Arkisto
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- heinäkuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- marraskuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- lokakuu 2017
- syyskuu 2017
- elokuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Taivaan merkit
Mainitsin viime kuussa, että kosmisen mikroaaltotaustan perusteella tiedämme, että pimeä aine (jos sitä on olemassa) on tähtiä vanhempaa. Merkinnän kommenteissa pyydettiin avaamaan sitä, miten kosmisesta mikroaaltotaustasta voi päätellä tällaisia asioita. Tämä onkin hauska aihe.
Varhaisina aikoina maailmankaikkeuden aine oli hiukkaskeittoa. Kun avaruus laajenee, keiton lämpötila laskee. Kun maailmankaikkeus saavutti 380 000 vuoden iän, lämpötila laski alle 3 000 kelvinin. Tällöin keiton valohiukkasten energia ei enää riittänyt atomiytimien ja elektronien välisen sidoksen rikkomiseen, joten ne yhtyivät atomeiksi.
Tätä ennen valo, elektronit ja ytimet olivat tiukasti kytköksissä, kun valo poukkoili elektronien sähkövarauksista, ja maailmankaikkeus oli läpinäkymätön. Atomit ovat sähköisesti neutraaleja, joten niiden muodostuttua valo ei juuri vuorovaikuta aineen kanssa, ja on siitä lähtien matkannut jokseenkin esteettä halki maailmankaikkeuden.
Tämä valo tunnetaan nimellä kosminen mikroaaltotausta. Se on kirjaimellisesti valokuva maailmankaikkeudesta 380 000 vuoden iässä, ja näyttää tältä:

Kuvassa näkyy taivas mikroaaltoaallonpituudella, kun on poistettu Linnunradasta ja joistakin muista lähellä olevista lähteistä tuleva säteily. Punakeltaiset alueet ovat kirkkaampia ja siniset himmeämpiä; erot ovat muutaman sadastuhannesosan kokoisia. Näistä taivaan merkeistä voi lukea, millainen maailmankaikkeus oli nuorena.
Suoraviivaisin päätelmä on se, että valon ja tavallisen aineen tiheys oli 380 000 vuoden aikaan sama kaikkialla sadastuhannesosan tarkkuudella. Tarkempaa tietoa saa tutkimalla sitä, miten täplien kirkkaus riippuu niiden koosta. Vältän blogissa kuvaajien käyttämistä, mutta tätä en malta olla laittamatta:

Kuvassa on x-akselilla täplän koko taivaalla, ja y-akselilla se, paljonko kirkkaus poikkeaa keskiarvosta. Isoimmat täplät ovat 90 asteen kokoisia; Planck pystyy erottamaan pienimmillään vajaan asteen kymmenesosan kokoisia täpliä.
Kirkkaimpia ovat noin asteen kokoiset täplät. Tästä voi päätellä sen, miten nopeasti maailmankaikkeus laajenee. Sitä varten pitää tietää, miten täplät syntyvät.
Kun keskivertoa tiheämmät alueet varhaisina aikoina gravitaation takia tiivistyivät, valon paine työnsi niitä takaisin, mikä johti vuoroittaiseen tiivistymiseen ja harventumiseen. Edestakainen liike synnytti aaltoja, kuin järven pintaa vatkaava käsi. Aallot matkasivat nopeudella joka on noin puolet valonnopeudesta. Vanhimmat aallot olivat 380 000 vuoden aikaan ehtineet matkata 400 000 valovuotta, nuoremmat vähemmän. (Kuljettu matka on isompi kuin maailmankaikkeuden ikä kertaa nopeus, koska avaruus laajenee.)
Kappaleen kulmakoko taivaalla on sen pituus jaettuna sen etäisyydellä: mitä pienemmältä kappale näyttää, sitä kauempana se on. Kun siis tiedämme aaltojen pituuden ja kulmakoon, voimme päätellä kuinka kaukaa kosminen mikroaaltotausta on nykypäivään asti matkannut. Jos valon ja aineen eron hetkeä siirtäisi kauemmas tai lähemmäs, niin kaikkien täplien koko taivaalla muuttuisi tasaisesti. Tästä voi mitata etäisyyden tarkasti.
