Arkisto
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- kesäkuu 2019
- toukokuu 2019
- huhtikuu 2019
- maaliskuu 2019
- helmikuu 2019
- tammikuu 2019
- joulukuu 2018
- marraskuu 2018
- lokakuu 2018
- syyskuu 2018
- elokuu 2018
- heinäkuu 2018
- kesäkuu 2018
- toukokuu 2018
- huhtikuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- marraskuu 2017
- lokakuu 2017
- syyskuu 2017
- elokuu 2017
- heinäkuu 2017
- kesäkuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- joulukuu 2016
- marraskuu 2016
- lokakuu 2016
- syyskuu 2016
- elokuu 2016
- heinäkuu 2016
- kesäkuu 2016
- toukokuu 2016
- huhtikuu 2016
- maaliskuu 2016
- helmikuu 2016
- tammikuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- elokuu 2015
- kesäkuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- kesäkuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- marraskuu 2013
- lokakuu 2013
- syyskuu 2013
Meidän komeetta
No johan lykkäsi ensimmäisen yllätyksen: Raskaan vedyn suhde tavalliseen vetyyn eli D/H suhde on noin 0,5 promillea, joka on noin kolme kertaa suurempi kuin meriveden. Tämä tarkoittaa sitä että ROSETTA-luotaimen tutkimuskohteen komeetta 67P/Churyumov-Gerasimenkon kaltaisten komeettojen mukana alkumaahan tullut vesi ei pysty yksin selittämään nykyisen valtamerten D/H suhdetta. Ehkä komeettamme on liian kuiva tai sitten jotain mättää maan merissä, ehkä merivesi ei heijastakaan alkuperäistä D/H suhdetta.
Tämä tulos löytyy monen muun mielenskiintoisen tuloksen kanssa viimeisimmässä Science-lehdessä, jossa julkaistaan ensimmäiset ROSETTA-luotaimen laitteilla tehdyt mittaustulokset. Ne ovat emoaluksessa olevista laitteista ja käsittävät siis tulokset kahden ekan kuukauden ajalta. Koko mission kestohan tulee olemaan ainakin 17 kuukautta. Poikkeuksellisesti julkaisut ovat avoimia ja kuka tahansa voi ladata ne itselleen luettaviksi sivuilta http://www.sciencemag.org/ ja etsimällä viimeisimmän 23.1.2015 julkaistun lehden. Juttuja lukiessani pistää muutamia mielenkiintoisia asioita esille.
Komeetan tiheys saatiin nyt mitattua. Se on jotensakin samaa tiheyttä kuin puu, siis vähän alle puolet veden tiheydestä. Sisärakenteen arvellaan olevan melko tasaisesti huokoisen, siten että siellä on tilavuudesta mitatuna noin 3/4 reikiä. Pari eri arvoita kertoo että komeetan aine on hyvin haurasta – ei kestäisi vasaran naputtelua, tosin laskeutuja Philaen pomppiminen osoitti että paikoin pinta voi olla hyvinkin kovaa ainetta.
Kaasusuihkut eivät tulekaan pääsääntöisesti halkeamista vaan tasapohjaisista jyrkkäseinäisistä kuopista, muodoltaan vähän samanlaisista kuin Marsissa havaitut laavaputkien romahduksen seurauksena syntyvät pyöreät syvät reiät.
Näin mittausten alkuvaiheessa ei ole vielä selvinnyt onko komeetta muodostunut kahdesta pienemmästä kappaleesta vai onko siinä vaikuttanut voimakas eroosio. Komeetan pinnanrakenteet ovat moninaiset ja niissä riittää paljon tutkimista. Korkea hiilimonoksidin määrä viittaa siihen että komeetta on enimmäkseen alkutuotetta Aurinkokunnan synnyn ajoilta. Samaan hengenvetoon on yhtä ilmeistä että paljon on komeetalle tapahtunut sen jälkeen.
Lisää juttua näistä ekoista mittauksista varmaan koostetaan Tähdet ja avaruus -sivujen uutisiin ja eiköhän itse lehdestä saada lisää mieltä kutkuttavia lukukokemuksia.
Kui nii meidän komeetta? Tutkimme sitä COSIMA-instrumentin tiimissä jossa on suomalaisia tutkijoita Turun Yliopistosta ja Ilmatieteen laitokselta.
