Arkisto
- syyskuu 2023
- elokuu 2023
- heinäkuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- syyskuu 2020
- elokuu 2020
- heinäkuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
Mikä Lappajärvelle putosi?
Viimeiset 15–20 vuotta kraatteritutkijoiden keskuudessa on ollut kohtalaisen vakaa käsitys siitä, millainen kappale Lappajärven 78 miljoonaa vuotta sitten synnytti. Nyt uudet, vielä hyvin alustavat tulkinnat viittaavat siihen, että kyseessä saattoi olla jotain sellaista, josta maapallolla ei vielä ole näytettä.
Kraattereita synnyttävien kappaleiden valikoima
Maan lähiavaruudessa kiertää kaikenlaisia murkuloita. Yleensä ne ovat kiveä, mutta kiviäkin on geokemistin näkökulmasta tavattoman monta sorttia. Osa kivistä on ikivanhoja ja suunnilleen muuttumattomia, toisia taas on pyöritelty protoplaneetoilla erilaisissa geologisissa prosesseissa. Joissain on mukana melko runsaasti hiiltä. Rautameteoriitit taas ovat, no, rautaa. Komeettojen ytimet puolestaan ovat vesijäätä ja muuta helposti haihtuvaa höttöä. Valinnanvaraa piisaa.
Maan törmäyskraatterit syntyvät, kun avaruudessa kiertävä riittävän suuri möykky sattuu olemaan Maan kanssa samaan aikaan samassa paikassa. Tuo on huono päivä kyseisen kappaleen kannalta, sillä törmäyksessä se katoaa käytännössä täysin. Näin käy riippumatta kappaleen koostumuksesta. Silti lukuisten maapallon kraattereiden osalta tiedetään (tai ainakin hyvin perustellusti oletetaan), millainen kappale ne synnytti. Miten moinen on mahdollista? Ja kuinka varmalla pohjalla tunnistukset ovat?
Meteoriittikraatterit
Geologisesti hyvin nuorten ja pienten, eli korkeintaan noin kilometrin läpimittaisten törmäyskraatterien yhteydessä maanpinnalla tai irtomaakerroksissa aivan pinnan lähellä esiintyy melko usein kraatterin synnyttäneen kappaleen palasia. Nämä ovat siis meteoriitteja. Ainoastaan tällaisia kraattereita tulisi kutsua ”meteoriittikraattereiksi”. Tavalliset pienet meteoriitit eivät pudotessaan kuitenkaan meteoriittikraatteria synnytä, vaan korkeintaan hieman meteoriittia itseään suuremman putoamiskuopan.
Tyypillisesti meteoriittikraatterit ovat rautameteoriittien aiheuttamia. Tälle on hyvin yksinkertainen selitys. Toisin kuin hauraat kivet, pienet rautakappaleet kestävät syöksyn läpi ilmakehän ja pystyvät synnyttämään kraatterin. Tunnettuja esimerkkejä meteoriittikraattereista ovat Viron Saarenmaalla sijaitseva noin 1500 vuotta eaa. syntynyt Kaalijärven kraatterikenttä1 ja Yhdysvaltain Arizonassa oleva Barringer Meteorite Crater eli Meteor Crater. Sillä ikää on noin 50 000 vuotta.
Aidoissa meteoriittikraattereissa ei ole suurempia vaikeuksia selvittää törmänneen kappaleen olemusta. Suuret, vanhat kraatterit ovat asia erikseen. Niiden yhteydessä ei paria kuuluisaa poikkeusta2 lukuun ottamatta tavata suunnilleen alkuperäisessä muodossaan säilyneen törmänneen kappaleen jäänteitä. Suuren kraatterin synnyttäneen kappaleen tunnistaminen vaatiikin hienostunutta analytiikkaa.
Suuret ja vanhat törmäyskraatterit
Suuren kraatterin synnyttäneen kappaleen tunnistuksen ongelmana on, että törmäävä asteroidi sulaa ja höyrystyy käytännössä täysin. Helposti analysoitavia kiinteitä asteroidin palasia ei etenkään vuosimiljoonien jälkeen ole tarjolla. Tutkimukset täytyy tuolloin perustaa törmäyksessä sulaneeseen kohdekiveen, johon taivaallinen aines on sekoittunut. Asteroidiainesta tällaisessa törmäyssulakivessä on korkeintaan muutaman prosentin verran, tyypillisesti selvästi alle prosentin.
