Arkisto
- marraskuu 2023
- lokakuu 2023
- syyskuu 2023
- elokuu 2023
- heinäkuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- syyskuu 2020
- elokuu 2020
- heinäkuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- marraskuu 2019
Paasselän mineraalit maailmankartalle
Paasselkä on Savonlinnan, Kiteen ja Rääkkylän rajamailla sijaitseva pyöreähkö kymmenkilometrinen järvenselkä. Järven alla majaileva painanne tunnistettiin törmäyskraatterin jäänteeksi kaksikymmentä vuotta sitten. Arvelut sen mahdollisesta törmäyssynnystä ovat kuitenkin tuplasti vanhempia. En tiedä, vietettiinkö Paasselällä tänä vuonna kaksi- ja nelikymmenvuotisjuhlia, mutta aihetta juhliin olisi ollut.
Paaselkä on yksi harvoista Suomen kraattereista, joille on saatu tehtyä varsin luotettava ikämääritys, noin 231 miljoonaa vuotta. Suomen oloista tuolta ajalta ei kovin paljon tiedetä, sillä Paasselän törmäyskivien ohella Suomesta ei tunneta muita triaskaudella syntyneitä kivilajeja. Se kuitenkin tiedetään, että muun Fennoskandian tapaan Suomi sijaitsi jossain nykyisen Välimeren leveyspiirin tienoilla. Geologisesti täällä vietettiin lähinnä ainaista joulua, eli kulutusjuhlaa: vanhat kivilajit kuluivat hiljakseen pois, ja niistä syntyneet jätekasat kuljetettiin jonnekin muualle. Dinosaurukset olivat tuolloin jo aloittaneet maailmanvalloituksensa, joten eiköpähän niitä hiippaillut Savon ja Karjalan rajamaillakin, vaikkei niistä todisteita ole jäänytkään. Geologin silmin Paasselkä on siis Suomessa hyvin harvinaislaatuinen paikka. Poikkeuksellisen geologisen historiansa sijasta Paasselkä on kuitenkin paremmin tunnettu kansainvälistäkin mainetta nauttivista Paasselän piruista.

Nyt Ruotsin kuninkaallisessa luonnontieteellisessä museossa (Naturhistoriska Riksmuseet) Tukholmassa postdoc-tutkijana työskentelevä Gavin Kenny on ainakin hetkeksi tuupannut pirut pois valokeilasta. Hänen vetämänsä tutkijaryhmä on nimittäin julkaissut uusia uria törmäyskraatteritutkimukseen aukovan artikkelin Paasselän törmäyksen vaikutuksista mineraaleihin. Ryhmässä on myös mukana Paasselkää ja useita muitakin Suomen kraattereita tiiviisti tutkinut Martin Schmieder. Artikkeli Recrystallization and chemical changes in apatite in response to hypervelocity impact ilmestyy Geology-lehden tammikuun numerossa kansikuvajuttuna, mutta se on jo kotvan aikaa ollut sähköisesti saatavilla (maksumuurin takana tosin). Samasta aiheesta ilmestyi myös tänä syksynä Brasiliassa pidetyssä Large Meteorite Impacts and Planetary Evolution VI -tapaamisessa esitelty vapaasti luettavissa oleva kokousjulkaisu.
Kennyn ja kumppaneiden artikkelissa keskitytään apatiitti-mineraaliin. Apatiitti – kaavaltaan Ca5(PO4)3(F,Cl,OH) – kuuluu fosfaatteihin ja on kaikille sikäli omakohtaisesti tuttu, että hammaskiille on lähes kokonaan apatiittiä. Kuten apatiitin kaavan loppuosa osoittaa, fluori, kloori ja hydroksyyli-ioni, eli yhtä happiatomia vajaa vesimolekyyli, voivat korvata toisiaan. Ikiaikaisen mineralogisen perinteen mukaan tässä kohdassa tarinaa on kerrottava, että juuri hydroksyylin korvautumiseen fluorilla perustuu fluorihammastahnan käyttö. Hydroksyyliapatiitti ei nimittäin kestä happohyökkäystä yhtä hyvin kuin fluoriapatiitti, joten tahnasta hammaskiilteen käyttöön vapautuva fluori suojaa hampaita. Pieninä määrinä apatiitti on hampaiden ohella hyvin tyypillinen mineraali monissa kivilajeissa, joten sitä löytyy Paasselän seudun vajaat pari miljardia vuotta vanhasta kallioperästäkin. Fosfaattinsa vuoksi apatiittia myös louhitaan esimerkiksi Siilinjärvellä peltojen lannoitteeksi (ja samalla tietysti Itämeren rehevöitteeksi).