Koska tämä etäisyys riippuu siitä, miten maailmankaikkeus on laajentunut, kosmisesta mikroaaltotaustasta voi päätellä maailmankaikkeuden laajenemisnopeuden. Kosmologian tämän hetken merkittävin ristiriita ennusteiden ja havaintojen välillä onkin se, että tällä tavalla saa eri tuloksen kuin mittaamalla laajenemisnopeuden suoraan siitä, miten nopeasti lähellä olevat galaksit meistä etääntyvät.
Entäpä se pimeä aine? Aaltojen pituus taivaalla kertoo vain etäisyyden, mutta niiden korkeudesta voi lukea monta seikkaa. Mitä vahvemmin tiheiden alueiden gravitaatio varhaisina aikoina vetää ainetta puoleensa, eli mitä enemmän massaa niissä on, sitä voimakkaampia aallot ovat. Toisaalta näkyvä aine (eli elektronit ja atomiytimet) törmäilee koko ajan valoon, mikä hidastaa sen liikkeitä kitkan tavoin, ja vaimentaa aaltoja. Pimeällä aineella ei ole tällaista ongelmaa.
Mitä enemmän on pimeää ainetta, sitä korkeampi on pisimmän aallon aallonhuippu, ja mitä enemmän on näkyvää ainetta, sitä matalampi se on. Yhdestä huipusta ei siis voi päätellä erikseen pimeän aineen ja tavallisen aineen määrää, koska niitä molempia sopivasti kasvattamalla korkeus pysyy samana.
Mutta pimeä aine ja näkyvä aine vaikuttavat eri tavalla kuvassa näkyviin eri huippuihin. Kuvassa ei ole erotettu aallonharjoja ja -pohjia: siinä näkyy vain paljonko kirkkaus poikkeaa keskiarvosta, ei onko alue keskivertoa kirkkaampi vai himmeämpi. Joka toinen huippu vastaa itse asiassa aallonharjaa ja joka toinen aallonpohjaa.
Näkyvän aineen kitka syventää aallonpohjia ja laskee aallonhuippuja, kun taas pimeän aineen gravitaatio vahvistaa molempia. Niinpä ottamalla huomioon sekä ensimmäisen että toisen huipun korkeuden voi päätellä sekä pimeän aineen että näkyvän aineen tiheyden. Huippujen korkeuksien suhteesta voi lukea, että pimeää ainetta on noin viisi kertaa niin paljon kuin näkyvää ainetta.
Pimeä aine esitettiin alun perin selittämään sitä, miksi näkyvä aine galakseissa ja galaksiryppäissä liikkuu nopeammin kuin mitä sen oma gravitaatio pystyy selittämään. Tarvittiin ainetta, jota ei voi nähdä, eli joka ei juuri vuorovaikuta valon kanssa. Vapaus valosta osoittautui sittemmin avaimeksi myös kosmisen mikroaaltotaustan täplien ymmärtämiseen. Tämä on hyvä esimerkki siitä, miten oikeansuuntaiset ideat ratkaisevat myös uusia ongelmia ilman erillistä säätämistä – eli tekevät onnistuneita ennustuksia.
Ainoa vaihtoehto pimeälle aineelle on se, että gravitaatio käyttäytyisi eri tavalla kuin mitä yleinen suhteellisuusteoria ennustaa. On kuitenkin vaikea selittää, miksi kosmisen mikroaaltotaustan muodostumisen aikaan gravitaatio olisi kuusi kertaa odotettua vahvempi, mutta Aurinkokunnassa ei ole nähty poikkeamia yleisen suhteellisuusteorian ennusteista, vaikka niitä on mitattu sadastuhannesosan tarkkuudella. Yksikään ehdokas uudeksi gravitaatioteoriaksi ei ole pystynyt edes jälkikäteen selittämään kosmisen mikroaaltotaustan kaikkien huippujen korkeuksia, saati ennustamaan niitä.
Kosmisen mikroaaltotaustan analyysi on oikeasti monimutkaisempaa kuin vain huippujen korkeuksien ja aineen tiheyksien vertaaminen. Mikroaaltotaivaan merkeistä voi lukea fotonien ja neutriinojen tiheyden, testata kosmisen inflaation ennustetta siitä, millainen aaltojen lähteinä toimivien ylitiheiden alueiden jakauma on, ja paljon muuta.
