Arkisto
- elokuu 2023
- heinäkuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- kesäkuu 2022
- toukokuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- syyskuu 2020
- elokuu 2020
- heinäkuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
Rikinkatkuinen henkäys ja harjanteiden synty Iossa
Ampumaleiri Lohtajalla. Tapani Kansan komeasti tulkitsema Kalajoen hiekat. Haukiputaan Virpiniemen hyppyrimäet. Frank Herbert, David Lynch ja Denis Villeneuve. Mitä näillä kaikilla on yhteistä?

Vastaus kysymykseen on tietenkin dyynit. Ne ovat tuulen rakeisesta aineksesta kasaamia kumpuja tai harjanteita. Joidenkin määritelmien mukaan tosin mikä tahansa virtaava aine, kuten vaikkapa vesi, voi kasata dyynejä. Dyyneille ominaista on, että niillä on jyrkkä suojasivu (siis myötätuulen puolella oleva sivu) ja loivapiirteisempi vastasivu. Ne syntyvät saltaatioksi kutsutussa prosessissa, jossa partikkelit kohoavat ilmaan, lentävät tuulen mukana lyhyen matkan, putoavat alas ja odottelevat seuraavaa lyhyttä hypähdystään.
Dyyniaines on raekooltaan yleensä hiekkaa, eli jyvästen läpimitta on suunnilleen sadasta mikrometristä pariin milliin. Sen ei kuitenkaan tarvitse olla koostumukseltaan tavallista silikaattisesta kiviaineksesta peräisin olevaa hiekkaa eli lähinnä kvartsia, kuten yleensä ajatellaan, vaan muukin koostumus käy. Esimerkiksi Yhdysvaltain New Mexicon osavaltiossa sijaitsevassa White Sandsin kansallispuistossa kyseessä on kipsi. Käytännössä kaikki suomalaisetkin ovat kohdanneet dyynejä, vaikkeivat olisi koskaan käyneet esimerkiksi Porin Yyterissä, Lohtajalla, Kalajoella, Virpiniemessä tai Enontekiön Hietatievoilla. Tuulen kasaamat lumikinokset ovat nimittäin syntytavaltaan dyynejä, vaikkei niitä sellaisiksi yleensä mielletäkään.
Dyynit ovat tuttuja myös monille planeettatutkijoille. Aurinkokunnassa niitä esiintyy yllättävältäkin tuntuvissa paikoissa, ja niitä on ihasteltu ja ihmetelty jo puoli vuosisataa.

Mars
Maapallon jälkeen tunnetuimmat aurinkokunnan dyynit sijaitsevat Marsissa. Sen pohjoista napajäätikköä kiertävä valtaisa dyynimeri havaittiin jo 50 vuotta sitten Mariner 9 -luotaimen kuvista. Myös eteläisellä napa-alueella on suuri, vaikkakin pohjoista pienempi dyynikenttä. Dyynejä kuitenkin esiintyy kaikkialla Marsissa, tyypillisimmin törmäyskraatterien pohjilla. Maapallon dyyneihin tottuneille ne ovat silmiinpistävän tummia, sillä Marsista puuttuu meikäläisten dyynien tyypillisin rakennusaine, kvartsi, lähes kokonaan. Ne koostuvatkin pääasiassa basalttisesta hiekasta, mutta mukana on jonkin verran myös sulfaatteja kuten kipsiä. Muutoin Marsin dyynit ovat mittasuhteiltaan ja olemukseltaan hyvin paljolti Maan dyynien kaltaisia.

Venus
Sisarplaneettamme tunnetaan tulivuoristaan ja valloilleen päässeestä kasvihuoneilmiöstä, mutta siellä on myös dyynejä. Niitä tosin ei ole kovin runsaasti: laajempia dyynikenttiä on löydetty ainoastaan parilta alueelta. Näiden lisäksi muutamalta seudulta on paikannettu mikrodyynejä tai kareita, joiden olemassaolo on tosin vain päätelty tutkaheijasteen ominaisuuksista, sillä ne ovat liian pieniä, jotta niiden muodot voitaisiin nähdä Magellan-luotaimen tutkan erotuskyvyllä. Venuksen dyynien havaittu vähäisyys on hieman kummallista. Osittain siihen saattaa vaikuttaa tutkan kuvausgeometria, mutta enimmäkseen syyt lienevät aivan todellisia ja liittynevät vähäiseen hiekan määrään ja hiljaiseen tuulennopeuteen (n. 1–2 m/s) Venuksen pinnalla.

Titan
Aurinkokunnan toiseksi suurin kuu, Saturnuksen Titan, on paksun kaasukehän peitossa. Siksi sen pintaa on Venuksen tavoin pystytty parhaiten kuvaamaan tutkan avulla. Cassini-luotaimen tutka paljasti päiväntasaajan molemmin puolin 30:nnelle leveyspiirille asti ulottuvat vyöhykkeet, jotka ovat valtavien, jopa 1–2 km leveiden, satoja kilometrejä pitkien ja satakunta metriä korkeiden dyynien peitossa. Dyynit kattavat 17 % Titanin pinnasta eli noin 14 miljoonaa neliökilometriä, toisin sanoen puolitoista kertaa Saharan kokoisen alueen.1 Dyynit koostuvat kaasukehästä tiivistyneistä hiilivedyistä, jotka ovat muodostaneet noin millin läpimittaisia jyväsiä. Ne ovat sitten aikojen saatossa kasautuneet Titanin hiljaisessa, vain noin metrin sekunnissa puhaltavassa tuulessa mahtaviksi tuulen suuntaisesti asettuneiksi pitkittäisdyynikentiksi.

Pluto
New Horizons -luotaimen ohilennollaan kesällä 2015 ottamat kuvat Plutosta sisälsivät toinen toistaan hämmästyttävämpiä piirteitä. Yksi yllätyksistä oli dyynien ja muiden tuulen toiminnan merkkien esiintyminen. Dyynejä löydettiin lähinnä Sputnik Planitian länsiluoteisen reunan tuntumasta Al-Idrisi Montesin juurelta. Dyynien harjanteet seuraavat toisiaan noin 0,4–1 km:n välein ja peittävät vähintään 75 km:n läpimittaisen alueen. Ne koostuvat parin–kolmensadan mikrometrin läpimittaisista metaanijään kappaleista, joita Al-Idrisi -vuoristosta alaspäin valuvat, korkeintaan 10 m/s puhaltavat tuulet kuljettavat. Tuulet jaksavat siirtää Pluton metaanipartikkeleja, mutta niiden pinnalta nousemiseen tarvittaneen lisäpotkua. Sitä tarjonnee iltapäivän auringonpaisteessa kylpevän tasangon typpi- ja metaanijään sublimoituminen eli muuttuminen suoraan kaasumaiseksi. Kaasupurkaukset siis nostavat jääpartikkelit ylös ja painovoiman ajamat tuulet liikuttavat niitä eteenpäin, synnyttäen lopulta tuulensuuntaan nähden poikittaisten dyynien kentän.

Komeetta 67P/Churyumov–Gerasimenko
Euroopan avaruusjärjestön Rosetta-luotain tarjosi ensimmäiset todella yksityiskohtaiset näkymät komeetan pinnasta, kun se kiersi 67P/Churyumov–Gerasimenkoa vuosina 2014–2016. Jälleen kerran luontoäiti pääsi yllättämään tutkijat, sillä jo pelkästään 67P:n geologia osoittautui monimuotoisemmaksi kuin oltiin oletettu. 67P:n pinnalla esiintyy myös dyynimäisiä harjanteita, joiden muoto muuttui merkittävästi niiden kahden vuoden aikana, jolloin Rosetta 67P:tä kiersi. Dyynit esiintyvät noin 7–18 metrin välein ja ovat parhaimmillaan parisen metriä korkeita. Samoin kuin Pluton tapauksessa, dyynejä muodostavat partikkelit kohoavat komeetan pinnasta Auringon lämmön saadessa jään sublimoitumaan. Partikkeleja vaakasuunnassa siirtävien tuulten syntytapa on kuitenkin toinen: tuuli puhaltaa 67P:n yö- ja päiväpuolten suurten lämpötilaerojen aiheuttaman paine-eron vuoksi.

Dyynejä Iossa?
Io on Jupiterin suurista kuista sisin. Se on vulkaanisesti aktiivisin kappale koko aurinkokunnassa. Jatkuvien, jo vuonna 1979 Voyager 1 -luotaimen ohilennolla havaittujen tulivuorenpurkausten vuoksi Ion pinta uudistuu jatkuvasti. Siksi se on ainoa tuntemamme tarkasti kuvattu kiinteäpintainen kappale, josta ei ole löydetty ainuttakaan törmäyskraatteria.
Ion vulkanismi johtuu sitä vatkaavista vuorovesivoimista. Io on lähes saman kokoinen kuin Kuu ja kiertää Jupiteria suunnilleen samalla etäisyydellä kuin Kuu Maata. Jupiter on kuitenkin 318 kertaa niin massiivinen kuin Maa ja Io kiertää Jupiterin vain reilussa 42 tunnissa, joten Jupiterin Ioon kohdistama vuorovesivoimien höykytyskin on ihan toista luokkaa. Lisäksi Ion kiertoaika on resonanssissa lähimpien muiden suurten kuiden eli Europan ja Ganymedeen kiertoaikojen kanssa, mikä tekee Ion radasta hieman elliptisen. Tämä entisestään vahvistaa vuorovesivoimien vaikutuksia. Niinpä Ion kallioperä liikkuu pystysuunnassa noin 100 m. Vertailun vuoksi: niin Maassa kuin Kuussakin vastaava vuorovesivoimien aiheuttama kallioperän liike on vain puolisen metriä. Tästä jatkuvasta muodonmuutoksesta syntyvä kitkalämpö on pohjimmiltaan syynä Ion ylettömälle tuliperäiselle aktiivisuudelle.
Näin valtaisat vuorovesivoimat voivat myös synnyttää tektonisia rakenteita Ion kallioperään. Galileo-luotaimen tarkimmissa kuvissa nähtiinkin pisimmillään muutaman kilometrin mittaisia ja noin 0,1–1 km:n välein esiintyviä harjanteita, joiden korkeus on ehkä joidenkin kymmenien metrien luokkaa. Kymmenien kilometrien läpimittaisten harjannekenttien yksittäisillä harjanteilla on aina yhdenmukainen suuntaus. Harjanteet olivat myös jopa Ion mittakaavassa erittäin nuoria, sillä mikään muu kerrostuma ei näyttänyt peittävän niitä.
Harjanteissa havaitut suuntaukset osoittautuivat enimmäkseen samoiksi, joita vuorovesivoimien synnyttämien harjanteiden teorian mukaan pitäisikin noudattaa. Esimerkiksi päiväntasaajan lähistöllä olevat harjanteet ovat joko itä–länsi- tai pohjois–etelä-suuntaisia. Tätä on pidetty osoituksena harjanteiden tektonisesta ja siis vuorovesivoimiin kytkeytyvästä alkuperästä. Mikään ei kuitenkaan selitä, miksi jokin tietty päiväntasaajan seudun harjannekenttä on juuri itä–länsi-suuntainen eikä pohjois–eteläinen (tai toisinpäin), sillä sen kallioperässä vaikuttavat molemmat jännityssuunnat. Mallissa on siis runsaasti aukkoja, mutta parempaakaan ei ole keksitty.
Harjanteiden nähtiin kuitenkin jo varhain olevan melkoisesti dyynien kaltaisia. Tektoninen synty vaikutti silti todennäköisemmältä, sillä Ion mitättömän kaasukehän paine on maksimissaankin vain miljardisosa Maan ilmanpaineesta, eli yksi nanobaari. Vaikka Ion yö- ja päiväpuolen lämpötilaeroista johtuvat tuulet puhaltavatkin jopa 300 m/s, lähes olemattomasta paineesta johtuen saltaation ei uskottu voivan olla mahdollista, sillä pinnasta ei tuollaisella nopealla mutta ponnettomalla tuulella mitenkään saatu nousemaan hiekanjyväsiä ylös.
Huhtikuussa Nature Communications -verkkolehdessä julkaistu George D. McDonaldin johdolla tehty tutkimus Aeolian sediment transport on Io from lava–frost interactions esittelee uuden mallin, jolla saltaatio ja sen myötä dyynit voisivat olla Iossa sittenkin mahdollisia. McDonald kollegoineen havaitsi, että Ion harjanteet tuppaavat olemaan lähellä tulivuoria.2 Oleellista mallille lisäksi on, että Ion pinnasta suurin osa on rikkidioksidin peitossa. Kerros ei liene kovin paksu, ehkä pari–kolmekymmentä senttiä tai puolisen metriä.
Kun tulivuoresta valuva kuuma laavavirta kohtaa tällaisen rikkidioksidikuoren, alkaa rikkidioksidi höyrystyä nopeasti. Tästä seuraa kaasupurkauksia, jotka riittävät nostamaan rikkidioksidijyväset ylös. Kun kaasukehä on paikallisesti itse tulivuorenpurkauksen ja tällaisten laavan ja rikkidioksidikerroksen vuorovaikutuksessa purkautuvien kaasuejn ansiosta myös hieman tavallista tiheämpi, riittää McDonaldin ryhmän laskujen mukaan siinä vääntöä tarpeeksi, jotta rikkidioksidihiekka saadaan etenemään pomppimalla. Näin heidän mukaansa saataisiin Ion pinnalle syntymään dyynejä.

McDonaldin ryhmä onnistui myös mittaamaan eräiden harjanteiden topografiaa. Niiden toisen sivun huomattiin olevan loivempi kuin toisen. Tämä sopii ajatukseen, että harjanteet olisivat poikittaisdyynejä. Lisäksi harjanteiden korkeuden ja leveyden suhde, samoin kuin muut mitattavissa olleet ominaispiirteet, vastasivat poikittaisdyynejä.

McDonaldin tutkimusryhmällä on siis kasassa aikaisempien epämääräisten havaintojen tueksi mittauksia, jotka sopivat poikittaisdyyneihin. Lisäksi heillä on ensimmäistä kertaa osoittaa uskottava mekanismi, jolla Ion pinnan hiekanjyvät saadaan kohoamaan riittävästi ylös, jotta vallitsevat tuulet voivat alkaa kasata niitä dyyneiksi. Riittävän laadukasta kuva-aineistoa harjanteista on kuitenkin valitettavan vähän, joten täyttä varmuutta harjanteiden synnystä ei vielä ole. McDonaldin ja kollegoiden havainnot ja syntymalli vaikuttavat kuitenkin erittäin lupaavilta.
Joka tapauksessa tämä on tarpeellinen muistutus siitä, että dyynejä voi ainakin periaatteessa syntyä myös erittäin ohuessa ja kenties vain silloin tällöin hieman tihenevässä kaasukehässä. Varsin todennäköistä onkin, että kunhan aurinkokunnan kappaleiden kartoitus etenee, löydämme dyynejä vielä muistakin yllättävistä paikoista.
Pluton vuoret ja kryovulkanismi
Geologiset prosessit aurinkokunnassamme
Koko aurinkokuntamme mittakaavassa on laskutavasta riippuen vain noin kolmesta viiteen todella merkittävää kiinteiden kappaleiden pintoja uudistavaa geologista prosessia. Maa on omituinen poikkeus muiden joukossa, sillä tämä on ainoa tuntemamme paikka, jossa laattatektoniset voimat hallitsevat koko planeetan kehitystä. Aurinkokunnan kokonaiskuvaa hallitsevat törmäykset, etenkin planeettojen hurjassa nuoruudessa. Jupiterin toiseksi suurin kuu Kallisto, Merkurius ja myös oma Kuumme ovat oivia esimerkkejä maailmoista, joissa törmäysten seuraukset näkyvät yhä kaikkialla.
Irtaimen aineksen uudelleenkerrostuminen eli sedimentaatio taas on tärkeää paitsi laajoilla alueilla Maassa, myös Marsissa ja Titanissa sekä paikallisesti esimerkiksi Venuksessakin.
Sitten on vielä vulkanismi, vallankin kun sen ymmärtää laajasti prosessina, jossa kiinteäpintaisen kappaleen sisuksista tursuu pinnalle jotain virtaavaa ainesta tai vaihtoehtoisesti pinnalle kertyy jonkinlaisen tulivuoren tai purkausaukon kautta kaasukehän tai käytännössä tyhjän avaruuden läpi lentänyttä tavaraa. Aurinkokunnan sisäosissa vulkanismin tuotteet ovat lähinnä piihin ja happeen pohjautuvia yhdisteitä eli erilaisia silikaatteja, joiden perusrakennuspalikka on SiO44- -ioni. Joskus harvoin tulivuorista purkautuu myös hiili- ja happipohjaisia yhdisteitä (tarkemmin sanottuna karbonaatteja eli yhdisteitä, joissa keskeisenä komponenttina on CO32- -ioni). Tuliperäinen toiminta hallitsee mm. aurinkokuntamme vulkaanisesti aktiivisinta kappaletta Ioa, ja samoin Venus on erilaisten tulivuorten ja vulkanismin dominoima planeetta.
Kryovulkanismi
Kauempana jättiläisplaneettojen kuilla ja Kuiperin vyöhykkeen kappaleilla kallioperän pääosan muodostavat silikaatteja tai karbonaatteja helpommin haihtuvat aineet. Lähinnä kyseessä on yksinkertaisesti vesijää höystettynä lorauksella erilaisia pakkasnesteitä. Niillä seuduin sula vesi vastaa meille tutuista tulivuorista virtaavaa laavaa. Tällaista vulkanismin (laajasti ymmärrettynä) muotoa kutsutaan kryovulkanismiksi.
Nykyisinkin aktiivista kryovulkanismia esiintyy Enceladuksella ja Tritonilla, kenties Europallakin. Myös asteroidivyöhykkeen suurimmasta kappaleesta, kääpiöplaneetta Cereksestä on tehty nykyiseen aktiivisuuteen viittaavia havaintoja, mutta purkausten takana lienee vain pintaa lämmittävä Auringon säteily eikä Cereksen sisäinen energia. Joka tapauksessa Cereksellä on ollut myös sisäsyntyistä kryovulkaanista toimintaa geologisessa mielessä vastikään.
Lentäjien vuoret
Tammikuussa kirjoittelin Pluton geologiasta. Jutun loppupuolella esittelin lyhykäisesti uusia ideoita koskien Pluton tunnetuimpien vuorten eli Wright ja Piccard Montesin syntyä. Tuolloin tulokset olivat alustavia, mutta nyt aiheesta saatiin julkaistua vertaisarvioitu artikkeli. Kelsi Singerin ja – planeettageologian perusartikkeliksi varsin erikoisesti – peräti 24:n muun kirjoittajan juttu Large-scale cryovolcanic resurfacing on Pluto ilmestyi Nature Communications -verkkolehdessä maaliskuun lopulla.