Tutkimuksen kannalta apatiitti on hyvin monikäyttöinen mineraali. Sitä hyödynnetään esimerkiksi erilaisissa ikämäärityksissä. Samoin se on oivallinen tutkittaessa metasomatoosia, eli kiviaineksessa kiertelevien kuumien liuosten aiheuttamia kemiallisia ja mineralogisia muutoksia. Apatiitti on myös keskeisessä osassa arvioitaessa esimerkiksi Kuun ja Marsin sisäosien veden määrää.
Vaikka toisten taivaankappaleiden apatiitit ovat väkisinkin joutuneet törmäysten runtelemiksi, ei tähän mennessä Maan törmäyskraatterien apatiitteja ole järin yksityiskohtaisesti tutkittu. Niinpä kenellekään ei ole muodostunut kovin tarkkaa käsitystä siitä, mitä apatiitille pohjimmiltaan tapahtuu, kun se kohtaa korkean shokkipaineen. Kennyn ja kumppanien tutkimus onkin ensimmäinen työ, jossa perehdytään syvällisesti maanpäällisen apatiitin shokkimetamorfiseen mikrorakenteeseen. Tutkimuksen ytimessä on viimeisen vuosikymmenen aikana yleistynyt takaisinsironneiden elektronien diffraktioon (electron backscatter diffraction, EBSD) perustuva elektronimikroskopian sovellus.
Tutkimuksessa löytyi esimerkiksi apatiittikiteiden deformaatioon ja uudelleenkiteytymiseen liittyviä piirteitä, jollaisia ei ole ennen tunnistettu. Osin tämä selittyy sillä, että perinteisin tutkimusmenetelmin nyt havaitut törmäyssyntyiset piirteet lienevät näkymättömiä. Paasselän shokkimetamorfisille fluoriapatiiteille oli tyypillistä kaunis rakeinen tekstuuri, jossa alkuperäinen apatiittirae on uudelleenkiteytynyt suunnilleen yhdensuuntaisiksi muutaman mikrometrin läpimittaisiksi osasiksi.

Toinen täysin uusi löytö on törmäyksen aiheuttama rauta- ja magnesiumpitoisen fosfaatin, wagneriitin,1 kiteytyminen apatiitin sisälle. Wagneriitti esiintyy ainoastaan apatiitin uudelleenkiteytyneillä alueilla, eikä sitä tavata laisinkaan niissä kohdin apatiittirakeita, jotka eivät uudelleenkiteytymistä kokeneet. Wagneriitin vaatima rauta ja magnesium ovat selvästi peräisin wagneriittia ympäröivästä uudelleenkiteytyneestä apatiitista, sillä uudelleenkiteytyneen apatiitin rauta- ja magnesiumpitoisuudet ovat alhaisemmat kuin kutakuinkin alkuperäisessä kunnossaan säilyneen apatiitin.