Asteroidityypit eroavat toisistaan koostumukseltaan paitsi toisistaan, useimmiten myös Maan kivistä. Maassa raskaat alkuaineet ovat painuneet planeettamme ytimeen, joten useimpia raskaampia metalleja on keskimääräisessä maankuoressa hyvin niukalti. Tällaisia ovat esimerkiksi nikkeli ja platinaryhmän metallit (platinum group elements, PGE). Ryhmään kuuluvat rutenium, rodium, palladium, osmium, iridium ja platina.
Toisin kuin Maassa, useimpien kraattereita synnyttävien asteroidien emäkappaleilla ei koskaan tapahtunut differentioitumista metalliytimeen ja kevyempään vaippaan ja kuoreen. Niinpä sekä tavallisimmat kivimeteoriitit (joissa PGE:t ovat likimain ”alkuperäisissä” runsaussuhteissaan) että rautameteoriitit (joissa PGE:t ovat rikastuneet) sisältävät merkittävästi enemmän PGE:ta kuin maapallon kuori (jossa PGE:t ovat köyhtyneet).
Tunnistuksen kannalta oleellista on, että PGE:t esiintyvät eri meteoriittityypeissä juuri niille ominaisissa keskinäisissä suhteissa. Koska PGE:t ovat geokemialliselta käyttäytymiseltään pääpiirteissään keskenään hyvin samankaltaisia, niiden alkuperäiset suhteet eivät juurikaan muutu kraatterin synnyn monimuotoisissa geologisissa prosesseissa. Näin platinaryhmän alkuaineiden jakauma törmäyssulakivessä voi kertoa, millaisen kappaleen törmäys sen synnytti, vaikka niiden pitoisuus olisi hyvinkin vähäinen.
Käytännössä tilannetta hankaloittaa, ettei maapeitteiden alla olevan kallioperän kivilajien tarkkaa jakaumaa ja koostumusta törmäyshetkellä tiedetä. Koska tutkittavat pitoisuudet ovat alhaisia, voi vähäinenkin normaalissa malminmuodostusprosessissa syntynyt kivilajiesiintymä sotkea analyysit ja tutkijoiden päätelmät. Periaatteessa kuitenkin PGE:n käyttöön perustuva tunnistusmenetelmä on varsin yksinkertainen, kunhan vain miljardisosien pitoisuuksien vaatima analytiikka on kunnossa.
Lappajärven törmääjä selviää
Neljäkymmentä vuotta sitten kävi ilmi, että Lappajärvi on Euroopan toinen kraatteri, jonka törmäyssulakivessä on merkittävä törmänneen kappaleen kemiallinen jälki. Kahden osittain samoja tutkijoita sisältäneen saksalaisryhmän analyyseissä Lappajärven kärnäiitistä löydettiin esimerkiksi iridiumia vähintään 20–100-kertainen määrä alueen peruskallioon nähden. Toisen ryhmän vertaisarvioidut tulokset kertoivat, että kyseessä on muisto jonkinlaisesta kondriitista. Vielä ei kuitenkaan selvinnyt, oliko kyse tavallisesta vai hiilikondriitista, puhumattakaan siitä, että tarkempaa luokittelua olisi pystytty tekemään.
Toisen ryhmän alustavat tulokset puolestaan viittasivat vahvasti hiili- eli C-kondriittiin. Kaikista meteoriittityypeistä yleisintä eli H-kondriittia ei kuitenkaan pystytty sulkemaan täysin pois. Molemmissa ryhmissä mukana olleen ja Lappajärvestä väitöskirjankin tehneen Uwe Reimoldin omissa nimissään julkaisemat tutkimukset antoivat hiilikondriittitulkinnalle lisätukea. Hänen mukaansa kärnäiitissä oli noin 0,4 % tuota hiilipitoista taivaallista tavaraa.

Kaksikymmentä vuotta sitten käsitys Lappajärven törmääjästä tarkentui. Kalifornialaisen tutkimusryhmän alustavissa tutkimuksissa ilmeni, että Lappajärvelle oli sittenkin mäjähtänyt H-tyypin kondriitti eikä hiilikondriitti. Tuossa tutkimuksessa ei käytetty PGE:n, vaan kromi-isotooppien keskinäisiä runsaussuhteita. Lopulliset tulokset valmistuivat vasta vuonna 2007, jolloin hiili- ja enstatiittikondriitit pystyttiin vielä aiempaa varmemmin rajaamaan pois epäiltyjen listalta.
