisen astetta ei voi muuttaa kajoamatta molempiin hiukkasiin. Uusien mallien valossa tutkijat saattoivat sen sijaan muuttaa kubittien lomittuneisuuden astetta muokkaamalla vain yhtä kubiteista, mitä ei kvanttifysiikassa ole aikaisemmin pystytty osoittamaan. Tämäon suora lainaus T&A nettisivulle ilmestyneestä artikkelista, joka kosketteli Aaltoyliopiston tekemää tutlimusta. Tarkoittaako tämä,että informaatio voisikin siirtyä valoa nopeammin tietyissä olosuhteissa.

    1. Syksy Räsänen sanoo:

      Ei. Tuo juttu on muutenkin harhaanjohtava. Tutkimuksessa on simuloitu tietokoneella erästä systeemiä kvanttimekaniikan epätavallisessa formulaatiossa. Ei siis ole kysymys koetuloksista, jotka olisivat kumonneet mitään.

  7. En oikein ymmärrä ajatusta, että entropialla olisi jotain tekemistä ajan ja sen yhdensuuntaisuuden kanssa. Mielestäni aika on minkä tahansa tapahtuman sisäinen ominaisuus, ja ”yhdensuuntaisuus” sisältyy jo ajan merkitykseen. Tapahtumat voivat olla symmetrisiä, ei aika. Jos meillä on tapahtuma a->b, ja myös tapahtuma b->a on mahdollinen, niin edellisessä tapauksessa a on b:n menneisyyttä ja jälkimmäisessä b on a:n menneisyyttä.

    1. Syksy Räsänen sanoo:

      Aika ei ole aineen ominaisuus. Yleisen suhteellisuusteorian mukaan aika on osa aika-avaruuden kokonaisuutta, joka olisi olemassa ilman ainettakin. Ei kuitenkaan tiedetä, miksi ajassa voi matkata vain yhteen suuntaan. Ei myöskään olla varmoja, miten entropian kasvu liittyy tähän.

    2. Jos olisi mahdollista matkustaa aika-avaruudessa menneisyyteen, matkaaja ei kuitenkaan tulisi nuoremmaksi vaan vanhenisi koko ajan. Tämä kertoo jotain ajan alkuperäisestä merkityksestä. Tehtyä ei saa tekemättömäksi eikä tapahtunutta tapahtumattomaksi. Yksisuuntaisuus on ajan looginen ominaisuus.

      Minun on vaikea kuvitella aikaa ilman tapahtumista, ilman kokemista, pelkkänä abstraktina geometriana, ilman kelloja jotka mittaavat maastoa jossa liikutaan.

      Mielestäni ajalla tarkoitetaan näitä kahta asiaa: (1) kokemuksen vaihtumista uudeksi kokemukseksi (alkuperäinen aika) ja (2) sitä mitä mittaamme kelloilla (fysiikan aika).

      1. Syksy Räsänen sanoo:

        No, fysikaalisen todellisuuden luonnetta ei voi selvittää pohtimalla, ja usein teoriat ovat ristiriidassa omien ajatusten tai filosofisten ideoiden kanssa.

        Mutta yleisen suhteellisuusteorian mukaan ajassa taaksepäin matkustaminen (joka on yleisen suhteellisuusteorian mukaan mahdollista – emme tiedä kuvaako tämä yleisen suhteellisuusteorian piirre todellisututa) tosiaan ei tarkoita sitä, että havaitsijan kello kulkisi taaksepäin.

  8. Lasse sanoo:

    Mielenkiintoinen artikkeli. Pisti ajattelemaan. Jos meillä on kolme tarkkaa synkronoitua kelloa ja kaksi niistä lähetetään kulkemaan pienellä nopeudella vastakkaisiin suuntiin. Kun ne ovat etääntyneet meistä niin jos olemme absoluuttisessa liiketillassa kellojen välisen akselin suunnassa niin toinen kello näyttää jätätäneen ja toinen edistäneen sen vuoksi että kelloista lähteneet fotonit saapuvat luoksemme eri aikoina Tämä näennäinen aikaero on riippuvainen absoluuttisesta nopeudesta ja kellojen välisestä etäisyydestä. Pitääkö paikkansa?

    1. Syksy Räsänen sanoo:

      Ei ole absoluuttista liikettä eikä absoluuttista nopeutta. Mutta tarkoitat ilmeisesti, että nopeutemme itseisarvo on erilainen eri kellojen suhteen. Kumpikin kello jätättää, koska ne liikkuvat meidän suhteemme. Tämä jätättäminen riippuu vain meidän ja kellon välisestä nopeudesta.

      1. lasse sanoo:

        En tarkoita sitä. Kellojen liiketilahan on lähes sama. Meistä edessä olevasta kellosta valonnopeudella saapuva informaatio tavoittaa meidät aikaisemmin koska olemme liikkuneet sitä kohtaa kohti jossa valo lähti liikkeelle ja jäljessä tulevasta myöhemmin koska valon nopeus on vakio. Tällöin liikuvassa järjestelmässä edestä tulevan valon kulkema matka on lyhyempi kuin takaa tulevan, Sekä pituuden että ajan muutokset ovat samoja mutta näennäinen samanaikaisuus poikkeaa

        1. Syksy Räsänen sanoo:

          Jos nopeutemme itseisarvo kellojen suhteen on erilainen (kuten tässä ilmeisesti on tarkoitus), ne käyvät meidän näkökulmastamme eri tahtia, oli etäisyys mikä hyvänsä. Lisäksi tietysti signaalien saapumisaika on erilainen jos etäisyys on erilainen.

          Ja varmuudeksi vielä selvennettäköön, että kaikki samanaikaisuus on ”näennäistä”, eli suhteellista, paitsi jos tapahtumat tapahtuvat samassa pisteessä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *