Arkisto
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- syyskuu 2020
- elokuu 2020
- heinäkuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
Perseverance, Ingenuity ja Jezero-kraatterin tumman kerroksen ikä
Viime aikojen Mars-uutisointia seuratessa ei ole voinut jäädä epäselväksi, että NASA aikoo testata Ingenuity-helikopteriaan kenties jo seuraavan reilun viikon sisällä. Perseverance-mönkijän mukana matkannut Ingenuity on onnistuessaan ensimmäinen toisella planeetalla hallitusti lentänyt ihmisen tekemä laite (jos laskeutumisten yhteydessä tehtyjä lyhyitä manööverejä ei lasketa).
Parikiloinen Ingenuity ei kuitenkaan varsinaisesti tee tutkimusta muutaman metrin korkeuteen kohoavilla lennoillaan: se on puhtaasti teknologiakoe. Jezero-kraatterin tutkiminen jää Perseverancen vastuulle. Vaikka siinä on monipuoliset tutkimuslaitteet, useimmat kiinnostavimmista kysymyksistä selviävät – sikäli kun selviävät – kuitenkin vasta paljon myöhemmin. Perseverance nimittäin kerää ja jemmaa varastokasoihin kenties yli 30 näyteputkiloa kairanäytteitä Marsin kallioperästä ja pinta-aineksesta. Ne toivottavasti saadaan jonkun vielä tällä hetkellä suunnittelupöydällä olevan systeemin avulla kuljetettua Maahan laboratoriotutkimuksiin.

Näyttävin ja mielenkiintoisin geologinen piirre Jezerossa on muinaisen joen Jezero-järveen kerrostama delta. Se syntyi joskus ehkä yli 3,5 miljardia vuotta (giga annum eli jatkossa Ga) sitten. Deltan liepeillä Perseverancenkin on suunniteltu enimmäkseen mönkivän, elämän merkkejä ja kaikenlaista muuta kiinnostavaa etsien.
Deltan ohella Jezeron pohjalla on suuren geologisen yksikön muodostava tumman aineksen muodostama, arviolta kymmenkunta metriä paksu kerros. Kerroksen spektristä on päätelty sen koostumuksen vastaavan vulkaanisia kiviä. Sen syntytavasta on kuitenkin ainakin kaksi hyvin erilaista tulkintaa. Aiemmin yleensä ajateltiin, että Jezeron pohjan tumma yksikkö koostuu törmäystä nuoremmista laavakivistä. Jezeron törmäyskraatteriin olisi siis tunkeutunut laavaa, hieman samaan tapaan kuin monissa Kuun merten lähistöillä sijaitsevissa kraattereissa on tapahtunut.
Uudemmassa ja hieman tylsemmässä mallissa kyse on laavan sijaan tuliperäisestä tuhkasta. Tämän ajatuksen mukaan tulivuoren purkausaukko olisi ollut jossain kauempana. Tumma kerros olisi ainoastaan kaasukehän kautta Jezeron pohjalle kerrostunutta ja sittemmin kivettynyttä vulkaanista tuhkaa.
Perseverance laskeutui hyvin lähelle tumman aineksen rajaa, joten on todennäköistä, että mönkijä tutkii sen koostumusta ja ulkonäköä. Aineksen syntytapa selviää todennäköisesti jo näillä paikan päällä tehtävillä tutkimuksilla. Tumman aineksen ikää Perseverance ei kuitenkaan pysty määrittämään.

Pari viikkoa sitten The Astronomical Journal -julkaisusarjassa ilmestyi Simone Marchin artikkeli A New Martian Crater Chronology: Implications for Jezero Crater. Se tuo konkreettisesti esiin, että keskeisimpien Jezeroa, Marsia ja koko aurinkokunnan kehitystä koskevien kysymysten ratkaisemiseksi tarvitaan näytteitä parhaissa maanpäällisissä laboratorioissa tutkittaviksi. Pelkät mönkijän omat tutkimukset eivät riitä.
Kraatterilaskuihin perustuvaan pintojen ikätutkimukseen ja erilaisiin törmäävien kappaleiden populaatioihin erikoistuneen Marchin artikkeli keskittyy Marsin ajanlaskuun – niin sen suuriin käänteisiin kuin Jezeron pohjan tummaan yksikköönkin. Marsin kuten muidenkin kiinteäpintaisten kappaleiden iänmääritykseen liittyy runsaasti hankaluuksia ja aika vapaavalintaisia oletuksia. Niiden vuoksi kellään ei ole varmaa tietoa siitä, kuinka vanhoja Marsin eri alueet oikein ovat.