Kosminen mikroaaltotausta on ehkä antoisin yksittäinen kosmologinen havainto: se sisältää paljon tietoa, sitä voidaan mitata tarkasti, ja sen teoreettinen tarkastelu on suoraviivaista. On paljon helpompi mallintaa pieniä aaltoja kaasussa kuin vaikkapa törmääviä mustia aukkoja.
Seuraavaksi halutaan mitata tarkemmin kosmisen mikroaaltotaustan fotonien polarisaatiota, eli sitä, mihin suuntiin ne värähtelevät. Tuloksia on odotettavissa kymmenen vuoden kuluessa japanilaiselta satelliitilta LiteBIRD sekä kansainvälisiltä maanpäällisiltä teleskooppihankkeilta Simons-observatorio ja CMB-S4.
27 kommenttia “Taivaan merkit”
Vastaa
Lomittuneilla fotoneilla
Ruotsin kuninkaallinen tiedeakatemia ilmoitti tänään, että vuoden 2022 Nobelin fysiikan palkinnon saavat Alain Aspect, John F. Clauser ja Anton Zeilinger ”lomittuneilla fotoneilla tehdyistä kokeista, jotka osoittivat Bellin epäyhtälön rikkoutumisen ja olivat kvantti-informaatiotieteen edelläkävijöitä”. Kuten tavallista, tiedeakatemia julkaisi erikseen suurelle yleisölle ja fyysikoille suunnatut taustoitukset.
Fyysikot tykkäävät arvella Nobelin palkintoja omalle alalleen, mutta olen vuosia kuullut niidenkin, jotka eivät työskentele kvanttimekaniikan perusteiden ja kvantti-informaation parissa kyselevän koska siitä myönnetään Nobelin palkinto Alain Aspectille ja muille avaintutkijoille.
Nyt palkitun tutkimuksen ytimessä on se, miten kvanttimekaniikka eroaa klassisesta mekaniikasta, ja samalla arkiajattelusta. Kvanttimekaniikan mukaan todellisuus ei ole määrätty: asioilla on todennäköisyydet olla eri tavoin, sen sijaan että ne olisivat yhdellä tavalla.
Erwin Schrödinger, yksi kvanttimekaniikan löytäjistä, päätti havainnollistaa kvanttimekaniikan tätä piirrettä ajatuskokeella missä on kissa, mikä on varmistanut sen, että idea on levinnyt laajalle. Schrödingerin kissa on sekoituksessa kuollutta ja elävää, olematta kumpaakaan. Schrödinger esitti ajatuskokeen vuonna 1935 osoittaakseen, että koska johtopäätös kissan tilasta on outo, kvanttimekaniikan pitää olla puutteellinen. Nykyään asia nähdään toisin päin: koska kvanttimekaniikka pitää niin suurella tarkkuudella paikkansa, todellisuus on outo.
Kaksoisrakokokeessa on kokeellisesti mitattu jäljet siitä, että hiukkasta kvanttimekaniikassa kuvaava todennäköisyysaalto samaan aikaan kulkee eri reittejä, sen sijaan että hiukkasella olisi määrätty rata. On kuitenkin esitetty niin kutsuttuja piilomuuttujateorioita, joiden mukaan hiukkasten tila on itse asiassa koko ajan määrätty, me vain emme tiedä mikä se on, ja ne pystyvät selittämään kaksoisrakokokeen tuloksen siinä missä kvanttimekaniikka.
John Bellin vuonna 1964 esittämällä epäyhtälöllä on ollut keskeinen rooli siinä, että kvanttimekaniikan outous on hyväksytty ja piilomuuttujateorioiden suosio on jäänyt vähäiseksi. Tämä epäyhtälö on Aspectin, Clauserin ja Zeilingerin työn pohjalla. Olen kirjoittanut Bellin epäyhtälöstä tarkemmin täällä, ja sitä valaistaan myös tiedeakatemian taustamateriaalissa. Askel askeleelta seurattavan selkeän selityksen voi lukea Tanya Bubin ja Jeffrey Bubin sarjakuvasta Totally Random.
Jos luodaan kaksi fotonia, joiden polarisaatio (eli värähtelysuunta) on vastakkainen, niin mittaamalla yhden polarisaation tietää heti toisenkin polarisaation. Tätä ominaisuutta sanotaan lomittumiseksi. (Englanniksi entanglement, kirjaimellisesti yhteenkietoutuminen.) Kvanttimekaniikan mukaan fotonin tila ei ole määrätty ennen kuin sitä mitataan. Piilomuuttujateorioissa fotonien tilat ovat koko ajan määrätyt, emme vain ennen mittaamista tiedä mitkä ne ovat.