4 kommenttia “Meidän komeetta”
Vastaa
Satunnaisuus, aika ja elämän synty
Satunnaisuus, aika ja elämän syntyminen ovat kaikki ihmeellisiä asioita. Yleisessä keskustelussa näihin liittyy voimakkaita mielipiteitä. Joskus se johtaa epäkorrektiin argumentointiin joka voi saada polaarisoituneessa keskustelussa fanaattisiakin uskonnollisia piirteitä. Tähän tieteellisesti ajattelevatkaan eivät ole immuuneja. Tieteen puolesta puhuttaessa on hyvä olla tarkkana siinä että erottaa selvästi omat mielipiteet ja tiedetyt asiat.
Oma kokemuksemme ajasta on että se virtaa yhteen suuntaan. Kvanttifysiikan perusteella ajan pitäisi olla symmetrinen. Schrödingerin aaltoyhtälö on symmetrinen ajan suhteen, joten kvanttifysiikan perusteella ei pitäisi olla väliä kumpaan suuntaan aika kulkee. Ajan nuolen suunnan voi selittää tulevan termodynamiikan toisesta laista, jonka mukaan epäjärjestys (entropia) kasvaa järjestelmässä joka on termodynaamisesti suljettu, eli siitä ei virtaa ulos eikä siihen virtaa energiaa.
Tilastollisesti tätä epäjärjestyksen (entropian) määrää voitaisiin käyttää ajan mittaamiseen. Ajatus on hieno teoriassa, mutta jos sitä mitataan fysikkaalisella kokeella niin tila ei olekaan silloin enää suljettu. Hmm! Asian todentaminen onkin vaikeaa, melkein yhtä vaikeaa kuin selvittää onko Schrödingerin kissa elossa vai ei.
Mikä olisi yksinkertaisin malli jolla voidaan todeta ajan nuolen olemassaolo? Tarkastellaan seuraavanlaista yksinkertaista alkutilannetta. Kolme pistemäistä tähteä muodostaa kolmion. Kaikki ovat massaltaan yhtä suuria ja ne ovat paikoillaan. Annetaan sitten gravitaation vaikuttaa. Aikaa kuluu. Useimmat kolmiot hajoavat niin että yksi tähti lentää pois. Joistakin kolmioista tulee vakaita kolmoistähtijärjestelmiä. Vakaiden ja hajoavien järjestelmien välissä on sellaisia alueita joissa lopputulosta ei voi arvioida vaikka alkuperäisen kolmion tarkka muoto tiedettäisiin miljoonan desimaalin tarkkuudella. Tämä on gravitaation matemaattinen ominaisuus ja se aiheuttaa myös sen että kun laskettaan takaisin päin ja uudelleen eteenpäin, niin ei voidakaan tietää mitä järjestelmälle tapahtuu. Aikaa ei voi kääntää. Sama ilmiö ilmenee siinä että Aurinkokunnan kappaleiden ratoja ei voida laskea kovinkaan tarkasti 100 miljoonaa vuotta eteen- eikä taaksepäin. Tällainen herkkyys alkuarvoihin on kaaosteorian keskeinen ominaisuus. Kaoottiset järjestelmät eivät ole satunnaisia vaan deterministisiä vaikkakin niiden ennustettavuus murenee tietyn ajan kuluessa. Niiden huono ennustettavuus ei johdu millään tavalla kvanttifysiikasta, tai yhteen tähteen putoavasta satunnaisesta pienestä komeetasta, tai yhdestäkään kvanttivärähtelystä, vaan se on järjestelmän matemaattinen ominaisuus. Se on seurausta siitä että systeemissä on ainakin kolme kappaletta joiden välillä on epälineaarinen takaisinkytkentä.
Arpakuutiota pidetään usein satunnaisuuden ilmentymänä (vaikka itse sitäkin epäilen useimpien arpakuutioden kohdalla). Fotonien saapuminen noudattaa tiettyä satunnaisuutta – mutta siinäkin saa olla tarkkana että minkälaista. Arpakuutioissa ja fotoneissa kukin arpaluku tai fotonin saapuminen ei periaatteessa riipu edellisestä millään tavalla ja ne muodostvat satunnaisen jonon.