Samoihin aikoihin Roald Taglen vetämä saksalais–suomalais–belgialainen ryhmä käytti nopeasti kehittyneitä PGE:n analyysimenetelmiä sekä aiempiin tutkimuksiin verrattuna laajempia otoksia niin kärnäiitistä kuin meteoriiteistakin selvittääkseen törmääjän identiteetin.3 Tulokset sopivat parhaiten H-kondriittiin, vaikkei vastaavuus täydellinen ollutkaan. Kärnäiitissä oli näiden tulosten perusteella noin 0,05–0,7 painoprosenttia asteroidiainesta.

Koska kaksi eri tutkimusryhmää kahta erilaista menetelmää käyttäen sai saman lopputuloksen, joka sopi myös vuosikymmeniä aiemmien saatuihin tuloksiin, vaikutti homma kokolailla vakuuttavalta: Lappajärven synnytti ihan tavallinen H-kondriitti. Tässä käsityksessä on nyt oltu toistakymmentä vuotta. Siksi minullakin on aina Lappajärvestä puhuessani ollut H-kondriitti matkassani.
Vai selvisikö sittenkään?
Gerhard Schmidt on Heidelbergin yliopistossa työskentelevä geo- ja kosmokemisti. Suomalaiselle kraatterikansalle hän on tuttu etenkin Sääksjärven synnyttäneen kappaleen tutkimuksistaan. Viimeisen parin vuoden ajan hän on julkaissut lukuisia kokousabstrakteja, joiden datapisteitä täynnä olevissa diagrammeissa on näkynyt myös Lappajärven aiempia analyysituloksia. Tällä viikolla hänen oli tarkoitus esitellä ajatuksiaan hieman tarkemmin Houstonissa vuosittain järjestettävässä, mutta tällä kertaa perutussa Lunar and Planetary Science Conferencessa.
Schmidt on uusissa kokousesityksissään keskittynyt PGE-alkuaineista etenkin rodiumiin. Aiemmin sitä ei tutkimuksissa ole kovinkaan paljon käytetty, vaikka se kyllä oli mukana esimerkiksi Taglen ryhmän analyyseissä. Rodiumin käyttöä puoltaa, että sen suhde etenkin iridiumiin ja ruteniumiin suo varsin hyvän mahdollisuuden erotella eri meteoriittityyppejä toisistaan.
Rodium-suhteiden perusteella Schmidt päätyi esittämään varsin jännittävää ideaa: Lappajärven synnytti entuudestaan täysin tuntematon kondriittityyppi. Vaikka ajatus äkkiseltään tuntuu hurjalta, se ei sinänsä ole ollenkaan mahdoton. Ei näet ole mitään syytä olettaa, että tämänhetkinen meteoriittivuo olisi alkuunkaan edustava otos maapallolle eri aikoina sataneista kivistä. On esimerkiksi kokolailla kiistattomasti osoitettu, että ordoviikkikaudella reilut 450 miljoonaa vuotta sitten pienempiä ja isompia L-kondriitteja satoi Maahan aivan eri tahtia kuin nykyisin.
Tuntemiemme meteoriittien koostumusten perusteella ne ovat peräisin ehkäpä noin 100–150:ltä emäkappaleelta. Se on häviävän pieni määrä verrattuna miljooniin asteroideihin, vaikka otettaisiinkin huomioon että ”yksi emäkappale” voi käsittää lukuisia samalla alueella syntyneitä kappaleita, ja että suuret asteroidit ovat vuosimiljardien kuluessa jauhautuneet tuhansiksi pienemmiksi. Noiden asteroidien joukkoon mahtuu aivan hyvin runsaasti kiviä, jollaisista ei museoissamme vielä ole näytettä. Periaatteessa siis Lappajärvi voisi olla jonkin tuntemattoman asteroidityypin aikaansaama.