Marchi ehdottaa uusien laskelmiensa ja simulaatioidensa perusteella melkoisen rajuja muutoksia Marsin ajanlaskuun. Yksi keskeisimmistä havainnoista on, että kaikki aiemmat dynaamiset mallit – myös hänen omat aiemmat työnsä – tuottavat enemmän yli 150 km:n läpimittaisia kraattereita kuin Marsin vanhalla eteläisellä kraatteroituneella ylängöllä havaitaan. Yksi mahdollisuus on, että alati muuttuvat mallit ovat väärässä. Näin tietenkin useimpien mallien kohdalla aina väkisin onkin.
Toinen vaihtoehto Marchin mukaan on, että Marsin pohjoiset alangot muodostava Borealiksen allas syntyi noin 4,40–4,35 Ga sitten. Sen synnyttäneessä törmäyksessä muodostunut heittelekerros tuhosi ja peitti käytännöllisesti kaikki aiemmat törmäysaltaat. Tässä ideassa on kuitenkin yksi potentiaalisesti valtaisa ongelma: Borealis ei välttämättä ole törmäysallas ollenkaan. Viime vuosina vaaka on alkanut kieltämättä kallistua entistä vahvemmin törmäyssynnyn puoleen, mutta erityisen vahvoja todisteita sen puolesta ei ole esitetty. Sisäisten voimien synnyttämä allas on edelleen mahdollinen vaihtoehto, vaikkei Marchi tätä ajatusta huomioon otakaan.
Borealiksen altaan oletetulla reunalla sijaitsee yksi Marsin suurista varmoina pidetyistä törmäysaltaista, Isidis. Aiemmin sen ikämääritykset ovat antaneet tuloksia, joiden mukaan se syntyi ehkä 4,04–3,86 Ga sitten. Tätä Marchi pitää liian nuorena ikänä. Hänen mukaansa Isidiksen tömähdys tapahtui jo noin 4,20–4,05 Ga sitten. Koska Isidis on Borealiksen oletetulla reunalla, Borealiksen täytyy siis olla tätä vanhempi. Jezeron kannalta tämä on sikäli erittäin oleellista, että se sijaitsee Isidiksen sisällä, joten sen on oltava Isidistä nuorempi.
Jezeron pohjan tumman yksikön aiemmat ikämääritykset kuvastavat hyvin Marsin pinnan ikäarvioiden villiä luonnetta. Näissä tutkimuksissa sen iäksi on saatu 1,4 Ga, 2,6 ± 0,5 Ga ja 3,35 +0,16 / -1,06 Ga. Ikäarvioilla on siis eroa peräti kaksi miljardia vuotta. Se on jopa planeettageologiassa tolkuttoman pitkä aika. Marchin tuore arvio on 3,1–2,7 Ga.
Jos tietäisimme varmasti, onko pohjan tumma kerros deltan alla vai päällä (eli onko se deltaa vanhempi vai nuorempi), olisi helppoa valita oma suosikki tumman kerroksen ikäarvioista ja sitten vain todeta deltan olevan tätä vuosimäärää nuorempi tai vanhempi. Harmillista kyllä, edes tätä perusasiaa emme tiedä, sillä deltan ja tumman kerroksen keskinäisestä suhteellisesta iästä on kaksi täysin päinvastaista näkemystä. Tim Goudge kollegoineen on 2010-luvun puolivälissä esittänyt parissakin tutkimuksessa tumman kerroksen olevan deltaa nuorempaa laavaa. Vivian Z. Sun ja Kathryn M. Stack puolestaan sanovat tuoreemmissa kartoitustutkimuksissa sen olevan deltaa vanhempaa tuhkaa.
Jezeron deltan absoluuttisesta (siis vuosissa mitattavasta) iästäkin on epäilemättä esitetty runsaasti mitä moninaisimpia arvioita. Edellä kuvatusta kraatterilaskuihin perustuvien ikämääritysten antamien tulosten holtittomasta vaihtelusta johtuen en ole itse jaksanut niihin sen kummempaa huomiota kiinnittää. Tällä hetkellä tiedämme oikeastaan vain, että Jezeron delta, jonka ympärillä Perseverance seuraavat kuukaudet ja toivottavasti vuodet mönkii, on luonnollisesti nuorempi kuin itse kraatteri. Deltan ikä vuosissa mitaten tai sen suhde muihin geologisiin yksiköihin alueella on kuitenkin täysin hämärän peitossa. Tämä epävarmuus korostaa sitä, kuinka tavattoman vaikeaa Mars-tutkimus on niin kauan kuin käytössä ei ole tunnetusta paikasta kerättyjä näytteitä.

