Arkisto
- kesäkuu 2023
- huhtikuu 2023
- helmikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- tammikuu 2020
- lokakuu 2019
- syyskuu 2019
- elokuu 2019
- kesäkuu 2019
- huhtikuu 2019
- tammikuu 2019
- huhtikuu 2018
- maaliskuu 2018
- helmikuu 2018
- tammikuu 2018
- joulukuu 2017
- elokuu 2017
- toukokuu 2017
- huhtikuu 2017
- maaliskuu 2017
- helmikuu 2017
- tammikuu 2017
- lokakuu 2016
- elokuu 2016
- joulukuu 2015
- marraskuu 2015
- lokakuu 2015
- syyskuu 2015
- toukokuu 2015
- huhtikuu 2015
- maaliskuu 2015
- helmikuu 2015
- tammikuu 2015
- joulukuu 2014
- marraskuu 2014
- lokakuu 2014
- syyskuu 2014
- elokuu 2014
- toukokuu 2014
- huhtikuu 2014
- maaliskuu 2014
- helmikuu 2014
- tammikuu 2014
- joulukuu 2013
- lokakuu 2013
- syyskuu 2013
Onnea 15-vuotias avaruusasema!
Tänään 15 vuotta sitten venäläinen Proton-kantoraketti rytisi matkaan ja vei kiertoradalle kansainvälisen avaruusaseman ensimmäisen osan, Zaria-nimisen moduulin. Lähes välittömästi sen jälkeen sukkula seurasi perässä ja liitti siihen amerikkalaisen Unity-nimisen liitosmodulin ja pian kaksikko sai seuraa Zvezda-modulista. Ja niin kansainvälisen avaruusaseman ydin oli valmis.
Muutaman huoltolennon jälkeen, lokakuussa 2000, sinne nousi aseman ensimmäinen miehistö, Bill Shephard, Sergei Krikaljev ja Juri Gidzenko. Sen jälkeen asema on ollut tähän saakka pysyvästi miehitetty.
Kun asemaa alettiin suunnitella amerikkalaisten, eurooppalaisten, japanilaisten ja kanadalaisten sekä venäläisten yhteistyönä vuonna 1993, suunniteltiin aseman olevan valmis vajaan kymmenen vuoden rakentamisen jälkeen. Asema suunniteltiin kahdesta erillisestä, toisiensa kanssa yhteensopivasta osasta, jotka perustuisivat NASAn suunnittelemaan avaruusasemakonseptiin ja venäläisten luotettavaksi osoittautuneeseen Mir-avaruusasemaan. Kumpaakin osaa laajennettaisiin varasto-, tutkimus- ja asuntomoduuleilla, kunnes lopulta kasassa olisi jalkapallokentän peittävä rakennelma.
Niin on käynytkin ja asema on nyt valmis. Rakentaminen ei ollut helppoa, sillä aikataulu myöhästyi jatkuvasti – etenkin avaruussukkula Columbian onnettomuuden seurauksena – mutta rakennusprosessi on osoittautunut lähes yhtä opettavaiseksi kuin itse aseman ylläpito ja työskentely siellä. Aiemmin toistensa kanssa kilpailleet maat ovat puhaltaneet yhteiseen hiileen ja onnistuneet tukemaan toisiaan rakennuksen aikana; erimielisyyksistä ja kansallistuntemuksista huolimatta asema on taivaalla ja paitsi toimii, niin myös siellä tehdään jo nyt tutkimusta.
Etenkin Euroopalle kansainvälinen avaruusasema on ollut tärkeä osa ja vaikka raha tekee tiukkaa, se on vastaisuudessakin olennainen osa ESAn toiminnassa. Asemalla on eurooppalainen laboratoriomoduuli Columbus ja suurin osa sen läntisestä osasta on tehty Euroopassa. Asemaa huolletaan eurooppalaisella ATV-rahtialuksella ja aseman tärkein havaintopaikka, alas kohti Maata avautuva seitsenikkunainen kupoli on tehty Euroopassa. Se tietotaito, mitä eurooppalaiset avaruusalalla toimivat yhtiöt ja ESA on saanut aseman rakentamisessa ja ylläpidossa, on tuo nykyisellään rahaa yhtiöille niiden muussa toiminnassa käyttämän tekniikan paranemisen kautta.