Ajatusta H-kondriitista Lappajärven synnyttäjänä ei kuitenkaan ihan vielä kannata heittää romukoppaan. Hypoteesi uudenlaisesta törmääjästä on yhden tutkijan tulkinta, jota on toistaiseksi esitelty vain kokouksissa. Edes sisäisestä vertaisarvioinnista ei siis voida puhua. Uusia analyysejä ei ole, vaan koko tulkinta perustuu aiempiin mittaustuloksiin. Lisäksi Taglen ryhmän analyyseissä, joihin Schmidtin ajatus pohjautuu, juuri rodium käyttäytyi (palladiumin ohella) eräissä analyyseissä poikkeavalla tavalla. Niinpä Lappajärven rodium-tulkintojen kanssa kannattaisi olla melko varovainen. Schmidt ei myöskään anna selitystä sille, miksi kromi-isotooppien antama tulos olisi epäluotettava.
Schmidtin idea on jännittävä uusi tulkinta, joka mukavasti lisää kiinnostusta Lappajärveä kohtaan. Kannattaa kuitenkin odotella vertaisarvioitua julkaisua ja mieluusti uusia analyysejä ennen kuin vetää vakavampia johtopäätöksiä aiheesta. Niitä odotellessa ainakin itse aion edelleen kantaa H-kondriittia taskussani Lappajärvestä puhuessani.
1Kaalijärvellä on kaikkiaan yhdeksän varmana pidettyä kraatteria. Se 110-metrinen, jossa matkailijat käyvät, on Kaalijärven pääkraatteri, muut kahdeksan ovat satelliittikraattereita. Pääkraatteri on ainoa, joka syntyi törmänneen kappaleen räjähtäessä. Muut kraatterit ovat mekaanisesta iskusta syntyneitä iskukraattereita. Seuraavan kerran Saarenmaalla käydessä kannattaa piipahtaa tutustumassa pääkraatterin ja hienon Kaalin vierailukeskuksen ohella myös satelliittikraattereihin.
2Morokweng on käytännössä melkoisen varma tapaus, Chicxulubiin liitetty pieni meteoriitti puolestaan osin kiistanalainen.
3Jääviystunnustuksena todettakoon, että Taglen ryhmän suomalaisedustuksesta vastasin minä. Tämä tietysti kannattaa pitää mielessä, kun lukee kommenttejani tuoreemmasta Lappajärvi-tulkinnasta.
Tämä juttu tulee ilmestymään myös Suomen Kraatterit -blogissa.
2 kommenttia “Mikä Lappajärvelle putosi?”
Vastaa
Sääksjärvi palaa parrasvaloihin
Lappajärvi oli ensimmäinen Suomesta todistettu törmäyskraatteri. Tämä on kotimaisen kraatteritietouden peruskauraa. Vaan moniko muistaa, että Suomen toinen kraatterilöytö tapahtui jo vuoden sisällä Lappajärven varmistumisesta törmäyssyntyiseksi?
Noin viisikilometrinen Sääksjärven törmäyskraatteri sijaitsee Kokemäellä, 35 km Porin kaakkoispuolella. Se on Suomen kraatterien aatelia, mutta on hivenen jäänyt Lappajärven varjoon jo löytymisestään alkaen.
Sääksjärven törmäystarina alkoi, kun Outokummun mineralogi Yrjö Vuorelainen kiinnitti huomionsa Sääksjärven erikoisiin, Suomessa tuiki harvinaisia akaatteja sisältäviin irtolohkareisiin. Paikalliset asukkaat (ja bussilastillinen opettajia) olivat keräilleet niitä tienpientareilta 1960-luvulla. Nyttemmin Sääksjärven törmäyssyntyisten akaattien keruu on tärkeimmällä esiintymisalueellaan kielletty, mutta niistä kraatteri yhä parhaiten tunnetaan.
Vuorelaisen havainnot kantautuivat Turun yliopistossa väitöskirjaansa tehneen Heikki Papusen korviin. Hän havaitsi, että akaattien ohella kivissä oli muutakin kummaa: Sääksjärven mineraalirakeiden piirteet vastasivat törmäyskraattereissa esiintyviä shokkimetamorfoosin tunnusmerkkejä. Näitä havaintojaan Papunen esitteli Suomen Geologisen Seuran julkaisusarjassa ilmestyneessä artikkelissaan Possible Impact Metamorphic Textures in the Erratics of the Lake Sääksjärvi in Southwestern Finland vuonna 1969.