Koska deltat ovat jokien tuomaa hiekkaa, jonka mineraalirakeet voivat olla peräisin monista eri ikäisistä lähteistä, on itse deltan iän määrittäminen hyvin hankalaa, vaikka siitä saisikin näytteen laboratorioon. Tuliperäiset kivet ovat toista maata. Niiden radioaktiivisuuteen perustuva kello on alkanut tikittää siinä vaiheessa, kun kivi on jähmettynyt. Näin ollen Jezeron pohjan tumman kerroksen ikä, etenkin jos se on vanhempien tulkintojen mukaista laavakiveä eikä tuhkaa, voidaan määrittää parhaimmillaan täysin yksiselitteisesti ja tarkasti heti kun Perseverancen kairaama näyte saadaan Maassa laboratorioon.
Tumman kivikerrostuman iästä saadaan Jezeron minimi-ikä. Siitä voidaan johtaa Isidiksen minimi-ikä, ja siitä Borealiksen minimi-ikä. Tässä vaiheessa oletuksia on jo tehty melkoisen paljon, mutta periaatteessa Borealiksen minimi-ikä muodostaa tärkeän kiintopisteen koko aurinkokunnan varhaisen historian selvittämiseen. Toki, jos oikein hyvä tuuri käy, Perseverancen kaira lävistää sellaisiakin kiviä, joiden sisäiset kellot ovat nollautuneet joko Isidiksen tai peräti Borealiksen altaiden syntyessä. Ja jos Perseverance pystyy havainnoillaan lisäksi yksiselitteisesti määrittämään pohjan tumman kerroksen ja deltan ikäsuhteen, tiedetään varhaisen pommitushistorian lisäksi jo melkoisen hyvällä tarkkuudella, milloin Marsissa oli aktiivisia tulivuoria ja milloin siellä joet virtasivat kraatterijärviin. Nämä olisivat äärimmäisen mielenkiintoisia tietoja niin geologeille kuin astrobiologeillekin.
Perseverancen toiminta-ajan mediaseksikkäimmät hetket saatetaan siis kokea Ingenuity-kopterin myötä jo parin viikon sisällä. Sen vaiheita jännittäessä kannattaa kuitenkin pitää mielessä se tylsä tosiseikka, että tieteellisesti kiinnostavimmat tulokset saadaan tulevien näyteputkiloiden hakulentojen myötä, mikäli niiden rahoitus ja kaikki muu sujuu mallikkaasti. Tähän kuluu parhaassakin tapauksessa helposti reilu vuosikymmen. Mutta hyvää kannattaa odottaa.
Venus ja Afrodite
Kulunut helmikuu on ollut jatkuvaa Mars-juhlaa. Kaksi alusta onnistuneesti kiertoradalle ja kolmas pinnalle on häkellyttävä onnistumisprosentti vallankin kun ottaa huomioon, että kaksi yrittäjistä oli Marsin osalta ensikertalaisia.
Kohokohta oli tietenkin NASAn Perseverance-mönkijän laskeutuminen. Laskeutumisvideot olivat huikaisevia, reikäiset kivet mieltä kiehtovia ja maisemat totutun kauniita. Kun on kymmenkesäisestä asti ollut Marsin pauloissa, kulkivat kylmät väreet pitkin selkäpiitä, kun ensi kertaa kuuli Marsin tuulen puhaltavan. Taisi siinä vähän Marsin pölyäkin lentää silmäkulmaani kaihertamaan.
Sekä Al-Amal, Tianwen-1 että Perseverance ovat tähän mennessä olleet menestyksiä. Kaikki on tiettävästi mennyt kuten on suunniteltu, joten yllätyksiä ei ole pahemmin päässyt syntymään. Helmikuun planeettauutisten ”Häh?!”-efekti tulikin ihan eri suunnasta, ja sen aiheutti luotain, joka ei edes varsinaisesti tutki planeettoja.