Piccard Mons ja etenkin Wright Mons ovat herättäneet ihmetystä siitä lähtien kun New Horizons -luotain kuvasi ne kesällä 2015. Huonosti, vain Pluton kaasukehän autereen heijastamassa valossa kuvattu Piccard Mons kohoaa ympäristöstään noin 7 km ja on läpimitaltaan suunnilleen 250 km. Jos sen keskipiste olisi Jyväskylässä, sijaitsisivat Kuopio ja Tampere vastakkaisilla puolilla vuoren juurella. Aika iso vuori siis.
Wright Mons puolestaan on noin 4–5 km:n korkuinen ja 150 km:n läpimittainen. Sen huipulla oleva kuoppa on halkaisijaltaan noin 50 km. Omituisinta on kuopan syvyys, noin 4 km. Se on siis yhtä syvä kuin vuori on korkea. Vielä hurjempi on Piccard Monsin kuoppa, joka yltää jopa ympäröivän pinnan alapuolelle. Samoin tekee pienemmän Coleman Monsin yhteydessä oleva kuoppa. Se ei kuitenkaan ole vuoren huipulla vaan sen vieressä, joten on epäselvää onko vuorella ja kuopalla varsinaisesti mitään tekemistä toistensa kanssa.
Wright ja Piccard Montesia pidettiin aiemmin yleisesti kryovulkaanisina tulivuorina, joiden huipuilla on romahtamalla syntyneet kalderat. Ongelmallista tosin oli, että kalderoiksi huippujen kuopat olivat valtavia, eivätkä ne oikeastaan edes näyttäneet kalderoilta, sillä niiltä puuttuivat kalderoille ominaiset monivaiheisista romahduksista kertovat sisäkkäiset terassimaiset piirteet. Mitään merkittävästi parempaakaan ideaa kukaan ei kuitenkaan tuntunut keksivän.