Kaikkiaan yli 200 avaruuslentäjää 15 maasta on vieraillut ja työskennellyt avaruusasemalla. Näiden mukana on koko joukko eurooppalaisia. ESAn italialainen astronautti Luca Parmitano palasi puolivuotiselta matkaltaan pari viikkoa sitten ja seuraava euroastronautti, saksalainen Alexander Gerst nousee asemalle pitkälle lennolleen ensi keväällä.
Kolme muuta ESAn astronauttia on myös koulutuksessa lennoilleen, ja pohjoismaalaisittain kiinnostavin lento tulee olemaan tanskalaisen Andreas Mogensenin lento vuonna 2015.
Lennoillaan astronautit paitsi ylläpitävät asemaa, niin myös tekevät paljon tutkimusta: biologiaa, ihmisen fysiologiaa, fysiikkaa, kemiaa, materiaalitieteitä, tähtitiedettä, tekniikkaa sekä paljon muuta on heidän tutkimuslistoillaan. Avaruusaseman ansiosta mm. telelääketiede ja vedenpuhdistustekniikat ovat ottaneet harppauksia eteenpäin. Lisää esimerkkejä hyödyistä on mm. täällä.
Mikäli aseman kustannuksia ja tuottoja lasketaan yhteen, on tuloksen määrittäminen erittäin vaikeaa, koska suurin osa aseman tuotoista ja tuloksista on sellaisia, ettei niitä voi rahalla ostaa. Asema on tuottanut kokemusta, mikä auttaa kaikessa avaruustoiminnassa tulevaisuudessa. Siellä on tehty tutkimusta, mikä saattaa myöhemmin osoittautua erittäinkin tärkeäksi ja jopa mullistavaksi. Se on virittänyt lasten ja nuorten kiinnostusta luonnontieteisiin ja tekniikkaan; kenties tulevat nobelistit ovat saaneet virikkeen uraansa avaruusasemasta. Kaikkiaan 42 miljoonaa koululaista ja opiskelijaa ympäri maailman on osallistunut avaruusasemalla tehtyihin koulutusohjelmiin.
Aikanaan avaruusaseman käyttöiäksi suunniteltiin vain kymmentä vuotta alkaen siitä, kun se on täysin valmis. Nyt kuitenkaan sitä ei ole tarkoitus tuhota jo vuonna 2020 – siis vain noin kuuden vuoden päästä – vaan asemaa on tarkoitus käyttää ainakin 2020-luvun puoliväliin. Samalla on tarkoitus käyttää asemaa yhä kunnianhimoisempiin tarkoituksiin: esimerkiksi asemalla tullaan tekemään vuoden mittaisia lentoja, jotka auttavat suunnittelemaan miehitettyä lentoa Marsiin.
Voi myös olla, että aikanaan aseman osia ei tuhota, vaan niitä käytetään osina lennoilla kauemmaksi avaruuteen. Esimerkiksi aseman muutamat moduulit voisivat toimia kuin erilliset pienet avaruusasemat ja ne voisivat auttaa vaikkapa lennolla asteroideja tutkimaan.
ESA on koonnut kauniin kuvakoosteen kansainvälisen avaruusaseman 15-vuotisesta historiasta ja juhlistaa merkkipäivää mm. erityisellä sivustolla Google+ -palvelussa.
Teksti on julkaistu myös Tiedetuubissa.
3 kommenttia “Onnea 15-vuotias avaruusasema!”
Vastaa
Kohta GOCE tulee alas
ESA:n GOCE-satelliitti kesti avaruudessa pitempään kuin toivottiin ja se onnistui tehtävässään paremmin kuin uskottiin. Tämän maapallon painovoimakenttää hyvin tarkasti ja sen havaintojen perusteella tiedetään nyt millainen on oman kotiplaneettamme tarkka muoto – ei, se ei ole aivan täsmälleen pallo, vaan hieman muhkurainen sellainen.