Toisenlaista satunnaisuutta on esim pienten hiukkaisten liike mikroskooppilasilla, eli ns. Brownin liike, jossa hiukkasen paikka ei ole varsinaisesti satunnainen, mutta seuraavan siirron pituus ja suunta on. Se on yhdenlainen Markovin Ketju. Markovin ketjussa siirto uuteen tilaan riippuu vain nykytilasta (eikä aiemmista tiloista) ja siirtokomponentista. Näiden siirto komponenttien pituuksien laskeminen ei ole pelkkää ”arpakuution heittämistä” tasaisesta jakaumasta 0 ja 1 välillä, eikä välttämättä astnnaisluvun arpomista normaalijakaumastakaan, vaan niissä voidaan ottaa huomioon myös ulkoisia tekijoitä, ei satunnaisia tekijöitä. Nämä ovat käsitteitä joita sovelletaan esim Bayesin mallinnus- ja todennäköisyysanalyysissä.
Todennäköisyyksistä päästään takaisin ajan nuoleen. Ajan virrassa voidaan nykyhetki käsittää sellaisena että siinä todennäköisyysavaruus romahtaa. Kaikki mikä on tapahtunut, on tapahtunut, ja sillä siisti. Kaiken tapahtuneen todennäköisyys on tasan yksi. Kaikella sillä mitä ei tapahtunut, on todennäköisyys tasan nolla. Se mitä tapahtuu tulevaisuudessa, ei ole tiedossa. Tulevaisuudessa voi olla useita vaihtoehtoja joiden kaikkien todennäköisyys on 0 ja 1:n välillä, sisältämättä kuitenkaan kumpaakaan ääripäätä, siis ykköstä tai nollaa. Noita todennäköisyyksiä voidaan arvioida. Näin ollen vastaus kysymykselle: ”Mikä on todennäköisyys että Maassa syntyi elämää?” on yksi – koska se on mennyttä ja tiedämme tuloksen.
Ennenkuin eksoplaneetoilta löydetään elämää voimme sanoa vain että emme tiedä mikä on todennököisyys sille että siellä on syntynyt elämää. Se olisi 1 heti jos löytyisi, ja edelleen avoin jos emme havaitse – niinkuin on tilanne Marsin elämänkin suhteen.
On sitten eri asia jos lähdetään arvoimaan yleistä todennäköisyyttä sille että jollekin planeetalle syntyy elämää. Se olisi kovin vaikea lasku, koska on paljon erikaltaisia planeettoja, erilaisia keskustähtiä, erilaista kemiaa tähtien ympärillä, erilaisia ohosuhteita. Huomaa, että tällaisen laskun tuloksia ei voida soveltaa siihen että Maassa on elämää.
Otetaan vielä yksinkertainen esimerkki ympäristön vaikutuksesta. Laitetaan tarpeeksi isoon koppaan erikokoisia kiviä. Aletaan täristää koppaa. Hiljalleen mutta varmasti isommat kivet nousevat pintaan ja pienemmät joutuvat pohjalle, jotenkin intuition vastaisesti. Jos oikein tarkkaan ajattelee niin sen kyllä ymmärtää että maan vetovoiman ja täristämisen seurauksena pienemmät kivet ja hiekan murut valuvat alemmas pieniin koloihin nostaen isompia kiviä hitaasti ylös – pinnalle asti. Täässä isojen kivien hakeutumisessa toistensa lähelle vaikuttavat ulkoiset pakotteet.
Aurinkokunnan alkuaikoina mahdollisina pakotteina olivat mm. gravitaatio, ultaviolettisäteily, varjot, lämpötilavyöhykkeet kertymäkiekossa, rantahiekan jyvien koko, mustien savuttajien suola- ja lämpötilagradientit. Muitakin varmaan oli. Niiden muodostamien pakoteketjujen ja muiden ympäristötekijöiden vaikutuksesta saattoi syntyä paikkoja ja ympäristöjä jotka olivat suosiollisempia elämän syntymiseen johtavalle kemialliselle evoluutiolle. Myös erilaisten kaoottisten järjestelien vaikutus on saattanut olla merkittävä. Siitä miten elämän ensimmäiset muodot alkoivat Maassa ei vielä tiedetä. Puhdas ympäristöstä riippumaton satunnaisuus ei yksin riitä siihen vaan tarvitaan esimerkiksi epälineaarista takaisinkytkentää tai muita ulkoisia pakotetekijöitä. Juuri näitä pyritään selvittämään astrobiologisessa tutkimuksessa. Avoimia kysymyksiä on vielä paljon.
24 kommenttia “Satunnaisuus, aika ja elämän synty”
-
Kiitos mielenkiintoisesta blogista! Tuohon viimeiseen kappaleeseen (ulkoiset pakotteet)lisään vielä oman kommenttini.