Papusen artikkeli oli ensimmäinen suomalaistutkijan työ, jossa todistettiin törmäyskraatterin olemassaolo. Lappajärven törmäyssynnyn oli nimittäin vuotta aiemmin osoittanut ruotsalainen Nils-Bertil Svensson. Papusen panos suomalaisen kraatteritutkimuksen pioneerina on siis hyvin merkittävä, vaikka asia nykyisin heikosti muistetaankin. Omimmalla alallaan malmigeologiassa Turun yliopiston geologian professori emeritus Papunen on kyllä tunnettu ja palkittu myös kansainvälisesti moneen otteeseen.
Törmäyksissä kiviä uuteen uskoon pistävän shokkimetamorfoosin ymmärrys oli 1960-luvun lopulla maailmanlaajuisestikin vielä melko vajavaista. Niinpä Papunen ei rohjennut täysin varmasti sanoa Sääksjärven olevan törmäyksen synnyttämä. Jälkiviisaana on kuitenkin helppo todeta, että Papusen löytämät kvartsin shokkilamellit ja maasälvästä suoraan sulamatta syntynyt törmäyslasi maskelyniitti olivat kiistattomia törmäystodisteita. (Tapa, jolla ne esitettiin, ei tosin nykyisten vaatimusten mukaan vielä riittäisi todistamiseen. Sama ongelma vaivaa lukuisia muitakin kraattereita niin Suomessa kuin maailmallakin.)

Neljä vuotta myöhemmin Papunen palasi Sääksjärven törmäyskivien pariin tutkien niiden kemiallista koostumusta. Epäily kalvoi hänen mieltään edelleen, sillä geokemialliselta kannalta sääksjärveläisestä peruskalliosta ei oikein mitenkään sulattamalla ja sekoittamalla saanut aikaiseksi törmäyssulakiven ja erilaisten breksioiden kaltaisia yhdistelmiä. Niinpä Papusen toisessa artikkelissa Chemical Composition and Origin of the Shock Metamorphic Rocks of the Sääksjärvi Area, Finland kummitteli edelleen mahdollisuus, että Sääksjärvi olisi jonkinlainen kryptovulkaaninen rakenne. Nyttemmin kryptovulkanismi ja kryptoräjähdykset ovat päätyneet geologian historian romukoppaan. 1960–70-luvuilla ne kuitenkin olivat vakavasti otettava vaihtoehto monille Sääksjärven tapaisille erikoisille rakenteille ja kiville.
Geokemiallinen ongelma ratkesi, kun pitkän ja monipuolisen uran Geologian tutkimuskeskuksessa (GTK) tehnyt Tapani Mutanen esitti Geologi-lehdessä vuonna 1979, että törmäyshetkellä Sääksjärven seutu oli ollut Satakunnan hiekkakiven peitossa. Se kuuluu Suomen mittakaavassa nuoriin, ns. jotunisiin noin 1400–1200 miljoonaa vuotta vanhoihin muodostumiin. Jotunisia sedimenttikiviä on Suomessa säilynyt laajoissa painanteissa lähinnä vain Satakunnassa ja Muhoksen seudulla. Sääksjärvelle saakka hiekkakiviesiintymä ei kuitenkaan nykyisellään yllä.
Sekoittamalla Satakunnan hiekkakiveä ja alueen gneissimäisiä kiviä sopivassa suhteessa saadaan aikaiseksi cocktail, joka vastaa Sääksjärven törmäyskivien analyysituloksia. Kouriintuntuvat todisteet Mutasen elegantin teorian puolesta kuitenkin puuttuvat edelleen, sillä tiettävästi kukaan ei ole raportoinut löytäneensä hiekkakiven kappaleita Sääksjärven breksioista tai törmäyssulakivestä. Tosin eipä niitä kai kukaan ole etsinytkään.

Jos Satakunnan hiekkakivi peitti aluetta törmäyshetkellä, niin milloin tuo hetki koitti? Tällä kysymyksellä on kiinnostusta harvoja kraatteritutkijoita laajemmissa piireissä, sillä se auttaa selvittämään Suomen kallioperän kehityksen kohtalaisen heikosti tunnettuja myöhäisvaiheita.