Jotta GOCE olisi pystynyt mittaamaan painovoimaa hyvin tarkasti, oli se epätavallisen matalalla kiertoradalla, vain noin 250 km korkealla. Koska sielläkin on vielä vähän ilmakehän rippeitä, piti satelliitista tehdä hieman aerodynaaminen ja sen ratanopeutta täytyi koko ajan pitää yllä pienellä rakettimoottorilla.
Nyt painovoimamittauslaitteistoa, joka on itse asissa erittäin tarkka kiihtyvyysmittari, käytetään apuna Maahan putoamisen tarkkailussa: saatujen mittausten mukaan GOCEa hidastava ilmakehän kitka on nyt noin 90 mN ja se kasvaa koko ajan. Lennonjohto on yhteydessä satelliittiin, joka toimii normaalisti, ja pystyy hallitsemaan sen lentoa – paitsi että polttoaineen loppumisen vuoksi sen rakettimoottoria ei voi käyttää.
Tuorein ennuste putoamisajasta on edelleen sunnuntain ja maanantain välinen yö.
Mitä selviää pinnalle?
Kun satelliitti laukaistiin, tiedettiin jo varmasti, että sitä ei voida ohjata tehtävän päätyttyä tuhoutumaan Maan ilmakehässä samaan tapaan kuin esimerkiksi ATV-rahtialukset. Niissä on voimakkaat ratamuutoksia varten tarkoitetut moottorit, mutta GOCE oli liian pieni, jotta siinä olisi voinut olla isompi moottori.
Samalla GOCE on sen verran suuri, että siitä selviää ilmakehän kitkakuumennuksen jälkeen pieniä osia Maan pinnalle saakka.
”Vain pieni osa, noin 20% eli noin 200 kg, satelliitin alkuperäisestä massasta putoaa pinnalle”, kertoo ESAn avaruusromua tutkivan toimiston johtaja Heiner Klinkrad ESAn Rocket Science -blogissa.
”Tämä massa on jakaantuneena kymmeniin pieniin osiin, jotka leviävät laajalle aluelle maahanpaluuradan alueella.”
Yhtä lailla tiedetään, että joka vuorokausi Maan ilmakehään törmää luonnollisesti 100-210 tonnia ainetta avaruudesta, ja isompia kappaleita on kymmeniä tuhansia vuodessa. Vajaan tonnin painoinen GOCE on hyvin mitätön näihin verrattuna.
Useita kertoja vuodessa uutisissakin kerrotaan tulipalloista, hyvin kirkkaista tähdenlennoista, jonka syntyvät meteoroidin törmätessä meihin. Joistakin niistä jää jäljelle myös kiinteitä, pinnalle saakka selviäviä kappaleita, mutta niistäkin suurin osa putoaa huomaamatta valtameriin, aarniometsiin tai autiomaihin.
Satelliitteja, kantorakettien osia ja muita ihmisen tekemiä laitteita putoaa Maahan säännöllisesti, noin 100 tonnia vuodessa, mutta vain noin kerran vuodessa suurempi avaruusalus törmää ilmakehään hallitsemattomasti.
”Riski GOCEn puotoamisesta on ihmisille erittäin pieni”, jatkaa Heiner Klinkrad. ”Tilastollisesti on 250 000 kertaa todennäköisempää voittaa lotossa kuin olla paikassa, mihin GOCEn osa putoaa. Näinä 56 vuotena, jolloin avaruuslentoja on tehty, ei yksikään ihmisen tekemä ja Maahan pudonnut kappale ole aiheuttanut edes loukkaantumista.”
GOCEn kaltaisia, ilman voimakkaita rakettimoottoreita olevia tutkimussatelliitteja laukaistaan kaikista maista koko ajan, koska riski niiden putoamisesta asutuille alueille on häviävä pieni. Satelliittien lähettäjät ovat silti aina vastuussa niiden putoamisen mahdollisesti aiheuttamista vaurioista.
ESAlle tämä on kuitenkin ensimmäinen hallitsematon satelliitin maahanpaluu 25 vuoteen. Tavoitteena on luonnollisesti saada tulevaisuudessa kaikki satelliitit sellaisiksi, että ne voidaan tuhota tehtävänsä päätteeksi vaarattomasti. Sitä mukaa kun avaruustoiminta lisääntyy, kasvaa myös riski sille, että putoavan satelliitin osa voisi osua johonkin.