Elämän syntyä ei siis vielä ole kyetty tarkasti selvittämään, joskin hypoteeseja on paljon. Tuosta Harryn ”pakotelistasta” puuttui yksi tärkeä ehdokas, jolla saattaa olla hyvin merkittävä rooli elämän syntymekanismia pohdittaessa. Nimittäin asteroidipommitus, joka oli muinoin
varsin tiuhaa nykymenoon verrattuna. Ilmakehättömän Kuun rokonarpisista ”kasvoista” saa kalpean aavistuksen siitä, mitä se on muinoin ollut.
Brittiläinen ansioitunut kosmologi Fred Hoyle ehdotti, että ratkaisevat elämän syntyyn vaikuttavat komponentit olisivat saapuneet maapallolle komeettojen mukana. Tätä hypoteesia ei ole käsittääkseni vielä kumottu, jos kohta ei todistettukaan.
Lisäksi on esitetty hypoteesi siitä, että elämä olisi saattanut syntyä Maahan useammin kuin kerran, asteroidikatasrofin nollatessa solutasolle ehtineen elämän kehityksen kerta toisensa jälkeen. Tätä teoreemaa on vaikea todistaa oikeaksi fossiiliaineiston puuttuessa, mutta jos se on totta, se olisi vahva osoitus elämän väistämättömyydestä myös muilla eksoplaneetoilla. -
Aikaa voisi ajatella myös voimakenttänä, jossa tapahtumat etenee. Ihminen siis osaltaan voi menneen aistia tapahtuneesta ja tapahtuvaakin aistittavissa tulevan voimakenttinä – johon toteutuvaan osaltaan on ohjaavaa mahdollisuuttaan. Siten voi kaikki ennakoiden tulevaakin osittain tietää, arvata ja aavistaa – sattumaankin osallisena siis…
Helsingin yliopisto huomisen jälkeen taas järjestää alkuvuoden tiedeviikkonsa, jossa tätä sattumaa ohjelmassa. Itsekin mielelläni osallistuisin, mutta tämänhetkinen ”voimakenttäni” tulevaan ei sinne riittävästi vedä vaikka ajallisesti mahdollista olisikin – rajaavina matkan maksullisuus, ennakkotietämykseni puutteellisuus (en viikkoihin ole aiemminkaan osallistunut) ja muu ajankäyttöni. Näin valikoitunee osallistumattomuuteni (sattumalla pienehkö mahdollisuus valikointiani tässä muuttaa). -
Harry, vähän off-topic, kun T&A:ssa oli hiljattainen uutinen että joku näkee Marsin pintakuvissa bakteerimattofossiilien tapaisia jälkiä, niin muistaakseni tutkit taannoin todennäköisyyksiä joilla elämä olisi voinut siirtyä Maasta Marsiin tai päinvastoin. Muistaakseni johtopäätös oli että siirtymä Marsista Maahan on helpompi koska Marsin pakonopeus on pienempi. Ehkä voisit kirjoittaa näistä asioista jotain tähän blogiinkin.
Jos Marsista löytyy potentiaalisesti uskottavia elämän jälkiä, sitten alkaa spekulaatio sen historiasta… Jos siirtymät otetaan huomioon, periaatteellisia mahdollisuuksia on paljon. Ehkä arkkieliöt ovat peräisin Marsista ja bakteerit syntyivät Maassa tai päinvastoin… Toisaalta jos siirtymä on tapahtunut kerran, se on voinut tapahtua useitakin kertoja.
Joskus näkee väitettävän että jos Marsista löytyy elämää tai sen jälkiä, se todistaa että elämä on syntynyt riippumattomasti kahdessa paikassa, joten elämän täytyy silloin olla maailmankaikkeudessa yleistä. Väitteen todistamiseksi vaadittaisiin kai kuitenkin että löydetty elämä olisi niin toisenlaista kuin Maan elämä että yhteinen alkuperä voitaisiin sulkea pois molekyylitasolla. Jos Marsissa on ollut elämää mutta siitä on jäljellä vain fossiileja, saattaa olla periaatteessakin mahdotonta pitävästi selvittää onko sillä ollut yhteinen alkuperä Maan elämän kanssa vai ei, jolloin kysymys elämän esiintymisfrekvenssistä jäisi edelleen avoimeksi.