Ensimmäinen Sääksjärven ikämääritys julkaistiin vuonna 1977. Kanadalaistutkijat Richard J. Botttomleyn johdolla päätyivät esittämään kraatterin maksimi-iäksi noin 330 miljoonaa vuotta. Tämä oli ensimmäinen Suomen törmäyskraattereista julkaistu ikämääritys.
Pari vuotta myöhemmin Richard Grieve ja Blyth Robertson arvioivat Sääksjärven iäksi noin 490 miljoonaa vuotta. Ilmeisesti luku oli peräisin Bottomleyn väitöskirjatyöstä, jossa Grieve oli ollut mukana.
Seuraavia ikätutkimuksia saatiin odotella vuoteen 1990 saakka. Tuolloin Bottomley kollegoineen jatkoi ikämääritystensä julkaisua. Sääksjärven todennäköisimpänä maksimi-ikänä pidettiin edelleen 330 miljoonaa vuotta, mutta analyysituloksissa kummitteli myös luku 580 ± 10 miljoonaa vuotta. Tämä oli virherajojen puitteissa sama ikä kuin Norbert Müllerin johtaman saksalaisryhmän myös vuonna 1990 julkaisema 560 ± 12 miljoonaa vuotta.
Kertoimella kaksi (tai enemmän) toisistaan poikkeavat ikäarviot eivät ole geologiassa tavattomia, mutta ärsyttäviä ne ovat. 1990-luku kuluikin Sääksjärven iän suhteen vahvan epätietoisuuden vallassa. Tilannetta ei helpottanut, että 1990-luvun loppupuolella ja 2000-luvun alussa ainakin kolme Sääksjärveä käsitellyttä tutkimusryhmää kertoi sen iäksi 514 ± 12 miljoonaa vuotta. Tämä alkoi olla jo melkoisen lähellä Grieven ja Robertsonin aikoinaan esittämää 490 miljoonaa vuotta.
Luku 514 miljoonaa oli peräisin Müllerin ryhmän tutkimuksesta, jossa ilmoitettiin peräti kolme erilaista tulkintaa Sääksjärven iäksi. Yhdessäkään artikkelissa ei kylläkään kerrottu, miksi noin 514 miljoonaa olisi parempi kuin Müllerin suosittelema noin 560 miljoonaa. Tosiasiassa siis 2000-luvun alussa ainakaan kellään tilannetta sivusta seuranneella ei ollut tietoa, kuinka vanha tai nuori Sääksjärvi oikeastaan on.
Tässä vaiheessa Sääksjärven tarinaan tuli mukaan tuolloin GTK:lla työskennellyt ja aiemmin Lappajärvenkin ajoittanut Irmeli Mänttäri. Edeltäjistään poiketen hän käytti työssään geokronologien suosikkimineraalia, zirkonia (ZrSiO4). Mänttärin johdolla Sääksjärven iäksi määritettiin 600 miljoonaa vuotta.
Harmillista kyllä, tulos esiteltiin vuonna 2004 kokouksessa, jossa törmäyskraatteritutkijoita käy vähän, eikä kokousabstraktista käynyt ilmi edes tuloksen virherajoja. Ainoastaan kokouksessa esitellystä posterista selvisi, että ikämäärityksen tulos oli 602 ± 17 miljoonaa vuotta. Koska tuota posteria ei monikaan kraatteritutkija ollut nähnyt, käytännössä viimeisen viidentoista vuoden ajan Sääksjärven paras ikämääritys on ollut tiedossa vain kuulopuheiden kautta.

Mänttärin määrittämä ikä sopi myös hänen tutkimusryhmäänsä kuuluneelle Jarmo Kohoselle. Kohonen on pitkään tutkinut Suomen kallioperän nuorempia vaiheita, jolloin perinteisen käsityksen mukaan täällä ei tapahtunut juuri mitään. Vielä noin 330 miljoonaa vuotta sitten Suomen olisi suurelta osin pitänyt olla Skandinavian Kaledonideilta eli Skandeilta eli Kölivuoristosta rapautuneen hiekan ja muun moskan peitossa. Tuo sedimenttikerros oli niin paksu, ettei Sääksjärven kokoista kraatteria olisi pitänyt pystyä sedimenttien alla olevaan peruskallioon syntymään. Jos siis Sääksjärven ikä olisi ollut noin 330 miljoonaa vuotta kuten Bottomleyn ryhmä esitti, ajatus tästä laajasta ja paksusta sedimenttikerroksesta olisi vaatinut ainakin jonkinlaista hienosäätöä.