Nämä fosfaattien mikrorakenteelliset ja geokemialliset löydöt voivat ehkä äkkiseltään kuulostaa hivenen kuivakkailta. Kraatteritutkijat ovat kuitenkin aina tällaisista uusista avauksista innoissaan. Lisäksi Kennyn ja kumppaneiden työllä voi hyvin olla paljon kauaskantoisempia ja nimenomaan epäkuivakkaita vaikutuksia planeettatutkijoiden elämään. Koska shokin vaikutuksesta Paasselän apatiitissa syntyi wagneriittia, jonka rauta ja magnesium tulevat sitä ympäröivästä apatiitista, on luonnollista olettaa, että myös wagneriitin fluori on peräisin apatiitista. Shokkimetamorfoosi siis todennäköisesti vaikuttaa apatiitin fluoripitoisuuteen. Ja tämä saattaa muuttaa vallitsevia käsityksiä isoistakin asioista.
Apatiittien fluori ja kloori ovat paljon helpommin analysoitavissa kuin niiden hydroksyyli. Siksi apatiittianalyyseistä ”puuttuva aines” on useimmiten oletettu hydroksyyliksi, siis karkeasti ottaen vedeksi. Paasselän tulokset viittaavat siihen mahdollisuuteen, ettei vaikkapa Marsissa tai Kuussa suurille törmäyksille alttiina olleen apatiitin mitattu fluoripitoisuus välttämättä vastaakaan alkuperäistä, kuten on oletettu. Niinpä apatiittianalyyseihin perustuvat Kuun ja Marsin sisäosien vesipitoisuuslaskelmat voivat olla jonkin verran pielessä. Kuun vetinen sisus taas on ollut kenties suurin viimeisen parin vuosikymmenen aikana tapahtunut mullistus käsityksissämme Kuusta. Asia tietysti vaatii runsaasti lisätutkimuksia, mutta Paasselän mineraalit voivat hyvinkin olla alkusysäys uusille ajatusmalleille aurinkokuntamme kivisten kappaleiden vetisestä historiasta. Vähintään entisiä malleja pitää Paasselän tietojen pohjalta tarkastella uudesta näkökulmasta.
Paasselän apatiitteihin liittyy myös opettavainen tarina luonnontieteellisen tutkimuksen luonteesta. Alun perin Gavin Kennyn ei nimittäin edes pitänyt tutkia Paasselän apatiitteja. Hänen varsinainen leipälajinsa on kraatterien iänmääritys käyttäen uraani–lyijy-menetelmää shokkimetamorfisten zirkonimineraalien ajoittamiseen. Tähän menetelmään perustuen hän esimerkiksi julkaisi Lappajärven uuden ikämäärityksen vuosi sitten. Shokkimetamorfisia zirkoneja hänen oli tarkoitus Paasselästäkin kaivaa esiin.
Zirkonit saadaan tutkittaviksi, kun kivinäyte murskataan ja separoidaan. Separoinnin loppuvaiheessa käytetään ns. raskasnesteseparointia. Siinä nesteenä on yleensä metyleenijodidi, jolla on niin korkea tiheys, että ainoastaan zirkonin kaltaiset raskaimmat mineraalit vajoavat liuoksen pohjalle. Sieltä ne on helppo noukkia tutkittaviksi.
Pahaa aavistamatta Kenny marssi laboratorioon ja alkoi separoida zirkoneja esiin. Vaan kuinka ollakaan, joku edellinen käyttäjä olikin hänen tietämättään laimentanut metyleenijodidia. Niinpä liuoksen pohjalle mötkähtivät zirkonien ja ajoitukseen myös sopivien monatsiittien ohella hieman kevyemmät apatiititkin. Joku muu olisi saattanut heittää apatiitit mäkeen, mutta avarakatseisena tutkijana Kenny tuumasi, että tutkitaan nyt sitten näitäkin. Lopputulos on nähtävissä Geology-lehden kannessa.
Paasselän apatiittitarina onkin erinomainen esimerkki serendipisyydestä. Samankaltaisten onnekkaiden sattumien seurauksena keksittiin mm. rokottaminen, penisilliini ja kosminen taustasäteily. Paasselän shokkimetamorfiset apatiitit asettuvat näin osaksi komeaa tieteenhistoriallista jatkumoa.