Merkillinen muhkuramaasto
Paitsi itse vuoret, myös niitä ympäröivä muhkuramaasto on omituista. Singerin ja kollegoiden artikkelin mukaan muhkuramaaston yksittäisten möykkyjen läpimitta on tyypillisesti 6–12 km. Niiden korkeus puolestaan on muutamasta sadasta metristä noin kilometriin. Maastossa ei näy minkäänlaisia merkkejä virtauksesta tai myöskään purkausaukkoja, sillä Wright, Piccard tai Coleman Montesin yhteydessä esiintyvistä syvistä kuopista ei vaikuta valuneen pihalle mitään. Mitään tällaista ei ole havaittu muualla aurinkokunnassa tai edes muualla Pluton pinnalla.
Vuorten ja muhkuroiden koostumus ei anna merkittäviä lisävihjeitä niiden synnyn selvittämiseksi. Pääosin alue koostuu vesijäästä. Korkeimmilla kohdilla pinnalla on lisäksi Pluton ohuesta kaasukehästä peräisin olevaa metaanikuuraa. Ammoniakki auttaisi alentamaan veden jäätymispistettä, mutta siitä ei ole havaintoja. Sen puute voidaan tosin tarvittaessa selittää sillä, että metaanikuura estää ammoniakin spektrin havaitsemisen varsin tehokkaasti.
Muhkurat ja vuoret ovat geologisesti Pluton mittakaavassa kohtalaisen nuoria, sillä yhtäkään törmäyskraatteria ei New Horizonsin kuvista alueelta ole löydetty. Tämän perusteella muhkuramaaston ja vuorten pinnan iäksi on arvioitu noin 1–2 miljardia vuotta.
Mitä oikeastaan selvisi?
Lupaavasta otsikostaan huolimatta Singerin ja kollegajoukkion artikkeli ei tarjoa kovinkaan paljon helpotusta Pluton aiheuttamaan päänsärkyyn. Plutotutkijoiden valiojoukon selitys muhkuramaaston ja niiden yhteydessä esiintyvien vuorten synnylle nimittäin on vain se, että alueella on tapahtunut useita suuria kryovulkaanisia purkauksia, jotka ovat synnyttäneet kohoumia. Niistä osa on yhtynyt toistensa kanssa muodostaen vielä monimuotoisempia piirteitä. Muhkuramaasto olisi syntynyt jollain tapaa jäykkäliikkeisen aineksen virratessa pinnalla. Purkausaukot ovat heidän mukaansa jääneet vuorten ja muhkuramaaston alle.
Artikkelissa tarjoiltu selitys vuorten ja niiden ympäristön synnylle ei oikeastaan pohjimmiltaan selitä yhtään mitään. Vaikka muhkurat nyt tulkitaan kryovulkaanisiksi, niiden varsinainen syntyprosessi on ihan yhtä pahasti autereisen hämärän peitossa kuin ennenkin. Singer ja kumppanit eivät myöskään ainakaan selväsanaisesti ota mitään kantaa vuorten yhteydessä olevien erittäin laajojen ja syvien kuoppien muodostumiseen. Lähinnä rivien väleistä on tulkittavissa, että ne saattaisivat olla kohtia, joita kryovulkaaniset ainekset eivät vain sattuneet peittämään. On suoraan sanottuna hyvin vaikea kuvitella, että ainakaan kaikki jutun lukuisista kirjoittajista uskoisivat tuohon itsekään.
Ongelmallista on myös alueen oletettavasti nuorehko ikä. Pluto on pieni kappale, halkaisijaltaan noin 2377 km eli alle viidesosa Maasta. Tilavuudeltaan siitä noin 55–60 % on vesijäätä. Niinpä Plutolla on hyvin vähän radioaktiivisia alkuaineita ylläpitämässä sisäisiä prosesseja. Myös sen syntyessä muodostuneen lämmön olisi noin pieneltä kappaleelta luullut jo aikaa sitten hiipuneen. Pluton ja Charonin vuorovesivoimien tuottaman energiankaan ei pitäisi riittää pitkään jatkuneeseen geologiseen toimintaan. Mutta niin vain Pluto on jollain ilveellä onnistunut olemaan sisäisesti aktiivinen varsin kauan. Tähänkään ongelmaan Singer ja kumppanit eivät liiemmin ota kantaa.
Kryovulkanismin huoneessa asustelee myös melkoisen iso elefantti. Olen viime päivinä päässyt nautiskelemaan kevätjäillä hiihtelystä vain siitä syystä, että vedellä on sellainen merkillinen ominaisuus, että se on kiinteänä harvempaa kuin nestemäisenä. Siksi jäät eivät makaa järvien pohjilla. Tavalliset silikaattiset tai karbonatiittiset kivisulat käyttäytyvät juuri päinvastoin. Vaikka tämä on hiihtämisen ja ylipäätään maapallon nykyisenkaltaisen elämän kehityksen kannalta varsin kätevää ja myös välttämätöntä, on se kryovulkanismille pahemmanpuoleinen ongelma. Koska vesi on tiheämpää kuin jää, on varsin hankala kuvitella millainen olisi se geologinen voima, joka uskottavasti saisi veden purkautumaan pari sataa kilometriä paksun jääkerroksen läpi pinnalle.
Jotta tuo onnistuisi edes kohtalaisen helposti, pitäisi veden ja jään tiheyksien olla lähempänä toisiaan. Tähän tarvitaan jotain, jolla joko Pluton kuoren muodostavan jään tiheyttä kasvatetaan tai pinnalle purkautuvan veden tiheyttä lasketaan. Esimerkiksi kiviaines tai hiilidioksidi sekoitettuna jäähän tai ammoniakki veteen toimisi. Näihin vaihtoehtoihin artikkelissa ei kuitenkaan oteta tarkemmin kantaa. Vaikka Singer kollegoineen siis ehdottaa Plutossa olleen mahtavat vuoret muodostanutta ja niitä ympäröivän muhkuramaaston kattanutta laaja-alaista kryovulkaanista aktiivisuutta, ei heillä ole tarjota mekanismia, jolla se saataisiin toimimaan.
Vaikka Singerin ryhmän artikkeli siis jättääkin vastaamatta useimpiin keskeisiin kysymyksiin, ei kirjoittajia silti parane liiemmin moittia muusta kuin korkeintaan rohkeiden hypoteesien esittämisen puutteesta. Kannattaa muistaa, että muhkuramaaston ja siihen liittyvien vuorten kaltaisia pinnanmuotoja ei ole ennen nähty, eikä meillä ole pidempiä havaintosarjoja aktiivisesta kryovulkanismista mistään päin aurinkokuntaa, näytteistä puhumattakaan. Toisin sanoen Plutoa nyt vain sattuu olemaan erittäin vaikea ymmärtää.
Singer ja kumppanit tarjoilivat siis yhden hyvin yleisluontoisen idean selittämään eräitä Pluton huomattavimmista pinnanmuodoista. Erittäin paljon jäi yhä auki. Oleellisinta onkin, että artikkelin myötä muhkuramaaston sekä Wright, Piccard ja Coleman Montesin pinnanmuodoista ja koostumuksesta on nyt kasassa mahdollisimman tarkat havainnot. Ehkäpä niiden pohjalta joku vielä oivaltaa, mistä tässä kaikessa oikein on kyse.
Vastaa
Kummat kiehkurat ja paluu Kuuhun
Kuun läntisellä pallonpuoliskolla Oceanus Procellarumissa eli Myrskyjen valtameressä Marius-, Reiner- ja Cavalerius-kraatterien välissä sijaitsee kummallinen, lähinnä siittiöltä tai nuijapäältä näyttävä kirkas aaltomainen kuvio, Reiner Gamma. Se on tunnetuin esimerkki joukosta Kuun erikoisia ja kauniita piirteitä, joita kutsutaan englanniksi nimellä swirl. Vakiintunutta suomenkielistä nimitystä niille(kään) ei ole, mutta itse olen aina tilaisuuden tullen tavannut puhua kiehkuroista. Sellaisilta ne näyttävät, kuten englanninkielinenkin nimitys antaa ymmärtää.

Kiehkurat ovat harvinaisia, sillä niitä on tunnistettu koko Kuun pinnalta vain 11–12 kappaletta. Kuuharrastajille Reiner Gamman ohella tutuimpia ovat Kuun itäisellä libraatiovyöhykkeellä sijaitsevat Mare Marginiksen kiehkurat, sillä ne päätyivät Chuck Woodin Lunar 100 -luettelon viimeiseksi havaintokohteeksi. Kuun lähipuolella on kuitenkin kolme muutakin kiehkuraa harrastajien tavoiteltaviksi, eli Descartesin, Airyn ja Rimae Sirsaliksen kiehkurat.
Reiner Gamma kiinnitti erikoisen muotonsa vuoksi jo 1800-luvun herrasmiestutkijoiden mielenkiinnon. Englantilaishavaitsijoista Thomas Gwyn Elger kutsui sitä munniharpuksi. Edmund Neison puolestaan totesi sen olevan paljon silmiinpistävämpi kuin läheinen Reinerin kraatteri. Saksalaiset Wilhelm Beer ja Johann Mädler taas ihmettelivät, kuinka heitäkin varhaisemmat kuuhavaitsijat olivat onnistuneet sekoittamaan olemukseltaan täysin erilaiset Reinerin ja Reiner Gamman. He pitivät Reiner Gammaa hyvin matalana ylätasankona.
Havaintotarkkuuden parantuessa kävi kuitenkin ilmeiseksi, ettei Reiner Gammalla sen paremmin kuin muillakaan, vasta lähinnä viime vuosikymmeninä löydetyillä kiehkuroilla ole minkäänlaista nähtävissä olevaa topografiaa tai ylipäätään mitään korrelaatiota pinnanmuotojen kanssa. Pintapuolisesti tarkastellen kiehkurat ovatkin vain kummallisen muotoisia kirkkaita läiskiä. Tarkemmin tutkittaessa kiehkuroista paljastuu silti monia mielenkiintoisia ja merkillisiäkin piirteitä.