-
Alkuräjähdys on tullut tyhjästä (alkuräjähdys on ollut, se on tiedemiesten ja uskonmiesten aika vankka käsitys. Alkuräjähdys = Jumala sanoi alussa,tulkoon Valkeus, voi olla yksi selitys).
Jos halutaan väittää, että universumi alkoi olemaan sekä ilman materiaalista syytä, että ilman aikaansaavaa syytä, ajatus on minusta täysin absurdi!. Kvanttifluktuaatiossa energiaa kun ei tyhjästä synny. On vain atomin sisäistä eergian siirtymää.
On täysin absurdia väittää että universumi alkoi olemaan ilman materiaalista syytä, ja ilman aikaansaavaa syytä.
Vaikka olisi materialinen syy, järki sanoo, että alkuräjähdyksen hiukkasplasma olisi vain jatkanut loputtomasti räjähdysmäistä leviämistään avaruudessa, jos ”Viisas Suunnittelija” ei olisi halunnut niiden alkavan järjestyä kvanteiksi, atomeiksi ja molekyyleiksi jne. ”Viisas suunittelija” teki viisaat yhtälöt joiden mukaan kaikki tapahtui.
Tieteen kuvalehdssä 18/2005 on seuraavaa: Jos seuraavistaa tiettyä suhdelukua muutettaisiin hiukan, elämä ei olisi mahdollista.
1.Luku e, jonka arvo on 0,007 kertoo vahvan ydinvoima voimakkuuden, eli sen, kuinka lujasti atomien ytimet kasassa ja missä määrin vetyatomit yhtyvät heliumiksi. Oikean e arvon ansiosta on syntynyt happea ja hiiltä, jotka ovat elämälle välttämättömiä. Jos e olisi 0,006 tai 0,008, ihmiselämää ei olisi.
2.Sähkömagneettinen voima on noin 1000000000000000000000000000000000000 kertaa vahvempi kuin painovoima. Jos nollia olisi pari vähemmän, olisi universumi ollut vain lyhytikäinen. Jos nollia olisi ollut pari enemmän, ei voisi syntyä tähtiä.
3. Aineen kasaantuminen ja se tustatiheyden välisen suhteen määrää Q, jonka arvo o noin sadastuhannesosa. Jos Q olisi ollut pienempi, ei olisi syntynyt lainkaan tähtiä, jos taas suurempi, tapahtumat olisivat edenneet niin kiivaasti, että kaikki olisi luhistunut mustiin aukkoihin.
3.Tiheysparametri omega on maailmankaikkeuden tiheyden suhde kriittiseen tiheyteen, eli siihen tiheyteen, joka pysäyttäisi laajentumisen. Sen arvo on noin yksi (1). Jos omega olisi vähäkin suurempi, universumi olisi lysähtänyt kasaan jo ajat sitten.
4.Jos aurinkokuntamme olisi ollut lähellä mustaa aukkoa, elämä ei olisi ehtinyt kehittyä ja olisi tämä imeytynyt aukkoon.
5. Jos maahan olisi päässyt avaruudesta kaikkialla olevaa kosmista säteilyä, elämä ei olisi voinut kehittyä.
UNIVERSUMI, ALKURÄJÄHTI VAIN KERRAN. On liikaa yhteensattumia, jotta tämä kaikki olisi tapahtunut KERTALAAKISTA oikein. Jos yksikin näistä edellä olevista muuttujista olisi poikennut vähänkin, se olisi estänyt elämän synnyn. Elämä on liian epätodennäköistä, kuin voittaa lotossa täyspotti 5 kertaa peräkkäin, mutta ”Viisaan Suunnittelijan”=Jumalan avulla se oli mahdollista.
-
Mistä tiedät, että universumi alkuräjähti vain kerran. Entäpä multiversumi ?
-
-
Muistaakseni arpakuutio ja vaikkapa kolmen biljardipallon törmäily ei ole aidosti satunnainen. Se, ettei arpakuution numeroa (tai lottonumeroita) voi ennustaa etukäteen, johtuu tietämättömyydestä ja laskentatehoista ym.
Radioaktiivinen hajoaminen on aidosti satunnainen tapahtuma. Hajoamistapahtuman ajankohta voidaan ennustaa vain tietyllä todennäköisyydellä.
Jos nuo mainitut kolme tähteä olisivat kvanttimaailman kappaleita, ne eivät alkutilanteessakaan ole koskaan tietyssä paikassa. -
Onko sattuma gravitaation tapaan luonnonlaki? Vaikea kuvitella elämän syntyä ilman sattumaa, mutta onko sattumalla rajat.