Bell hahmotti, että nämä kaksi mahdollisuutta voi erottaa kokeellisesti mittaamalla eri fotonien polarisaatiota eri suunnissa ja tutkimalla tulosten tilastollista riippuvuutta. Missä tahansa teoriassa, jossa fotonien tila on aina määrätty, tämä riippuvuus toteuttaa Bellin epäyhtälön. Kvanttimekaniikassa epäyhtälö rikkoutuu, koska lomittuneen systeemin osat ovat kytköksissä toisiinsa rajattoman pitkien etäisyyksien yli vahvemmin kuin teoriassa, missä systeemin tila on koko ajan määrätty (eikä voida viestiä yli valonnopeudella).
Bellin epäyhtälö on kvanttimekaniikan sääntöjen suoraviivainen seuraus. Noiden yksinkertaisten sääntöjen vieraudesta arkiajattelulle kertoo paljon se, että kesti vuosikymmeniä niiden löytämisestä 1920-luvulla siihen, että Bell esitti nyt nimeään kantavan epäyhtälön.
Teknologista kekseliäisyyttä taasen kuvaa se, että jo vuonna 1972, kahdeksan vuoden kuluttua, Clauser kollegoineen osoitti kokeellisesti, että Bellin epäyhtälö rikkoutuu kvanttimekaniikan ennustamalla tavalla. Tiedeakatemia mainitsee, että yksi ongelma Clauserin tiellä oli se, että hän oli kokeellinen astrofyysikko, joka oli palkattu tekemään radiotähtitiedettä. Clauser sai kuitenkin sovittua, että saa käyttää puolet ajastaan Bellin epäyhtälön testaamiseen. Tämä muistuttaa joustavuuden merkityksestä tutkimusaiheiden muuttamisessa nykyaikoina, missä tutkijoiden oletetaan tietävän tutkimuksensa kulun viisi vuotta etukäteen.
Tiedeakatemia kirjoittaa suurelle yleisölle suunnatussa taustoituksessa, että Clauserin tulosten mukaan ”kvanttimekaniikkaa ei voi korvata millään piilomuuttujateorialla”. Tämä ei ole ihan totta. Tutkijoille suunnattu teksti on huolellisempi, ja siinä selitetään, että tällaisessa piilomuuttujateoriassa tiedon täytyisi kulkea valoa nopeammin (mikä on ristiriidassa suhteellisuusteorian kanssa). Itse asiassa vasta Aspectin ja kollegoiden kehittyneemmät kokeet osoittivat, että tiedon pitäisi kulkea valoa nopeammin, jotta piilomuuttujateoria voisi selittää tulokset.
Bellin epäyhtälöön liittyvä tutkimus on avannut oven kvanttimekaniikan perusteiden hedelmälliselle soveltamiselle teknologiaan. Tiedeakatemia korostaakin perusteluissaan kvanttitietokoneiden ja kvanttikryptografian kasvavaa merkitystä. Näillä aloilla lomittumiseen liittyvien kvanttimekaniikan piirteiden ymmärtäminen ja käyttäminen teknologisesti –missä erityisesti Zeilinger on kunnostautunut– on avainroolissa. Jos Bell ei olisi kuollut vuonna 1990, hänetkin olisi luultavasti palkittu Nobelilla.
Nobelin palkinnot keskittävät paitsi suuren yleisön myös tiedeyhteisön huomiota ja houkuttelevat tutkijoita palkitulle alalle. Gravitaatioaaltojen suora havaitseminen vuonna 2015 ja palkitseminen Nobelilla 2017 ovat tehneet niistä muodikkaan tutkimuskohteen, jota mietitään monissa muissakin yhteyksissä kuin siinä, mikä johti palkintoon. Ehkäpä tämän vuoden palkinto lisää suosiota Bellin epäyhtälön rikkoutumisen ja muiden kvantti-ilmiöiden tutkimiseen myös kosmologiassa.
Kosmisesta inflaatiosta, mikä on ensimmäisenä yhdistänyt kvanttifysiikan ja yleisen suhteellisuusteorian tavalla joka on ennustanut kokeiden tuloksia yksityiskohtaisesti oikein, ei olekaan vielä myönnetty Nobelin palkintoa, vaikka jotkut kosmologit ovat sellaista povanneet.