Milloin ja minne?
Koko ajan tarkkenevan arvion mukaan GOCE putoaa alas radaltaan siis sunnuntain 10.11. ja maanantain 11.11. välisenä yönä (Suomen aikaa). Satelliitti putoaa parhaillaan noin kahdeksan kilometriä vuorokaudessa alemmas ja ilmakehän ote siitä tiukkenee jatkuvasti. GOCEn radan keskikorkeus nyt lauantaina oli jo noin 160 km. Lauantain kuluessa sen oletetaan putoavan jo 13 kilometriä ja sunnuntaina vielä enemmän.
”Kun GOCE on alle 100 kilometrin korkeudessa, ilman tiheys on jo sen verran suuri, että se alkaa hidastaa olennaisesti noin 25 000 kilometriä tunnissa kulkevan GOCEn nopeutta”, Klinkrad jatkaa. ”GOCE putoaa alaspäin ja ilman aerodynaaminen paine ja kitkakuumennus rikkovat GOCEn oletettavasti noin 80 km:n korkeudessa.”
Tuloksena on suuri määrä irtonaisia osia, jotka edelleen hajaantuvat pienemmiksi osiksi, joista suurin osa tuhoutuu tähdenlentojen tapaan jo korkealla ilmakehässä. Eräitä pinnalle saakka sinnitteleviä osia ovat todennäköisesti xenon-polttoaineen säiliö ja sille painetta antaneen typen säiliö, gravimetrit, tähtietsimet sekä rakettimoottorit. Ne näkyvät hyvin yllä olevassa kuvassa.
ESA seuraa jatkuvasti GOCEn rataa ja on edelleen yhteydessä satelliittiin. Arvio putoamisajasta täsmentyy koko ajan, mutta siihen liittyy monia tekijöitä, joihin ei voida vaikuttaa: tärkeimpiä ovat yläilmakehän tiheyteen vaikuttava Auringon aktiivisuus sekä GOCEn ohjauslaitteistojen toiminta putoamisen aikana ja siten satelliitin asento.
Kun putoamispaikka tiedetään tarkasti, ESA tulee tiedottamaan siitä kyseisen alueen viranomaisia välittömästi. Tieto välitetään myös kaikille ESAn jäsenmaille. ESAn lisäksi kansainvälinen avaruusromun koordinointikomitea (Inter-Agency Space Debris Coordination Committee) seuraa GOCEn putoamista ja ryhtyy tarvittaessa toimiin.
GOCEa tarkkaillaan sen lähettämien tietojen lisäksi tutkilla ja optisesti. Sen voi havaita myös harrastajateleskoopeilla, kuten belgialainen Ralf Vandebergh on tehnyt: alla olevassa, ESAn Rocket Science -blogissa julkaistussa kuvassa on GOCE 22. syyskuuta 2013 Alankomaista kuvattuna.
Tämä teksti on julkaistu myös Tiedetuubissa osana Euroopan avaruusjärjestön suomenkielistä blogia.
Vastaa
Mangalyaan ja vyomanautit, eli avaruuskilpaa Aasiassa
Intia laukaisi tänään ensimmäisen Mars-luotaimensa avaruuteen. Kyseessä oli tosin vasta ensimmäinen askel kohti punaista planeettaa, sillä tämä Mangalyaaniksi nimetty luotain kiertää ensin Maata kuukauden päivät ja hilaa itseään yhä soikeammalle ja soikeammalle kiertoradalle, jonka kauimmaisesta pisteestä se pystyy lähtemään taloudellisesti pois Maan vaikutuspiiristä planeettainväliseen avaruuteen. Tämä tapahtuu näillä näkymin 30. marraskuuta.
Jos kaikki sujuu hyvin, saapuu Mangalyaan Marsiin tapahtuu 21. syyskuuta ensi vuonna.