Vaan entäpä ne separoidut Paasselän zirkonit ja monatsiitit, mitä niille tapahtui? Niillä Kenny ja kumppanit tekivät suomalaisten törmäyskraatterien mittakaavassa historiaa. Zirkonissa havaittiin useita shokkimetamorfoosin aiheuttamia piirteitä, joista zirkonin hajoamista zirkoniaksi (ZrO2) ja silikaksi (SiO2) ei ainakaan oman muistini mukaan Suomen muista kraattereista ole toistaiseksi löydetty. Zirkonin hajoaminen osoittaa zirkonirakeiden kuumentuneen vähintään 1673°C:een. Paasselän zirkoneissa havaitut todisteet zirkonin tilapäisestä muuttumisesta korkean paineen ja lämpötilan polymorfiseksi muodoksi reidiitiksi puolestaan ovat Lappajärven jälkeen toiset Suomesta löydetyt. Monatsiittien osalta Paasselkä sai nimiinsä Suomen ensimmäiset todisteet monatsiittikiteen ns. kaksostumisesta tavalla, joka on ominaista ainoastaan shokkimetamorfoosille. Nämä tulokset osoittavat jälleen kerran, että Suomen törmäyskraattereissa riittää erittäin runsaasti mahdollisuuksia kansainvälisesti merkittäviin löytöihin.
Paasselkä kuuluu Suomen suurimpien kraatterien joukkoon. Sen törmäyssyntyiset kivilajit ovat Suomen ainoat tunnetut triaskautiset kivet, ja niissä on joukko massiivisen räjähdyksen todisteita, jollaisia ei ole löydetty mistään muualta Suomesta. Paasselän apatiitit ovat koko maapallon ensimmäiset törmäyksessä muuttuneet apatiitit, joiden mikrorakenne on kunnolla tutkittu. Eikä mistään muualta kuin Paasselältä ole raportoitu shokkimetamorfisen wagneriitin kiteytymistä apatiitin sisällä. Ja sitten on tietysti vielä ne pirut. Eikös tässä olisi jo ihan riittävästi aineksia paikallisen geomatkailun kehittämiseen? Tai biisiaihiota Kiteen suurelle pojalle Tuomas Holopaiselle?
1Wagneriitti on apatiittia muistuttava rautamagnesiumfosfaatti, (Mg,Fe2+)2(PO4)F. Kennyn ryhmän tutkimuksessa ei voitu kiistatta osoittaa kyseessä olevan wagneriitti, vaan ainoastaan jokin wagneriitin polymorfinen muoto. Mineralogiassa polymorfialla tarkoitetaan sitä, että sama kemiallinen koostumus voi esiintyä eri kidejärjestelmissä ja näin ollen muodostaa eri mineraaleja. Tunnettu esimerkki polymorfiasta on grafiitti ja timantti. Ne ovat kumpikin kemialliselta koostumukseltaan hiiltä, mutta erilaisten kiderakenteidensa vuoksi ominaisuuksiltaan hyvin voimakkaasti toisistaan poikkeavia mineraaleja.
Tämä juttu ilmestyy myös Suomen kraatterit -blogissa.
Pikkuplaneetta pöydällä
Myöhäissyksyinen ilta uimarannalla
Kun marraskuu alkoi hiljalleen taittua joulukuun puolelle, tallustelin kohti läheistä uimarantaa. Suomen syksylle tyypillinen lähes kuukauden jatkunut yhtämittainen pilvisyys oli lopultakin tauonnut. Niinpä mukanani oli pyyhkeen ja simmareiden sijasta jalusta, parit kiikarit ja perinteiseen tyyliin paperille painettu tähtikartta.