Galaksien, tähtien ja planeettojen koolla on tietyt ala- ja ylärajat. Samoin on eliöiden kanssa. Sattuma voi synnyttää käsittämättömän määrän eliöitä, mutta ei mitä tahansa. Esimerkiksi tällä planeetalla ei ole syntynyt vuoren kokoista koiraa, eikä synny. Sattumalla on säännöt. Näin ollen voiko sattuma olla aito. -
Elämä käyttää 20 aminohappoa. Ajatellaan proteiini joka tarvitsee 100 amimohappoa tietyssä järjestyksessä.
Vaihtoehtoisia järjestyksiä on 20 korotettuna potenssiin 100. Se on niin järkyttävän suuri luku, että onko maailmassa edes niin monta atomia? Onko järjestys voinut löytyä täysin sattumalta. Elämä tarvitsee sentään aika monta erilaista proteiinia.
Lisäksi kun oikea järjestys löytyy, proteiini laskostuu tarkkaan kolmiulotteiseen muotoon. Ulkopuolelta ei tule mitään lisä informaatiota, vaan animohappojen järjestys määrää muodon. Proteiini on itsensä kokoava palapeli.
Luulisi, että tietyn proteiinin muoto on universaali ja ollut mahdollisuutena olemassa jo siitä asti kun alkuaineet ovat syntyneet.
Minusta late heavy bombardmentin (mitähän se on suomeksi) arvet Kuussa eivät riitä selittämään Maan meriä, joten merien täytyy olla vanhempia kuin LHB.
Arvelen että lumiraja kertymäkiekossa on ollut paljon nykyistä sisempänä (alle 1 au), osittain nuoren tähden himmeyden takia mutta eritoten siksi että pölykiekon sisäreuna on varjostanut sen ulko-osia ja pitänyt ne kylminä. Silloin Maan vesi voisi olla peräisin paikallisesta kertymäkiekosta eli samasta kuin kiviaineet.
Kyllä juuri näin. Myöhäinen pommitus oli oikeasti vähän liiankin myöhäinen selittämään merten vesien tulon. Australian Jack Hills zirkonkiteiden kuluneisuus viittaa siihen että Maassa oli mantereita ja meriä jo 4.4 miljardia vuotta sitten.
Kertymäkiekkojen mallinnus on kehittynyt huomattavasti viime vuosina. Kertymäkiekon sisäosat ovat mallien mukaan olleet merkittävästi viileämmät kuin aiemmin on oletettu, lisäksi niiden sisäreunan lämpötila ei ole ollut kovin paljoa korkeampi kuin muistaakseni noin 1800K, jolloin ainakin mineraalien kidevesi on voinut säilyä. Se pysyy kiteissä parhaimmillaan 2500K asti. On varsin ilmeistä että Maan vesi on tullut eri lähteistä ja että niillä on ollut hyvin erilaisia D/H arvoja.
Maan D/H budjetissa on yksi isohko epäselvä komponentti ja se on vaipan veden määrä sekä sen D/H. Vaipassa voi olla vettä moninkertaisesti valtameriin verrattuna.
Liittyen vaipan veteen, yksi mielenkiintoinen kysymys on mikä määrää meren paksuuden. Yksi spekulatiivinen mahdollisuus saattaisi olla että mitä syvempi meri, sitä kovempi paine ja sitä enemmän vettä kulkeutuu subduktion mukana takaisin vaippaan. Jos näin on, silloin planeetan meren paksuus saattaisi olla melko riippumaton planeetan veden kokonaismäärästä, mikä voisi lisätä maankaltaisten mantereita ja meriä sisältävien planeettojen esiintymisfrekvenssiä. Eli että olisi dynaaminen tasapaino jossa tulivuoret nostavat vaipan vettä pinnalle kunnes meri on niin syvä että paineen aiheuttama subduktiovesihävikki kompensoi tulivuorten vesituoton. Toki tuossa voi olla muitakin takaisinkytkentöjä kuten veden aiheuttama laakerointi joka ehkä ylipäätään mahdollistaa tektoniikan ja subduktion.
Mielenkiintoinen ajatus. Voisi ehkä myös selittää sen miksi Jupiterin galilein kuilla on paljon syvempi meri kuin maassa (siella on vahemman vulkaanista toimintaa koska ydin on pienempi ja viileampi.