Tähän mennessä vain Yhdysvallat, Venäjä (ja Neuvostoliitto) sekä Eurooppa ovat onnistuneet saamaan oman luotaimensa kunnolla Marsia kiertämään, mutta myös Kiina ja Japani ovat temppua yrittäneet. Niillä tosin oli huonoa tuuria, sillä ensin japanilaisluotaimen matka muuttui vuonna 2003 vaikeaksi nilkuttamiseksi voimakkaan aurinkomyrskyn vuoksi; Auringon sylkemät hiukkaset tuhosivat Nozomi-luotaimen elektroniikkaa ja muutoin hyvin toiminut luotain lensi Marsin ohitse.
Sitten marraskuussa 2011 kiinalaisten Mars-luotain Yinghuo-1 puolestaan koitti liftata Marsiin yhdessä venäläisten Phobos-Grunt -luotaimen mukana, mutta koska venäläisluotain ei päässyt Maan kiertorataa kauemmaksi ja putosi takaisin Maahan, jäi kiinalaistenkin matka Marsiin tekemättä.
Nämä kolme Aasian maata ovat jo pitkän aikaa käyneet pienimuotoista avaruuskilpaa ja luotaimet kohti muita taivaankappaleita ovat vain osa tätä mainetekopeliä. Kuuta tutkimassahan Intia, Kiina ja Japani ovat jokainen jo käyneet, ja kullakin on suunnitelmia myös Kuuhun palaamisesta.
Se, kuka avaruuskilpailun Aasian paikallissarjassa on johdossa, riippuu hieman näkökulmasta. Suoritettujen satelliittilaukaisuiden määrässä Kiina on tänä vuonna kohonnut jopa maailman ykköseksi ja omalla miehitetyllä avaruusaluksellaankin se on jo maailmansarjassa hyvissä asemissa. Japani puolestaan on onnistunut tekemään useita teknisesti haastavia luotainlentoja planeettainväliseen avaruuteen ja sillä on myös omat, voimakkaat kantorakettinsa. Oman avaruusaluksen kehittämisen sijaan se osallistuu suurella osuudella Kansainvälisen avaruusaseman yhteistyöhön. Japanilla on asemalla oma kookas tutkimusmoduulinsa, se lennättää asemalle rahtia omalla miehittämättömällä huoltoaluksellaan ja japanilaiset avaruuslentäjät nousevat asemalle samaan tapaan kuin eurooppalaiset, yhdysvaltalaiset ja kanadalaiset.
Intia puolestaan on selvästi peesausasemassa, mutta sekin on ollut hyvin aktiivinen avaruustoimessa jo 1960-luvulta alkaen, sillä vaikka maa on – ja etenkin oli – köyhä kehitysmaa, siellä on nähty avaruustoiminnan käytännön hyödyt: esimerkiksi perinteisten tietoliikenneyhteyksien vetäminen kaikkiin pikku kyliin ja taajamiin olisi maksanut paljon enemmän kuin yhteydenpito satelliittien kautta. Maalla on myös kattava ja monipuolinen satelliittipohjainen Koulu-TV, joka tuo opetusta myös syrjäseuduille ja köyhille alueille.
Kaukokartoitus ja sääpalvelut ovat myös erittäin tärkeitä Intialle, joten maa on kehittänyt voimakkaasti satelliitteja, jotka auttavat näissä.
2000-luvulla Intia on laajentanut toimintaansa myös kantoraketteihin – onhan edullisempaa laukaista satelliitit omalla raketilla kuin ostaa laukaisuita muilta, jos laukaisuita on paljon – tosin maalla on ollut pieniä vaikeuksia suurimman ja voimakkaimman rakettinsa GSLV:n kehittämisessä. Sen sijaan hieman pienempi työjuhta PSLV, jolla Mars-alus laukaistiin myös matkaan, on toiminut varsin luotettavasti. Intia on laukaissut avaruuteen myös ulkomaisia satelliitteja, muun muassa Koreasta, Belgiasta ja Saksasta.
Kuuluotain Chandrayaanin jälkeen vuorossa on nyt oma lento Marsiin ja katseet ovat myös kohti muita tieteellisiä lentoja sekä paluuta Kuuhun. Tieteen, tekniikan ja kansalaisille turvattavien peruspalveluiden lisäksi kyse on luonnollisesti myös politiikasta, sillä omalla avaruusohjelmallaan Intia haluaa näyttää Aasian maille, naapureilleen sekä koko maailmalle olevansa kaikkea muuta kuin köyhä kehitysmaa. Planeettalennot ovat oiva tapa herätä mainetta ja kunniaa.