Jäälle ei vielä tohtinut lähteä seikkailemaan. Se oli harmillista, sillä pääkohteenani ollut Etiopian kuninkaan Kefeuksen valtakunnan rannikoilla kauhua ja hävitystä kylväneen merihirviön eli Valaan tähdistö jäi ikävästi rantakoivujen katveeseen. Onneksi kuitenkin uimalaituri oli jätetty talveksi paikoilleen, joten se tarjosi riittävästi etäisyyttä rannan puihin. Laiturilta katsellen Valaan kirkkain tähti Menkar oli juuri koivunlatvojen yläpuolella ja näkyi mukavasti paljainkin silmin, vaikka suoraan kaupungin valohehkun suunnassa olikin. Ja siellä, Menkarista hollin matkaa ylös ja vähän oikealle näkyi jo pikkukiikarilla piste samassa kohdassa, johon olin sen tähtikarttaani piirtänyt. Edellisestä kohtaamisestani kotilieden jumalatar Vestan kanssa oli kulunut vajaat pari vuotta, joten jälleennäkeminen oli hyvinkin mieluisa.
Ennen minua tai ketään muutakaan Vestan löysi saksalainen Wilhelm Olbers maaliskuussa 1807. Olbers oli monipuolinen tutkija, sillä paitsi että hän oli lääkäri ja löysi Vestan, Pallaksen ja nimeään kantavan jaksollisen komeetan, hän myös pohdiskeli yötaivaan pimeyttä ja universumin äärettömyyttä. Tämä tapahtui noin 170 vuotta ennen kuin Jukka Kuoppamäki ja Katri Helena hivuttivat Olbersin paradoksin keskeisen kysymyksen ”Miksi taivas on öisin musta, miksi valoa en mä nää?” suomalaisen iskelmäkansan tietoisuuteen. Syvällisestä pohdinnasta huolimatta Olbersilla, sen paremmin kuin Vestan radan määrittäneellä ja myös sen nimenneellä Carl Friedrich Gaussilla ei kuitenkaan vielä voinut olla aavistustakaan Vestan perimmäisestä olemuksesta.
Nykyään jo harrastajienkin tavoitettavissa alkaa olla sen tosiasian toteaminen, ettei Vesta ole pelkkä tähdenkaltainen piste. Kuun ja planeettojen valokuvaukseen erikoistunut Damian Peach onnistui jo vuonna 2007 nappaamaan kuviinsa Vestan hieman soikean muodon. Suomalaisetkin harrastajat pystyvät nykyisin kuvaamaan yksityiskohtia Jupiterin suurimpien kuiden pinnoilta, ja Vestan maksimikulmaläpimitta on näiden erottuvien yksityiskohtien suuruusluokkaa. En tiedä, onko kukaan Suomessa vielä yrittänyt kuvata Vestan muotoa, mutta huippuharrastajien tekniikka ja taidot kehittyvät sitä vauhtia, ettei temppu enää mahdottoman kaukaiselta tunnu. Vestan oppositiot toistuvat suunnilleen vuoden ja viiden kuukauden välein, joten ehkäpä maaliskuussa 2021 Vestan loistaessa komeasti Leijonan tähdistössä joku suomalainenkin onnistuu ikuistamaan Vestan muodon.
Näytteitä Vestasta?
Uimarannalta takaisin kotiin päästyäni oli pakko ottaa vitriinistä esiin pieni rasia, jossa luki Bilanga. Avasin rasian, ja tavoistani poiketen koskin paljain sormin tuohon pieneen hauraaseen kivenmuruseen. Kyseinen pikkukivi päätyi aika tarkkaan 20 vuotta sitten Burkina Fasoon, jonnekin Bilanga-Yangan ja Gomponsagon kylien tienoville. Bilanga on yksi 2222:sta tällä hetkellä tunnetusta HED-meteoriitista. Jo viitisenkymmentä vuotta olemme tienneet, että HEDit – howardiitit, eukriitit ja Bilangan kaltaiset diogeniitit – ovat mitä suurimmalla todennäköisyydellä peräisin Vestasta. Juuri siksi minä sinne kivivitriinilleni menin: hetkeä aiemmin kiikarilla pisteenä näkemäni Vesta oli nyt siinä kirjoituspöydälläni, kosketeltavissa ja ihasteltavissa. No, mitättömän pieni osa Vestaa tietenkin, mutta sekin oli tarpeeksi saadakseen kylmät väreet kulkemaan selkääni pitkin.