Parker Solar Probe
Elokuussa 2018 NASA laukaisi Parker Solar Probe -luotaimen tutkimaan Auringon ulointa osaa, koronaa. Jotta Parker pääsee vajaan kymmenen Auringon säteen päähän Auringon ytimestä vuonna 2025, täytyy sen tehdä peräti seitsemän Venuksen lähiohitusta lentosuuntansa ja etenkin ratanopeuden muutoksia varten. Jos Kuuta ei lasketa, Venus on Maan lähin planetaarinen naapuri ja lähes Maan kokoinen, joten se on hyvin käyttökelpoinen kohde etenkin tällaisten aurinkokunnan sisäosiin suuntautuvien luotainlentojen toteutuksessa.
Parkerin neljäs Venuksen ohilento tapahtui helmikuussa. Kuten monien muidenkin luotainten kohdalla on toimittu, myös Parkerin tutkimuslaitteita käytetään lähiohitusten aikaan. Tarkoituksena on paitsi laitteiden toiminnan testaus, myös ihan kunnollisen tutkimuksen teko.
Helmikuinen uutinen* Parkerista ja Venuksesta ei kuitenkaan koskenut uusinta ohilentoa, vaan jo edellistä, heinäkuussa 2020 tapahtunutta ohitusta. Tuolloin Venus-havaintoja tehtiin koordinoidusti Parkerin ohella Japanin Akatsuki-luotaimella, maanpäällisillä teleskoopeilla ja harrastajavälineillä. Parkerin tutkimusryhmä julkaisi vasta nyt kuvan heinäkuun lähiohituksesta, sillä mittausaineiston lähetys ja käsittely kestävät. Helmikuun ohituskuvia odotellaan nähtäväksi kenties huhtikuun lopulla.
Parkerin näkymä Venukseen
Alla olevan kuvan – ainoan toistaiseksi julkisuutta saaneen – otti laajakulmainen WISPR-kamera (Wide-field Imager for Parker Solar Probe). Sen on tarkoitus kuvata Auringon koronaa näkyvän valon aallonpituudella. Korona on niin himmeä, että WISPR-kameran sensorit kärähtäisivät, jos niillä kuvattaisiin Venuksen päiväpuolta. Yöpuolen ilmiöiden tallentamiseen se sen sijaan soveltuu hyvin.

Kuvassa näkyvien viirujen tarkkaa alkuperää ei vielä tiedetä varmuudella. Ne ovat joko kosmisia säteitä, pölyhiukkasia, pikkuruisia pölyhiukkasten törmäysten Parkerista irrottamia partikkeleja, tai kaikkia näitä sekaisin. Ne, sen paremmin kuin Venuksen alaosassa näkyvä kameran aiheuttama tumma pieni artefakti eivät kuitenkaan varsinaisesti ole kiinnostavia.
Kuvassa Venusta ympäröi erittäin himmeä valon kajo. Tämän oletetaan olevan Venuksen ilmahehkua. Venuksen tapauksessa eri aallonpituuksilla havaittavaa ilmahehkua aiheuttavat useammatkin prosessit. Parkerin havaitseman kajon kohdalla on päätelty, että kyseessä on happiatomien yhdistyessä happimolekyyleiksi vapautuva valo. Tämä on jännää, mutta mitään erityisen kummallista tässäkään ei ole, sillä pääpiirteissään Venuksen ilmahehku eri aallonpituuksilla on jo vanhastaan tuttu juttu.
Venuksella on tolkuttoman paksu hiilidioksidikaasukehä, jonka paine pinnalla on lähes satakertainen Maan keskimääräiseen ilmanpaineeseen nähden. Hiilidioksidin lisäksi Venuksen kaasukehässä on mm. typpi- ja rikkiyhdisteitä, jotka tekevät näkyvän valon aallonpituudella kaasukehästä läpinäkymättömän. Sen vuoksi Venuksen pinnanmuotojen kartoitus on valtaosin tapahtunut tutkalla varustettujen kiertolaisten avulla 1970-luvun lopulta alkaen.
Tutka-aaltojen lisäksi myös infrapunasäteilyä voidaan käyttää hyväksi Venuksen geologiaa tutkittaessa. Venuksen kaasukehässä on nimittäin eräitä infrapuna-aallonpituuksien ”ikkunoita”, joiden avulla planeetan pintaa pystytään havaitsemaan, vaikkakin melko heikolla erotuskyvyllä tutkaan verrattuna. Näitä ikkunoita ESAn Venus Express -luotainkin hyödynsi, kun sen kuvista löydettiin vakuuttavia viitteitä siitä, että Venuksen pinnalla on edelleen aktiivista tuliperäistä toimintaa.