Kiehkuroissa on eroja, mutta kirkkaan ja yleensä mutkittelevan ulkomuotonsa ja näennäisen topografian puutteensa ohella niillä on useita muitakin yhteisiä piirteitä. Yksi oleellisimmista on, että jokainen kiehkura esiintyy magneettikentän poikkeaman eli anomalian kohdalla. Tämä ei tosin päde toisin päin, eli suinkaan jokaisen magneettisen anomalian kohdalla ei ole kiehkuraa. Lisäksi jotkut kiehkurat ulottuvat hieman magneettisen anomalian ulkopuolella. Magneettikentän voimakkuus ei kuitenkaan suoraan korreloi kiehkuran esiintymisen tai kiehkuran kirkkaiden osien tai niiden väliin jäävien tummien osien sijaintien kanssa. Se sentään tiedetään, että ainakin Reiner Gamman tapauksessa magneettiset kenttäviivat ovat kirkkailla alueilla enimmäkseen vaakasuorassa ja tummilla alueilla enimmäkseen pystysuorassa.
Useimmat kiehkurat sijaitsevat melko tarkoin toisella puolella Kuuta kuin jokin törmäysallas. Tämä yhteys olisi muuten hyvin mielenkiintoinen, mutta se voi olla täyttä sattumaa, sillä selväpiirteisimmän kiehkuran eli Reiner Gamman vastapuolelta ei allasta löydy. Kuussa myös törmäysaltaita riittää, joten kohtalaisen hyvä yhteensopivuus täysin sattumalta ei olisi tavaton ihme.
Chandrayaan-1 -luotaimen Moon Mineralogy Mapper (M3) -spektrometri mahdollisti kiehkuroidenkin koostumuksen tarkemman tutkimuksen. M3-havaintojen perusteella kirkkaat kiehkurat sisältävät vähemmän vettä (tarkemmin sanoen hydroksyyli- eli OH–-ioneja) kuin ympäröivät alueet tai kiehkuroiden tummat vyöhykkeet. Lisäksi kirkkaat alueet eivät ole optisesti niin ”kypsiä” kuin tummat. Se kielii siitä, että niissä on vähemmän hiukkaspommituksen synnyttämää rautaa. Tämä perinteikäs havainto on tosin myös kiistetty, eikä lopullista varmuutta asiasta vielä liene.
Kiehkuroiden erikoinen ulkonäkö ja ominaisuudet ovat johtaneet suureen joukkoon erilaisia ideoita niiden synnyn selittämiseksi. Yksi suosituimmista on ollut, että kiehkuroiden voimakas magneettikenttä suojelee alla olevaa pintaa etenkin Auringon tummentavalta protonipommitukselta. Tämä selittäisi kiehkuroiden kirkkauden ja monet muutkin niiden spektroskooppisista ominaisuuksista. Avoimeksi kuitenkin jää, miksei sitten kaikkien magneettisten anomalioiden kohdalla ole kiehkuraa.
Suurten törmäysaltaiden vastapuolilla eli antipodeilla tapahtuu joskus kummallisia asioita. Tämä tunnetaan etenkin Merkuriuksesta, jossa Caloriksen altaan vastapuolen maasto on hyvin kummallista. Antipodin kohdalla yhteen kasautuneet törmäyksen maanjäristysaallot ja heittele ovat luultavasti synnyttäneet Merkuriuksen oudon maaston. Erilaisten mallinnusten mukaan myös Kuussa törmäysaltaan antipodin alueella villisti virtaileva kuuma heittele olisi voinut synnyttää lyhytaikaisen voimakkaan magneettikentän, joka sitten jämähti kiinni kiviin. Nykyisinkin se ns. remanenttina kenttänä suojelisi alla olevaa pintaa hiukkaspommitukselta. Reiner Gamman puuttuva törmäysallas on kuitenkin kantona kaskessa, samoin kuin se kiusallinen tosiasia, ettei Merkuriuksen tapaista outoa maastoa ole varmuudella Kuun törmäysaltaiden vastapuolilta havaittu.
Malleja toki on muitakin. Kuten monesti muulloinkin kun Kuussa pitäisi selittää jotain erikoista, esiin on loihdittu komeettatörmäykset. Kunnon hopealuodin tavoin komeetat ratkaisevat minkä tahansa ongelman, myös kiehkurat. Uskottavampana vaihtoehtona on esitetty, että magneettikenttä tavalla tai toisella jaottelee ja uudelleenkerrostaa hienorakeista tummaa pölyä, joka rautapitoisempana on magneettisempaa kuin vaalea pöly. Näin erottuisivat kiehkuroiden kirkkaat ja tummemmat alueet.
Eräs mielenkiintoinen kiehkuraidea liittyy sähköstaattisten voimien leijuttamaan pölyyn. Niin hiukkas- kuin mikrometeoriittipommituskin johtavat siihen, että Kuun pölyhiukkasilla tapaa olla heikko sähkövaraus (mikä osaltaan vaikuttaa pölyn sotkevuuteen). Pienet sähkökentät riittäisivät tämän idean mukaan siihen, että pöly leijailisi Kuun pinnan yläpuolella. Tällaisesta levitoinnista on suoria havaintojakin, sillä Apollo-lentoja edeltäneet Surveyor 5, 6 ja 7 -laskeutujat kuvasivat Kuun hämärätaivaalla valoilmiöitä, jotka lienevät pölyn heijastamaa auringonvaloa. Myös Apollo 17:n komentajan Gene Cernanin kuuluisat piirrosluonnokset auringonnoususta Kuun kiertoradalta nähtynä saattavat osittain selittyä sähköstaattisten voimien leijuttamalla pölyllä.