Tein vuonna 2007 juttua Intian kuuluotaimesta Chandrayaan 1:stä ja tapasin samalla lennon tiedejohtajan Narendra Bhandarin, jonka kanssa juttelu levisi myös Intian avaruusohjelmaan laajemmin. Miksi maa käyttää runsaasti rahaa avaruuteen, vaikka sille olisi varmasti muutakin käyttöä maanpäällisissä kohteissa?
”Avaruustekniikka on muuttanut jokaisen intialaisen elämää, koska esimerkiksi pystymme tekemään nyt paremmin sääennusteita ja ennakoimaan myrskyjen saapumista”, selitti Narendra Bhandarin.
”Se on hyvin tärkeää meille, sillä esimerkiksi monsuunisateet ovat voimakkaita. Satelliitit auttavat maanviljelyä, niistä on apua luonnononnettomuustilanteissa, niiden kautta saadaan esimerkiksi lääketieteellistä apua ja pystytään ennakoimaan esimerkiksi veden pinnan nousua. Ja luonnollisestikin sitten tietoliikenteessä niiden apu on korvaamaton, satelliitit ovat mullistaneet television ja tiedonvälityksen. Olemme juuri aloittaneet kaukokartoituksen laajamittaisen hyödyntämisen ja odotamme siitä apua muun muassa kaivannasten löytämisessä. On myös loogista, että tämän kaiken jälkeen olemme nyt lähdössä tutkimaan Kuuta ja edelleen mukaan planeettalentoihin.”
Tuolloin vuonna 2007 ei Intialla ollut vielä omaa miehitettyjen avaruuslentojen ohjelmaa, eikä Bhandarin ollut innostunut edes sellaisesta. ”Uskomme enemmän robotiikkaan ja miehittämättömien satelliittien sekä korkean teknologian sensorien käyttämiseen. Ne pystyvät tekemään monet työt paljon ihmistä paremmin, eivätkä vaadi mutkikasta elossapitosysteemiä ja turvallisuusjärjestelyitä.”
Mutta niinpä vain samana vuonna Intian avaruustutkimusorganisaatio ISRO ilmoitti harkitsevansa vakavasti oman miehitetyn avaruusaluksen tekemistä ja vuonna 2012 hanke otti konkreettisen askeleen eteenpäin, kun ISRO ilmoitti perustavasta astronauttien – hindiksi vyomanauttien – koulutuskeskuksen Bangaloreen.
Eivätkä kyseessä olleet enää lennot Maata kiertämään omalla avaruusaluksella, vaan kunnianhimoisessa suunnitelmassa ovat myös lennot Kuuhun!
Suunnitelman mukaan ensi vaiheessa vuonna 2016 intialasastronautit nousisivat matkaan intialaisavaruusaluksella GSLV-raketin uuden version nokassa uudesta Satish Dhawanin laukaisukeskuksesta, joka olisi nykyisen Sriharikotan avaruuskeskuksen alueella. Kahdelle (tai kolmelle) avaruuslentäjälle mitoitettu alus lentäisi Maan ympärillä noin 300-400 kilometrin korkeudessa ja palaisi alas laskuvarjojen varassa Bengalin lahteen loiskahtaen.
Aluksen mallikappale valmistui jo vuonna 2009, mutta se ei ollut vielä lähellekään lentokelpoinen versio. Samana vuonna suoritettiin jo ensimmäiset vyomanauttien valinnat: perinteiseen tapaan hakuun otettiin ilmavoimien hävittäjälentäjiä ja 200 halukkaasta valittiin mukaan koulutukseen neljä. Heistä muodostetaan myöhemmin kaksi kaksihenkistä miehistöä, joista toinen tulee tekemään ensimmäisen intialaisen miehitetyn avaruuslennon ja toinen on varalla. Mikäli aluksesta tehdäänkin lopulta kolmepaikkainen, otettaneen mukaan ohjelmaan pari lentäjää lisää.