Alkujaan Vestan ja HEDien yhteys perustui niiden spektrien ainutlaatuiseen samankaltaisuuteen. Vuonna 1997 Hubble-avaruusteleskoopin havaintojen perusteella löydettiin Vestan etelänavalta jättimäinen törmäysallas. Se selitti vestoideina tunnettujen spektriltään ja rataparametreiltään Vestan kaltaisten kilometrien kokoluokkaa olevien asteroidien olemassaolon – vestoidit ovat yksinkertaisesti törmäysaltaan heittelettä. Altaan löytyminen auttoi myös osaltaan ymmärtämään, miten HED-meteoriitteja saattoi päätyä Maahan. Vuonna 2007, siis 200 vuotta Vestan löytymisen jälkeen laukaistu NASAn Dawn-luotain on sittemmin käytännössä varmistanut käsityksen Vestasta HEDien emäkappaleena.
Moni kutsuu Vestaa asteroidiksi. Ja mikäpä siinä, sillä sananmukaisesti tähdenkaltaiseltahan se kiikarilla katsellen näyttää. Minulle kuitenkin Vesta on pikkuplaneetta. Suurempien planeettojen tapaan se on monimuotoinen, pitkään jatkuneiden geologisten prosessien muokkaama kaunis ja kiehtova maailma, pienempi vain. Se on jopa differentioitunut, eli sillä on rautaydin, raskaiden silikaattimineraalien muodostamista kivilajeista koostuva vaippa, ja lähinnä möyhentyneestä basalttisesta laavakivestä ja sen hieman syvemmällä syntyneistä lähisukulaisista koostuva kuori. Nykyään ”pikkuplaneettaa” tunnutaan terminä vierastavan, mutta ihan syyttä. Vaan kaipa tässäkin on kyse lähinnä näkemyserosta. Tähtitieteelliseltä kannalta Vesta on piste, mutta geologeille se on oma pieni maailmansa. Mikä parasta, se on maailma, josta on runsaasti näytteitä ja jonka pinnanmuodot ja koostumus tunnetaan poikkeuksellisen hyvin.

Vestan neitsyet
Jo pian sen jälkeen kun Dawn saapui Vestan kiertoradalle, kävi ilmi, että Hubblen kuvissa nähty Vestan eteläinen törmäysallas muodostuukin kahdesta päällekkäisestä altaasta, eli vanhemmasta 400-kilometrisestä Veneneiasta ja geologisesti varsin nuoresta 500-kilometrisestä Rheasilviasta. Samaan allaskompleksiin kuuluu vielä kolmaskin, osin Rheasilvian alla oleva nimetön 250-kilometrinen allas. Rheasilvian keskuskohouman korkeus vetää lähes vertoja aurinkokokunnan korkeimmalle vuorelle, Marsin maineikkaalle Olympus Monsille. Rheasilvian synty kesti noin puoli Vestan vuorokautta (joka puolestaan kestää reilut viisi tuntia), joten coriolisvoima ehti vaikuttaa prosessin kulkuun synnyttäen hämmentäviä spiraalimaisia rakenteita, jollaisia ei vastaavassa mitassa ole toistaiseksi tavattu mistään muualta aurinkokunnastamme.
Dawn-luotaimen spektrometrien ja kameroiden tuottaman aineiston tutkimus osoitti, että eukriittista ainesta on etenkin Vestan päiväntasaajan tienoilla. Eukriitit edustavat Vestan kuorikerrosta, eli basalttisia laavoja ja niitä vastaavia hitaammin kiteytyneitä syväkiviä. Howardiitit puolestaan ovat murskaantuneita seoskiviä eli breksioita, joissa on sekaisin diogeniittista, eukriittista, ja silloin tällöin myös hiilikondriittimeteoriiteista peräisin olevaa runsaasti vettä ja muita helposti haihtuvia yhdisteitä sisältävää ainesta. Howardiittinen materiaali muodostaa Vestan irtonaisen ”maaperän”, regoliitin, joka kattaa suurimman osan Vestan näkyvästä pinnasta.