35 kommenttia “Lomittuneilla fotoneilla”
-
Suurin molekyyli, jolla kaksoisrakokoe on tehty, sisälsi n. 2000 atomia ja sen molekyylipaino oli n. 25000. Ja tämäkö sitten menee kahden eri raon kautta ja kasautuu uudelleen yhdeksi rakojen jälkeen. Ottaen huomioon, kuinka vaikeaa uusien molekyylien valmistamien saattaa olla, niin ei kuulosta kovin loogiselta! Älkää viitsikö älyttää vanhaa kemstiä!
-
Tässä puhutaan arktodellisuudesta ja kvanttifysiikasta. Missä on se raja, jonka jälkeen arkielämän havainnot alkavat pitää paikkansa ? Eli että esim. auto on todella tuossa ja että kysymys ei ole todennäköisyysjakaumasta ?
-
Erkki Kolehmainen on mielestäni puolittain oikeassa.
Voi olla, että kvanttifysikaalisesti kuvatun kissan ja naapurin katin välillä on jokin toistaiseksi ylittämätön käsitteellinen kuilu, mutta en ymmärrä, mitä tekemistä tällä on todellisuuden tai harhan kanssa. Eiköhän kysymys ole havaitsemisen tasoista ja kuvausten tarkoituksenmukaisuudesta. On itse asiassa melko absurdi ajatus, että arkielämämme olisi jotenkin perustavalla tavalla harhaista. Syksyn muuten ansiokkaissa esityksissä tämä ajatus on aina tuntunut minusta todella oudolta, enkä ole löytänyt sille kunnon perusteluja. Ainoa johtopäätös lienee, että kysymyksessä on äärimmilleen viety fysikalismi, siis filosofinen kannanotto, joka ei perustu fysiikkaan.
-
Juuri näin. Fyysikko ei tarvitse mitään ihmeaivoja. Kun Einstein kuoli, niin patologit ryntäsivät tutkimaan hänen aivojaan, mutta ei sieltä mitään ihmeellistä löytynyt – samaa harmaata ja valkoista massaa kuin muillakin. Ei edes niiden koko ollut tavallista suurempi. Syksyn asenne on tyypillistä ihmiselle, joka haluaa nähdä työnsä erityisen arvokkaana ja merkittävänä. Toki sellainen ajattelu on luvallista (ja tavallista) ellei se johda muiden vähättelyyn!
-
-
On hyvä että kvantti-ilmiöt saavat julkisuutta, koska niissä on vielä paljon oppimista ja sulateltavaa. Vaikka kvanttimekaniikan tiedetään olevan totta, maailmankuvallisesti ollaan vähän juututtu jonnekin 1800-luvun alun kellokoneistouniversumiin. Vaikka asian varsinainen ymmärtäminen onkin vaikeaa, se on jo hyvä askel eteenpäin että tulee ihmetelleeksi miten maailmankaikkeuden aaltofunktiosta syntyy havaintokokemus klassista fysiikkaa noudattavasta kehosta joka on osa ympäröivää kaikkeutta. Ehkä kvanttifysiikka itsessään on selvä juttu, mutta maailma ei!
-
Jos oletetaan,että aika ja avaruus ovat jotenkin seurausta energiasta ja vuorovaikutuksesta, niin eipä tuo lomittuminen ole psykologisesti mikään mahdoton asia: jos hiukkaset ovat osa samaa kvanttimekaanista systeemiä, niin muutokset voivat tapahtua riippumatta ulkoisesta ajasta ja avaruudesta.
Mutta voisiko Dr. Räsänen valaista meitä uteliaita maallikoita siitä, että mitä yksöis- tai kaksoisrakokokeessa oikein tapahtuu? Kun siis hiukkasta kuvaava aalto tulee raolle, mikä aiheuttaa tilan muutoksen, niin kuka/ketkä sitä hiukkasta oikein havaitsee ja minne se tieto tallentuu? Ja kun hiukkanen jatkaa aaltomaisesti matkaansa ja lopulta osuu havaintolevylle, niin mikä sen paikallistumisen aiheuttaa ja vastaako se jotenkin sitä, että hiukkasen aalto sujahtaa äärimmäisen kapeaan ’yksöisrakoon’, mikä nostattaa suuren, välähdyksenä ilmenevän liikemäärän?