Virallisesti edelleen tavoitteena on tehdä lento vuonna 2016, mutta todennäköisesti tämä on hieman toiveikas päämäärä. On kuitenkin varsin varmaa, että Intiasta tulee neljäs maa, joka laukaisee oman avaruuslentäjän omalla aluksellaan avaruuteen.
Samalla Japanissa ovat myös puheet omasta avaruusaluksesta kiihtyneet, mutta vaikea taloustilanne ja hyvä yhteistyö avaruusasemakumppanien kanssa pitänee oman aluksen ainakin toistaiseksi pelkkänä haaveena. Mutta mukaan avaruuskisaan on tulossa vielä uusi aasialaismaa: Korea suunnittelee jo omaa kuuluotaintaan.
Päivitys 5.11.
Kiina esitteli juuri ”sattumalta” Intian onnistuneen laukaisun jälkeen omaa joulukuussa matkaan lähtevää Chang’e 3 -kuukulkijaansa. Kiina laukaisi ensimmäisen kuuluotaimesa, Chang’e 1:n, lokakuussa 2007 ja se kiersi Kuuta noin puolentoista vuoden ajan. Chang’e 2 seurasi sitä lokakuussa 2010. Vuonna 2012 se ohjattiin pois Kuun luota ulos planeettainväliseen avaruuteen ja kohti asteroidi 4179 Toutatisia, jonka ohi se lensi joulukuussa 2012. Näin Kiinasta tuli Yhdysvaltain, Euroopan ja Japanin jälkeen neljäs maa, joka on onnistunut tutkimaan aurinkokunnan pienkappaletta lähietäisyydeltä.
Chang’e 2 kuvasi Kuun pintaa hyvin tarkasti, jotta Chang’e 3 -voisi lasketutua turvallisesti Kuun pinnalle; laskeutumispaikaksi on valittu Sinus Iridum, laavatasanko Mare Imbriumin luoteiskulmassa. 1,2-tonninen laskeutuja saa virtaa ydinparistosta ja sen eliniäksi on kaavailtu kolmea kuukautta. Sen mukana on oheisessa kuvassa oleva kuukulkija (tai kuvassa lienee kulkijan mallikappale) ja lisäksi siinä on tutkimuslaitteita, kameroita ja jopa tähtitieteellinen kaukoputki.
Kuusipyöräinen kulkija on noin 1,5 metriä pitkä ja sen massa on noin 120 kiloa. Se pystyy kulkemaan itsenäisesti tekoälyn avulla Kuun pinnalla, mutta sitä voidaan myös kauko-ohjata Maasta. Kulkijassa on aurinkopaneelit sähköä tuottamassa ja noin 20 kilon edestä tutkimuslaitteita sekä kameroita. Eräs kiinnostavimmista instrumenteista on tutka, joka pystyy tekemään ensimmäiset sondaukset Kuun pinnanalaisesta rakenteesta jopa 30 metrin syvyyteen. Kiinalaisten aikomuksena on ajella noin 10 kilometrin päähän laskeutujasta ja tutkia noin kolmen neliökilometrin kokoisen alueen perin pohjin kolmen kuukauden aikana.
Chang’e 4 tulee olemaan samanlainen laskeutuja ja kulkija vuonna 2015 ja niitä seuraa Chang’e 5 vuonna 2017, ja sille on annettu kunnianhimoinen tehtävä: tuoda näytteitä Kuun pinnalta Maahan. Se tulee olemaan varsin merkittävä maineteko Kiinalle ja asettaa maan ehdottomasti Aasian avaruuskilvan johtoon.
Tämä teksti on julkaistu myös Tiedetuubissa.
2 kommenttia “Mangalyaan ja vyomanautit, eli avaruuskilpaa Aasiassa”
-
Mielenkiintoista seurata Intian Mars-luotaimen etenemistä…
Kiinalaisten Chang´e 3 lähtee sitten myöhemmin…National Geographic 10/2013 lehti kertoo NASA:n Apollo-kuulentojen jättäneen 12 Hasselblat kameraa (Ruotsalaisen yhtiön).
Suomikin voisi päästä kuututkimukseen esim. yhteistyössä Venäjän kanssa – jolla osaamista avaruusluotaimiin.