Diogeniittistä ainesta esiintyy lähinnä Rheasilvian törmäysaltaan sisällä ja sen heittelekentällä. Sulan kiviaineksen kiteytymistä ja kemiaa tutkivien petrologien työn ansiosta on jo vuosikymmeniä on tiedetty, että diogeniitit ovat lähtöisin Vestan ylävaipasta. Vestan tapauksessa se alkaa vasta parinkymmenen kilometrin syvyydestä, joten jollain ilveellä diogeniitit on saatava kaivettua ylös ja nostettua avaruuteen ennen kuin niitä voi päästä putoilemaan burkinafasolaisten kylien liepeille. Veneneia ja Rheasilvia tarjoavat tälle luonnollisen selityksen: jos yksi suuri törmäys räjäyttää ensin suuren osan Vestan kuorikerroksesta pois, on toisella lähes samaan kohtaan tapahtuvalla vielä suuremmalla törmäyksellä helppo työ nostaa ylävaipan kiviainesta Vestan pinnalle ja avaruuteen.
Vaikka Rheasilvia ryöpsäytti avaruuteen runsaasti Vestan ainesta, ei se kuitenkaan voi suoraan olla nykypäivänä putoilevien HED-meteoriittien takana. Tämä johtuu siitä, että kolmasosa kaikista HEDeistä sinkoutui avaruuteen vasta noin 22 miljoonaa vuotta sitten. Bilanga edustaa toista porukkaa, joka on seilannut avaruudessa suunnilleen 49 miljoonaa vuotta ennen päätymistään maapallolle. Vaikka Rheasilvia suureksi altaaksi nuori onkin – ehkä noin miljardi vuotta – on se silti aivan liian vanha kyetäkseen selittämään näiden HED-klaanien avaruudessa viettämän ajan lyhyys. Myöskään Rheasilvian synnyttämien vestoidien keskinäiset törmäykset eivät kelpaa HEDien valtaosan alkulähteeksi. HEDien selittämiseksi tarvitaankin kohtalaisen suuria huomattavasti Rheasilviaa nuorempia törmäyksiä itse Vestan pinnalle ja mieluiten vielä sopiville alueille, jotta avaruuteen päätyy oikeaan aikaan merkittäviä määriä Vestan ylävaipasta, kuoresta ja regoliitistä peräisin olevaa ainesta. Viime toukokuussa julkaistun tutkimuksen ansiosta meillä onkin nyt suht luotettavalla pohjalla oleva käsitys siitä, missä noiden törmäysten synnyttämät kraatterit sijaitsevat.
HED-meteoriittien lähtökraatterit
Howardiittien, eukriittien ja diogeniittien todennäköisten lähtöpaikkojen selvittämisessä vaikeinta on oikean ikäisen kraatterin löytäminen. Toisten taivaankappaleiden törmäyskraatterien tai laavatasankojen iän määrittäminen ei nimittäin ole helppoa. Käytännössä ainoa keino on laskea, kuinka monta törmäyskraatteria pinta-alayksikköä kohti löytyy. Kraatterien määrästä ja kokojakaumasta pitäisi sitten päätellä pinnan vuosissa mitattava ikä. Menetelmä toimii joltisenkinmoisella tarkkuudella Kuussa, koska Apollo- ja Luna-näytteiden ansiosta meillä on näytteitä alueilta, joiden kraatteritiheydet tunnetaan. Kuunäytteiden iänmääritys laboratoriossa ei kuitenkaan sekään ole yksinkertaista puuhaa, tulosten geologisesta tulkinnasta puhumattakaan. Niinpä Kuun eri ikämalleissa satojen miljoonien vuosien heitot suuntaan tai toiseen ovat arkipäivää. Muiden taivaankappaleiden kohdalla homma on vielä huomattavasti hankalampaa, sillä näytteitä varmasti tunnetuilta paikoilta ei ole, törmäysnopeudet ja sen myötä syntyvien kraatterien koot eivät ole samat kuin Kuussa, eikä törmäävien kappaleiden populaatio muutenkaan vastaa Kuuta. Hämmästyttävää kyllä, kaikista näistä hankaluuksista huolimatta sekä Bilangan porukan että 22 miljoonaa vuotta matkanneiden HEDien lähtökraatterit Vestalla todennäköisesti – tai ainakin mahdollisesti – tunnetaan.