Lisäksi, tarkoittaako tuo kvanttimekaaninen aalto ylipäätään yhtään mitään, jos se ei vuorovaikuta ympäristönsä kanssa? Tuli meinaan Descartesin ”ajattelen, siis olen” lausahduksesta mieleen modernimpi versio: ”vuorovaikutan, siis olen” 🙂
-
Jos olemassaololla viitataan mitattavaan olemassaoloon eli havaintoon, niin havainto vaatii vuorovaikutuksen, joten siinä mielessä ”vuorovaikutan, siis olen” voisi olla tämän järkevältä kuulostava yleistys. Kuitenkin muistaen että vuorovaikutuskaan ei ole absoluuttinen käsite, esimerkiksi koska on tilanteita jossa samaa ilmiötä voidaan kuvata kahdella yhtäpitävällä (kvantti)teorialla, joista toinen on vahvasti ja toinen heikosti vuorovaikuttava.
Kvanttiteoria selittää havainnot, mutta ei havaitsijaa. Havaitsijaa on vaikea mallintaa, koska se vaikuttaisi olevan tolkuttoman monimutkainen kvanttitila. Tai ehkä se on koko maailmankaikkeus.
-
Vuorovaikutus on ontologisesti fysikaalisuuden keskiössä. Lomittumiskorrelaatiokin voidaan todentaa vasta kun tehdään vertailu vaihtamalla tietoa vuorovaikutussignaalein.
Mittaamisen fudamentaali haaste puolestaan on se, että mittalaite on osa mitattavaa vuorovaikutusjatkumoa.
-
-
Minusta on outoa, että kvanttifysiikan ilmiöiden todennäköisyysjakauma tiivistyy, kun tullaan arkielämän ilmiöihin. Äkkiä luulisi, että kun muuttujien määrä kasvaa, niin todennäköisyysjakauma leviää entisestä. Ihan kuin kvantti-ilmiöillä olisi ”pyrkimys determinismiin” isommassa skaalassa ja koko kvanttifysiikka olisi jotenkin skaalautuva. Sille ei varmaan ole mitään teoriaa tai perustetta?
Sitten kysyisin vielä, että on ihan selvä, että jos fotonipari syntyy ja toinen on sininen ja toinen on punainen, niin kun tiedämme toisen värin, niin tiedämme toisen, mutta voidaanko tuo spin siis muuttaa, eli voidaan maalata punainen pallo siniseksi, jolloin toisen fotonin spin muuttuu samalla hetkellä. Jotenkin arkijärkeen sopisi joku oskillointi, jossa spinit sykronoituvat syntyhetkellä ja muutoksessa emme oikeastaan muuta mitään, vain havaitsemme tietyn spinin, joka olisi vaihtunut ilman mitään väliintuloa, ja mitään informaatiota ei liiku.
Ymmärrän toki, että kvanttifysiikan puolesta puhuu moni muukin asia. Tämä ei ole mikään oma nojatuoliteoria, vaan kysymys.
-
Kvanttifysiikan ilmiöt ovat tilastollisia. Hiukkasten tila on epämääräinen ja makroskooppisesti havaitsemme keskiarvotilan. Kyse ei ole determinisyydestä. Pohjimmiltaan kaikki perustuu kvanttikenttiin ja hiukkaset ovat niiden satunnaisia eksitaatioita.
-
-
”,,,koska lomittuneen systeemin osat ovat kytköksissä toisiinsa rajattoman pitkien etäisyyksien yli vahvemmin kuin teoriassa, missä systeemin tila on koko ajan määrätty (eikä voida viestiä yli valonnopeudella).”
Jos ”lomittumisesta” todella seuraa mahdollisuus viestiä yli valonnopeudella, niin se ei voi pitää paikkaansa eikä sellaista voi olla olemassa. Syksyn ansioksi on sanottava, että hän kirjoittaa tekstiinsä argumentin, joka tekee tyhjäksi v. 2022 fysiikan Nobel-palkinnon perusteet ja hänen aiemmat pohdiskelunsa lomittumisesta!