Kuuhun voitaisiin lähettää esim. ilmakehän mittalaitteita ja samalla kamerajärjestelmä – jolla saataisiin Maan kuvaa Kuusta.
ISS:n 15 vuotta mennyt avaruudessa hyvin. Suomi ei toimintaan rahoitusosuudella osallistunut. ISS:n kuvat julkisuuteen enimmäkseen suuntautuneet avaruusasemaan itseensä ja sen henkilöihin… Kuvia maahan päin on julkaistu vähemmin – enkä ole vielä nähnyt yhtään ISS:n koko maapallon kiertänyttä kuvakoostetta (satelliittien kuvaamia ollut). Kuville kenties rajatut julkaisuoikeudet. Suomen alueeltakin olisi mielenkiintoista nähdä avaruuskuvia enemmin. Myös pilvimuodostelmat olisi satelliittikuvien lisäksi hyvä nähdä pidempinä videokoosteina…
Filippiinit ylitti 7.-8.11. taifuuni noin 82-87 m/s tuulen kiertonopeudella – Suomessa Eino-myrskyn / su 17.11. tuulen nopeus oli siitä noin 1/3 > 30 m/s tuntumassa. Haiyan-taifuunin satelliittikuva (Japanin ilmatieteenlaitos, 7.11. / Ilta-Sanomat 11.11.2013) oli kierteinen kuin galaksi avaruudessa. Olisikin hyvä selvittää näitä näennäisiä yhtäläisyyksiä – sillä niin hirmumyrskyissä kuin galakseissakin on keskus, joista pystysuuntaan virtaus- ja purkausväylät. Hirmumyrskyissä paine-erot muodostuu poikkeavien lämpötilojen väliin… Suomen Eino-myrsky pienempänä siirtyi Keski-Suomen yli noin +/- lämpötilojen väliin… Vuoden 2011 talven Tapani- ja Hannu-myrskyt kulkivat etelämpää silloista +/- rajalinjaa. Tämä talvihan taas viivästyy Suomessa kun Pohjoinen jäämeri syksyllä oli ennätyspienellä jääpeitteellä. Eino-myrsky imaisi Suomen etelärannikon taivaan pilvettömäksi la 16.- su 17.11. pohjoisempaan myrskyyn… Samoin avaruudessakin galaksit ”imaisee” ympäristönsä kertymää avaruudessa.
Pyörremyrskyjen dynamiikka ajatellaan kausaalisuhteiltaan niin päin, että nouseva virtaus aiheuttaa pyörteen.
Galakseissa syy-seuraus-suhde voisi olla toisinpäin: gravitaatio edellyttää kappaleiden kiertoliikettä, jonka liike-energia vastustaa tilan mukana putoamista galaksin keskustaan. Kuitenkin tilaa putoaa keskeiskiihtyvästi ja tilan mukana tyhjiöenergiaa – voi ajatella myös niin, että lähinnä tyhjiöenergiaa putoaa, mutta tyhjiöenergian ”painesuhteet” määräävät kuinka kappaleet putoavat ja kuinka tila siis virittyy kappaleiden väliin; sama sanoa, että tila muuttuu ja siis putoaa.
Mihin tila tai tyhjiöenergia sitten menee? Voidaan esittää tasapainoyhtälö massan ja tyhjiöenergian kesken. Saadaan aurinkokunnassa todettu mekaniikka, klassinen painovoima tai yleisen suhteellisuusteorian kaareutunut avaruus. Kuitenkin hyrrämäisessä rakenteessa (kuten kierteisgalaksi) tyhjiöenergiaa tulee keskiöön enemmän kiertokiekon suunnasta kuin pystysuunnasta ja kun massa tarvitsee harmonisen määrän joka suunnasta, ylimäärä suihkuaa pystyakselille. Varmaan tällainen dynamiikka on aurinkokunnassakin, mutta niin heikkona, että sen mittaaminen vaatii tarkkuutta.
ISS:hän tässä aiheena on. Mielenkiintoisimpia tutkimuksia, joita ISS:ssä voidaan tehdä, ovat mielestäni mikrogravitaation testaus ja teorioiden kehittely. Siellä on löydettävissä paljon edellytyksiä uudelle fysiikalle.