Leijuvaan pölyyn liittyy myös Geophysical Research Letters -julkaisusarjassa maaliskuun alussa ilmestynyt artikkeli. Siinä Deborah Dominguen johtama tutkimusryhmä amerikkalaisesta Planetary Science Institutesta tutki Kuun etäpuolella sijaitsevaa Mare Ingeniin kiehkura-aluetta. Heidän lähtökohtansa poikkesi aiemmista töistä sillä, että heidän käytössään oli merkittävästi aiempaa tarkemmat korkeusmallit.
Näiden 70–80 cm:n horisontaali- ja korkeuserotuskykyyn yltävien korkeusmallien myötä vähintään vuosisadan ajan ”tiedetty” kiehkuroiden riippumattomuus paikallisesta tai alueellisesta topografiasta on joutumassa havaintojen hautausmaalle. Tai ainakin sitä ollaan hieman tuuppimassa siihen suuntaan. Dominguen ja kollegoiden uusien havaintojen mukaan kiehkuroiden kirkkaat osat ovat nimittäin pääosin kahdesta kolmeen metriä alempana kuin tummat vyöhykkeet. Heidän mukaansa raekooltaan kymmenestä mikrometristä jopa millimetriin oleva pöly rikastuisi näihin matalampiin kohtiin. Joko magnetismi, sähköstaattinen leijuminen tai niiden yhdistelmä höystettynä painovoimalla johtaisi pintapölyn kokojaotteluun siten, että hieno tumma aines jäisi ylemmäksi. Samalla matalampien kirkkaiden alueiden pinnasta tulisi millimetrimittakaavassa hieman karkeampi ja myös kiinteämpi. Tämä sopii aiempiin spektro- ja fotometrimittauksiin kiehkuroiden koostumuksesta ja pintarakenteesta.
Vaikka Dominguen ryhmän havaitsema topografiariippuvuus on mielenkiintoinen uusi pelinavaus Kuun kiehkuratutkimuksessa, ei se kuitenkaan ratkaise monia avoimia kysymyksiä. Havaintoihinkin ja niistä tehtyihin johtopäätöksiin tulee myös suhtautua vielä terveellä skeptisyydellä. Uudet suuren erotuskyvyn korkeusmallit kattavat vain kaksi erittäin pientä osaa Ingeniin kiehkuroista. Näilläkään alueilla tulokset eivät ole täysin yhteneväiset, sillä toisella tutkitulla profiililla alhaisin mediaanisyvyys tavataan kirkkaiden kiehkuroiden välisellä tummalla alueella, eli juuri toisin päin kuin yleistetyistä havainnosta tehdyt johtopäätökset kertovat. Järin paljon Domingue kumppaneineen ei tätä ilmeistä ristiriitaa käsittele.