-
Lomittumiseen ei liity kommunikaatiota yli valonnopeudella. Kuitenkin sitä käyttämällä joissakin peleissä voidaan pelata niin vahvasti, että kvanttimekaniikasta tietämätön tarkkailija luulee että pelaajat huijaavat kommunikoimalla keskenään. Eli ulkoisen tarkkailijan mielestä yliluonnollista kommunikaatiota tapahtuu, vaikka toimijoiden itsensä näkökulmasta ei. Näille ajatuskokeille on annettu nimi pseudotelepatia. Niiden viimeaikaisista käänteistä olisi mukava kuulla joskus lisää. Lähde: wikipedia:Quantum_pseudo-telepathy. Niitä pelejä oli tuolla sivulla aiemmin vain yksi, mutta nyt siellä on toinenkin (GHZ).
-
Katoaako fotonin polarisaatio fotonin joutuessa mustaan aukkoon, ts onko mustalla aukolla jonkinlainen fotonin aiheuttama ”polarisaatio-informaatio” tai onko musta aukko täysi polarisaatiosta vapaa?
Kysymys liittyy ajatusleikkiin, jossa kaksi fotonia on lomittunut ja toinen fotoni joutuu mustaan aukkoon.
Jos fotonin mustaan aukkoon joutumisen jälkeen mitataan mustan aukon ulkopuolella olevan fotonin polarisaatio, niin tiedetäänkö myös tässä tilanteessa mustaan aukion joutuneen polarisaatio (ja pitäisikö sen jotenkin ”näkyä” mustan aukon toiminnassa)?
Ja jos oletetaan mustan aukon ajan myötä haihtuvan Hawkingin säteilyn myötä, niin tuleeko polarisaatio-informaatio sen myötä ”ulos” mustasta aukosta?
-
Vääntäisitkö rautalangasta, jos informaatio ei (edelleenkään) siirry valoa nopeammin, ”mikä” jos mikään siirtyy kun toista hiukkasta tarkkaillaan ja sen pari myöskin ilmaisee positionsa (tarkkailusta johtuen)?
Onko lomittuminen pikemminkin jakaantuneen tai jakaantuneiden hiukkasten ominaisuus kuin ”informaationsiirto”?
hyvä luento!
kysymys; voiko maailmankaikkeuden laajentuminen , johtua (mahdoliisesti) kauempana olevien universumien vetovoimalla?
Maailmankaikkeus on kaikki aika ja avaruus, mitä on olemassa. Avaruuden laajenemisesta, ks. http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu
mutta eikö näitä multiversumi hommia ole esitetty?
On, mutta niissä yleensä ”muilla maailmankaikkeuksilla” on kullakin oma erillinen aika-avaruutensa, joka ei ole yhteydessä meidän aika-avaruuteemme. Joskus sanalla ”maailmankaikkeus” myös viitataan oman avaruutemme kaukana toisistaan oleviin osiin.
Multiversumi-ideasta tarkemmin, ks.
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikenlaisia-selityksia/
Ja nämä eivät voi vetovoimallaan laajentaa omaa kaikkeuttamme?
Avaruuden laajenemisen syynä ei ole se, että kappaleet vetävät toisiaan puoleensa.
luulin että laajentumisen syytä ei vielä tiedetty?
On tiedetty sata vuotta, vuodesta 1922 asti. Siitä, miksi laajeneminen on viime aikoina kiihtynyt, ei tosin ole varmuutta.
voiko universumia laajentavuminen johtua toisten universumien vetovoimalla?
vai onko mahdollista että me itse sattumalta sijaitsemme laajentuvassa kohtaa universumia?
Maailmankaikkeus on kaikki aika ja avaruus, mitä on olemassa. Avaruuden laajenemisesta, ks. http://www.tiede.fi/artikkeli/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu
Eikö maaimankaikkeuden sijaan olisi luontevinta puhua yksinkertaisesti kaikkeudesta?
Miksipä ei.
Taustasäteilyssä on havaittu selkeästi kylmempi alue tai ehkä useampia. On esitetty, että se voisi olla jälki kosketuksesta toiseen universumiin. Voidaanko tällaiset ajatukset tyrmätä?
Kyseinen ”kylmänä täplänä” tunnettu alue ei itse asiassa ole poikkeuksellisen kylmä. Kyseessä saattaa olla pelkkä tilastollinen sattuma.