”Mighty Aphrodite”
Parkerin WISPR-kameran oli tarkoitus toimia vain näkyvän valon aallonpituusalueella. Näin ollen tutkijat olettivat ohilentokuviin tallentuvan jonkinlaisia näkymiä Venuksen pilvistä. Hämmästys lieneekin ollut mitä melkoisin, kun kuviin piirtyi selvästi tunnistettavia pinnanmuotoja.
Selväpiirteisin WISPR-kameran kuvassa erottuva pinnanmuoto on keskellä epäsymmetrisen soikeana tummana alueena näkyvä Aphrodite Terra. Se sijaitsee Venuksen päiväntasaajalla, ja on toinen planeetan suurimmista ylänköalueista. Ne vertautuvat kooltaan Maan mantereisiin. Itä–länsisuunnassa Aphrodite Terralla on pituutta yli 10 000 km, eli lähes kolmasosa planeetan ympärysmitasta. Se kohoaa 1–5 km ympäristöstään ja vertailutasosta, eli Venuksen keskisäteestä. Ylänkö näkyy Parkerin kuvassa tummana siksi, että se on kolmisenkymmentä astetta ympäristöään viileämpi.


Aphrodite Terra koostuu suurelta osin tesserasta. Tessera edustaa Venuksen vanhinta näkyvissä olevaa pintaa, ja se muodostaa usein laajoilta basalttitasangoilta kohoavia saarekkeita. Ne ovat rajusti tektoniikan muokkaamia, mutta tesseran varsinainen alkuperä on vielä hämärän peitossa. Tessera-alueiden syntyideoista kirjoittelin tarkemmin viime marraskuussa.
WISPR-kameran ei siis pitäisi infrapuna-aallonpituutta nähdä, mutta niin se vain tekee. Ainakin julkisuuteen annettujen tietojen perusteella tutkijat yrittävät nyt kuumeisesti selvittää, mistä ikkunasta infrapunavaloa tarkkaan ottaen kameraan valskaa. Sellaistakin mahdollisuutta esiteltiin, että WISPR näkisi jonkin sellaisen ikkunan läpi, jonka olemassaolosta ei aiemmin edes tiedetty.
WISPR-kameran tilanteessa on näin kiinnostuneen sivustaseuraajan näkökulmasta niin uhkia kuin mahdollisuuksiakin. Pahin uhkakuva tietenkin on, että infrapunasäteilyn vuotaminen kameraan haittaisi sen varsinaista tutkimustyötä. Tällöin siis Parkerin päätehtävä eli Auringon koronan yksityiskohtainen kuvaaminen voisi periaatteessa kärsiä pahastikin. Täytyy kuitenkin luottaa kameran valmistaneen US Naval Research Laboratoryn insinöörien kykyihin sen verran, ettei näin alokasmaista munausta ole tehty.
Mahdollisuudet Venus-fanin kannalta taas ovat, ainakin periaatteessa, erittäin kiehtovat. Venus on kiinnostavuuteensa nähden pahasti alitutkittu planeetta. Jos Venuksen pinnasta saadaan seuraaviltakin ohilennoilta WISPR-aineistoa, josta tarkasti tiedetään, mitä aallonpituuksia kamera näkee, voidaan tutkia pinnan mahdollisia muutoksia joko ohilentojen välillä, tai esimerkiksi Venus Expressin mittauksiin verrattuna. Julkaistun pressikuvan erotuskyvyn perusteella voi olla turhan optimistista ajatella tämän tuottavan mitään erityisen hyödyllistä, mutta aina sopii toivoa. Joka tapauksessa kaikki uusi tieto Venuksen pinnasta on erittäin tervetullutta kauan kaivattua Venuksen geologiaan keskittyvää 2000-luvun luotainta odotellessa.
*Yleensä en pelkkiin lehdistötiedotteisiin perustuvista uutisista jaksa hirveästi innostua, vaan jotain vähän valmiimpaa on normaalisti syytä saada. Olkoon tämä nyt säännön vahvistava poikkeus. Koska WISPR-kameran infrapunahavaintoja Venuksesta ei ole vielä esitelty edes tieteellisissä kokouksissa, kannattaa tähän kuitenkin suhtautua vielä vähän suuremmalla varauksella, kuin uusista tutkimuslöydöistä kertoviin uutisiin tavallisesti.