Toinen tällä hetkellä ilmeiseltä vaikuttava mahdollinen ongelma, joka artikkelissakin mainitaan, liittyy pölyn kuljettamiseen tarvittaviin sähkökenttiin. Niin teorioiden kuin laboratorikokeidenkin perusteella Kuussa vähän tavallista voimakkaampia sähkökenttiä muodostuu esimerkiksi kraattereiden reunoihin ja muihin teräväpiirteisiin pinnanmuotoihin. Ingeniin kiehkuroiden tasaisilla tutkimusalueilla tällaisia ei ole. Varsinainen pölyä liikutteleva mekanismi on siis melkoisen epävarmalla pohjalla.
Luonnontieteessä havaintojen pohjalta yleensä ainakin jossain vaiheessa luodaan hypoteeseja ja malleja. Jos ne selittävät useita erilaisia havaintoja ja vieläpä tarjoavat testattavia ennusteita, aina parempi. Ja jos uudet, mieluiten useampien toisistaan riippumattomien tutkijoiden toistamat havainnot eivät sovi vanhoihin malleihin, joutavat vanhat käsitykset romukoppaan. Näin käy siitäkin huolimatta, että ”totuudet” voivat periytyä satojen vuosien takaa.
Dominguen tutkimusryhmän tulokset ja kiehkuroiden osittainen syntyhypoteesi ovat sikäli oivallista luonnontiedettä, että ne tarjoavat testattavissa olevan ennusteen. Sen pätevyyden testaamiseen ei tarvita kuin yksityiskohtaisia toisten kiehkuroiden korkeusmalleja. Jos muidenkin kiehkuroiden alueilta havaitaan samanlaista topografista korrelaatiota kuin Ingeniistä, voi leijuvan pölyn mallin sanoa olevan aika vahvoilla. Samalla tietysti kaikkien kuututkijoiden tuntema perinteinen opinkappale siitä, ettei kiehkuroilla ja topografialla ole mitään tekemistä toistensa kanssa, osoittautuisi virheelliseksi.
Henkilökohtaisen persnäppituntuman esittely sallittaneen näin blogin vapaamuotoisissa ympyröissä. Dominguen ryhmän tutkimusalueet olivat hyvin tasaisella mare-tasangolla. Kiehkuroita on kuitenkin ylängöilläkin: pienehköt Gerasimovichin kiehkurat sijaitsevat keskellä etäpuolen kraatteroitunutta ylänköä, eivätkä lähipuolella sijaitsevat selväpiirteiset Airyn tai läiskämäisemmät Descartesin kiehkurat sen tasaisemmassa maastossa ole. Veikkaisinkin, että mahdollisen topografiakorrelaation löytäminen ylänkökiehkuroista ei tule olemaan järin helppoa. Vaikka siis olenkin Dominguen ryhmän uusista tuloksista vilpittömän innoissani, keski-ikäisenä konservatiivijääränä en ole ihan vielä luopumassa edeltäjieni hyväksi havaitsemista opeista.
Kiehkuroiden tutkimista voi jopa kuututkimuksen sisällä pitää melkoisen eksoottisena puuhana, sillä eihän niitä edes tunneta kuin noin tusina. Muilta taivaankappaleilta ei vastaavia piirteitä ole havaittu laisinkaan (mikä sinänsä on vallan merkillistä, ja varmasti kertoo jostain jotain). Kovin vahvasti niiden syynäämistä ei siis vertailevan planeettatutkimuksenkaan nimissä voi puolustella. Silti kiehkuroilla on kauaskantoisempaakin tieteellistä merkitystä.
Toisin kuin Maalla, Kuulla ei nykyisin ole kaunista kaksinapaista ja eläväistä magneettikenttää. Sen sijaan Kuun magneettikentästä on jäljellä vain kiviin kiinnittyneet muinaiset magneettiset jäänteet. Kiehkuroiden ja niihin liittyvien magneettisten anomalioiden tutkimus, mieluiten paikan päällä, voikin syventää ymmärrystämme Kuun magneettikentän ajallisesta ja paikallisesta kehityksestä vuosimiljardeja sitten. Yksi mahdollinen alkuperä kiehkuroiden magneettisille poikkeamille ovat pinnanalaiset magmaattiset juonet tai kenties laavatunnelit. Mikäli tämä ajatus pitää paikkansa, voidaan kiehkuroita tutkimalla päästä käsiksi laajempiin kysymyksiin Kuun tuliperäisen toiminnan kehityksestä.
Kuten perustutkimuksessa usein käy, myös vuosikymmeniä jatkuneelta akateemiselta puuhastelulta vaikuttavalta kiehkuroiden ja niihin kytkeytyvien magneettisten poikkeamien tutkimuksella voi pian olla käytännöllistäkin merkitystä. Kun astronautit palaavat Kuuhun ja ovat ensin möyrineet etelänavan tuntumassa kyllikseen, aletaan myös muita ympäristöjä tutkia tarkemmin. Jossain vaiheessa kiehkuratkin ovat astronauttien asialistalla. Ihmisten näkökulmasta kiehkuroilla on se etu puolellaan, että niiden voimakkaampi magneettikenttä ainakin jossain määrin suojelee astronautteja haitalliselta hiukkaspommitukselta. Visaisempi kysymys on, onko tällä käytännön merkitystä. Pysyvämpi kuuasema kun kuitenkin vaatii suojakseen vähintään kerroksen Kuun pinta-ainesta.
Toinen astronauttien kannalta kiinnostava piirre kiehkuroissa on niiden vesipitoisuus. Itse kirkkaissa kiehkuroissa hydroksyyli-ioneina esiintyvää vettä on ympäristöään niukemmin. Ideat – joskaan eivät tiettävästi vielä havainnot – viittaavat siihen, että kun vettä kerran on kiehkuroiden kirkkaissa osissa keskimääräistä vähemmän, täytyy kiehkuroita reunustavissa tummissa vyöhykkeissä sitä olla vastaavasti keskimääräistä enemmän. Vettä on Kuussa napaseutuja lukuun ottamatta niin äärimmäisen pieniä määriä, että sen vähäinenkin rikastuminen voi jossain vaiheessa olla merkittävää.
On hyvinkin mahdollista, että saamme paikan päältä tietoa kiehkuroista jo ennen kuin seuraavat astronautit ehtivät niitä tutkimaan. Viime marraskuussa NASA päätti myöntää rahoituksen Intuitive Machines -yhtiön astronautittomalle Nova-C -laskeutujalle. Sen määränpäänä on Reiner Gamma. Tämä olisi kolmas Nova-C -laskeutuja (eli tylsästi nimetty IM-3). Jos kaksi ensimmäistä laskeutujaa onnistuvat ja jo nyt viivästynyt hanke pysyy jatkossa aikataulussa, Reiner Gamman alueelle saavuttaisiin vuonna 2024.
Amerikkalaiset eivät ole ainoita, jotka ovat olleet kiinnostuneita Reiner Gamman lähitarkastelusta. Korealla oli nimittäin vielä jokunen vuosi sitten oma suunnitelmansa pienestä CubeSat-pohjaisesta törmäysluotaimesta. Sen oli tarkoitus iskeytyä loivalla kulmalla Reiner Gammaan ja mitata samalla sen magneettikenttää. Itse en ole suunnitelmasta enää vähään aikaan kuullut, joten voi olla, että se on tässä muodossaan haudattu. Korealaiset ovat kuitenkin keskeisesti mukana NASAn ja Intuitive Machinesin Reiner Gammaan suuntaavan Nova-C -laskeutujan laitekehityksessä. Oletettavaa on, että CubeSat-projektin suunnittelussa karttunutta osaamista on suoraan hyödynnetty Nova-C:ssä.
Elämme siis hyvin mielenkiintoisia aikoja niin kuututkimuksessa yleensä kuin kiehkuratutkimuksessa erityisesti. Hyvällä tuurilla jo muutaman vuoden päästä meillä on suoria mittaustuloksia kaikkein maineikkaimmasta kiehkurasta ja sen magneettikentästä. Vaikkei tuolloin vielä selviäisi, mistä kiehkuroissa ja niiden magneettikentissä pohjimmiltaan on kyse, olisi jo yhdenkin syntymallin poissulkeminen merkittävä edistysaskel. Toivotaan parasta.
Kiitokset Georgiana Kramerille kiehkurakartasta.
Tämä juttu ilmestyy jossain vaiheessa myös luultavasti parilla lisäkuvalla höystettynä Hieman Kuusta -blogissani.
Muutos iltapäivällä 1.4.2022: Korjattu liikkumaton Surveyor 7 -animaatio.
Korjaus 2.4.2022: Korjattu tekstiin Rimae Sirsaliksen nimi. Kuvassa se on virheellisessä yksikkömuodossa.