Antonia on läpimitaltaan noin 16,8-kilometrinen kaunis, persoonallisen näköinen kraatteri Rheasilvian sisällä. Monien muiden Vestan kraatterien tapaan se syntyi loivaan rinteeseen, mikä selittää sen heitteleen epäsymmetrisen leviämisen enimmäkseen alarinteen suuntaan. Kraatterilaskujen perusteella sen heittelekentän ikäarviot pyörivät enimmäkseen jossain noin 18:n ja 24:n miljoonan vuoden välillä. Mallinnusten mukaan sen heitteleen kappaleet olivat suurimmillaan nelimetrisiä järkäleitä, ja tyypillisesti läpimitaltaan noin 0,25–1,25 metriä. Ideaalista tavaraa synnyttämään 22 miljoonan vuoden HED-klaanin meteoriitit siis. Arviolta parisen prosenttia Antonian avaruuteen heittämästä kiviaineksesta päätyy ennemmin tai myöhemmin Maahan.

Licinia on Antoniaa hieman suurempi, suunnilleen kotimaisen kraatterihelmemme Lappajärven kokoinen 24-kilometrinen kraatteri Vestan pohjoisella pallonpuoliskolla, varsin kaukana diogeniittisen aineksen pääesiintymisalueelta. Sen ikämääritys on hieman epävarmempi kuin Antonian. Näistä lievistä puutteistaan huolimatta Licinia on selvästi paras kandidaatti selittämään Bilangan ja muut 49 miljoonan vuoden klaanin jäsenet.

Antonia ja Licinia eivät suinkaan ole ainoat HED-meteoriittien lähtökraatterit. HED-ikäryhmiä on useita muitakin, ja niiden sisälläkin on muutamien miljoonien vuosien hajontaa. Kraatterilaskujen Antonialle ja Licinialle antamat iät puolestaan ovat täysin malleista riippuvaisia, eikä kukaan toistaiseksi tiedä, mikä malleista on lähimpänä totuutta. Ne ovat kuitenkin ainoat kraatterit, jotka nykyisen käsityksen mukaan pystyvät selittämään suuren osan tunnetuista HED-meteoriiteista. Niinpä siihen saakka kunnes jotain paremmin perusteltua esitetään, olen valmis hyväksymään, että oma pieni palaseni Vestaa lähti liikenteeseen juuri Liciniasta.
Minua voi kai moittia parantumattomaksi romantikoksi, mutta Vestan ja HED-meteoriittien tarina on minusta tavattoman kaunis. Kiikarilla näkemäni piste, ehkäpä noin 4,567 miljardia vuotta sitten syntynyt ja sulanut pikkuplaneetta, miljardi vuotta sitten tapahtunut valtava törmäys, 49 miljoonaa vuotta sitten sattunut pienempi törmäys, burkinafasolaisen kylän kivisade kaksikymmentä vuotta sitten ja vitriinissäni oleva kivenmurunen muodostavat yhden suuren polveilevan kertomuksen. Siinä on vielä pieniä aukkoja, mutta suurimmalta osin tarinan sivujuonet muodostavat loogisesti etenevän kokonaisuuden. Juuri tällaisten tarinoiden vuoksi planeettageologian tutkimus on niin äärimmäisen kiehtovaa.
Muokkaus 20.12.2019: Toiseksi viimeinen kappale oli kohteen kertaan. Yhdelläkin pärjää.