Mainitsemasi selitys täplälle viittaa ideaan, että kosmisen inflaation aikana olisi syntynyt kuplia, joiden törmäyksestä olisi jäänyt jälki inflaatiota ajavaan kenttään, jonka kosminen mikroaaltotausta sitten perii. Onhan se mahdollista, mutta täplä ei ole tilastollisesti niin harvinainen, että se antaisi paljon tukea tällaiselle tapahtumalle.
Jotenkin kiehtovaa ajatella, että siinä hiukkassopassa alussa oli ns kaikki, siis jos ajattelee ikäänkuin nykyhetkestä taaksepäin. Ajan, liikkeen, lämmön jne lisäksi.
Eikä siinä keitossa ilmeisesti ollut mitään mille ei löytynyt käyttöä.
Hieman aineen muodonmuutoksista tässä:
https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/tuhoutuuko-kaikki/
sen verran vielä pimeästä aiheesta;
koska painovoima ajatellaan usein avaruuden kaareutumisena; onko avaruutta laajentavan pimeän aineen aiheuttama kelmu aika-avaruuteen ”negatiivinen”? pahoittelut kysymystulvasta
Mitä tarkoittaa tässä ”kelmu” ja ”negatiivinen”?
normaali massa esitetään aika-avaruuden kaareutumisena montulle ”alaspäin” – näin ollen pimiä aine kaareuttaa aika-avaruutta ”ylöspäin” satulan tapaan?
Tällaista aika-avaruuden kaarevuutta havainnollistavaa kuvaa ei voi katsoa noin kirjaimellisesti. Aika-avaruuden kaarevuudella on oikeasti 20 eri suuntaa, ei vain yksi.
Mutta tämä vastannee kysymykseesi: pimeän aineen gravitaatio on aivan samanlaista kuin tavallisen aineen. Niiden vaikutus avaruuden laajenemiseen ja kappaleiden välisene näennäiseen vetovoimaan on sama.
anteeksi; tarkoitin pimeää energiaa
Sellainen kysymys, että kun alku-universumi muuttui näkyväksi fotoneille, niin jos kaikkeus ei laajene valonnopeudella, vaan äärellisellä nopeudella, niin jossain vaiheessa fotonit ilmeisesti saavuttavat/ovat saavuttaneet universumin reunan. Mihin ne sen jälkeen etenevät? Neuriinot ilmeisesti saavuttaisivat laajenevan reunan jo aiemmin. Tietysti, jos universumi on rajaton tai ääretön, niin ei olisi mitään reunaa, jonka saavuttaa.
Ei tiedetä onko maailmankaikkeus äärellinen vai ääretön, mutta jos se on äärellinen, se on rajaton. Fotonit kulkevat joka suuntaan.
Avaruuden laajenemista ei mitata nopeuden yksiköissä. Mutta jos laajeneminen hidastuu, niin valo tosiaan saavuttaa ajan kuluessa mielivaltaisen etäisiä pisteitä. Jos laajeneminen kiihtyy, näin ei tapahdu.
Tarkemmin avaruuden laajenemisesta, ks.
https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/rajaton_kasvu
Kun kerta maailmankaikkeudella on alku ja siitä on äärellinen määrä aikaa, niin kuinka maailmankaikkeus voisi olla ääretön?
Miksipä ei? Jos maailmankaikkeus on ääretön, se on ollut koko olemassaolonsa ajan ääretön.
Kyllä, havaittavalla eli meille näkyvällä maailmankaikkeudella on alku josta on äärellinen määrä aikaa, ja havaittava maailmankaikkeus on äärellinen, ja tästä on yksimielisyys.
Kosmisen horisontin takaa meillä ei ole havaintoja. Voidaan ajatella että olisi yksinkertaisinta jos maailmankaikkeus jatkuisi siellä suurena tai peräti äärettömänä, ehkä.
Tietoamme rajoittavat vaikeus nähdä varhaisiin ajanhetkiin (inflaation aiheuttama diluutio ym.) ja kosminen horisontti. Ja jos käytetään kvanttimekaniikan monimaailmatulkintaa, niin myös siihen liittyvä ”kvanttihorisontti”, jonka takana ovat multiversumin ne haarat jotka eivät ole meille makroskooppisesti totta, eli jotka (löysästi sanoen) eivät interferoi konstruktiivisesti meistä katsoen. Eli noin kolme horisonttia.
Selvennykseksi lukijoille, että ”havaittava maailmankaikkeus” tässä tarkoittaa aluetta, josta meille on ehtinyt tulla signaaleja.