Noin 600 miljoonaa vuotta sitten Suomea peittänyt sedimenttikerros oli huomattavasti ohuempi, joten ongelmaa ei ollut, vaikkakin Mutasen esittämillä geokemiallisilla perusteilla vanhempaa Satakunnan hiekkakiveä täytyi jonkunmoinen kerros törmäyshetkellä vielä olla jäljellä. Mänttärin ja Kohosen mukaan Bottomleyn ryhmän määrittämä 330 miljoonan vuoden ikä heijastelee vain Sääksjärven törmäyskivien hautautumista Norjasta ja Ruotsista valuneiden paksujen sedimenttikerrosten alle. Kasassa oli varsin looginen tarina. Ikävä kyllä juuri kukaan ei tuota tarinaa kuullut.
Pitkän hiljaiselon jälkeen Sääksjärvestä tihkuu nyt uutta tietoa. Tukholman luonnonhistoriallisessa museossa työskentelevä Gavin G. Kenny on aiemmin tutkinut mm. Lappajärven ikää ja Paasselän shokkimetamorfoosia. Nyt hän on kääntänyt katseensa ja etenkin EBSD-elektronimikroskooppinsa Sääksjärven zirkoni- ja monatsiittimineraaleihin. Niiden joukossa on samoja zirkonirakeita, joita jo Irmeli Mänttäri tutki reilut 15 vuotta sitten. Analyysitekniikka on viime vuosina edistynyt huimasti, joten myös tulokset ovat vastaavasti tarkentuneet.
Koronaviruksen takia perutussa kraatteritutkijoiden tärkeimmässä vuosittaisessa kokoontumisessa eli Houstonin Lunar and Planetary Science Conferencessa Kennyn oli tarkoitus esitellä yhdessä Mänttärin, Martin Schmiederin ja Martin J. Whitehousen kanssa tekemäänsä tutkimusta Microstructural Characterization of Shocked Zircon and Monazite from the Sääksjärvi Impact Structure, Finland – Towards Precise U-Pb Dating of Small Impact Structures. Vaikka kokous peruttiin, on julkaisu kuitenkin onneksi luettavissa.
Kuten otsikkokin kertoo, kyseessä on alustava raportti: uutta ikämääritystä ei vielä ole tarjolla. Kiinnostavin tuoreista tuloksista on maininta siitä, että osa zirkoneista olisi saanut nykyisen olemuksensa oltuaan aiemmin ZrSiO4:n korkean paineen ja lämpötilan muotoa, reidiittiä. Sääksjärvi on nyt Lappajärven ja Paasselän jälkeen kolmas Suomen kraatteri, josta on löytynyt merkkejä reidiitistä. Myös aiemmat löydöt olivat Kennyn tekemiä.
Todisteet reidiitistä ovat tärkeä lisä Sääksjärven shokkimetarmorfoosin tutkimukseen. Papusen ensimmäisen Sääksjärveä koskeneen artikkelin jälkeen yksikään tutkija ei nimittäin ole kiinnittänyt päähuomiotaan alueen kivien shokkimetamorfoosiin.1 Moni perusasiakin on Sääksjärvestä siksi tutkimatta. Tämä siitä huolimatta, että sekä Outokumpu että etenkin GTK kairasivat Sääksjärveen useita tutkimusreikiä, joten mahdollisuuksia olisi ollut. Kairauksista ei kuitenkaan koskaan ole julkaistu edes tutkimusraporttia. Nyttemmin huomattava osa korvaamattomista kairasydämistä on tiettävästi hävitetty, joten tutkimusmahdollisuudet ovat huomattavasti aiempaa heikommat.
Onneksi kuitenkin ulkomailla riittää jatkuvasti kiinnostusta Suomen kraatterien tutkimusta kohtaan. Ehkäpä yli 40 vuoden yrittämisen jälkeen pian lopultakin varmistuu, milloin Sääksjärvi syntyi. Tutkimuksen hienoin piirre tietysti on, että aina löytyy myös jotain täysin odottamatonta. Niinpä ainakin minä odotan Kennyn tutkimusryhmän lopullisia tuloksia erittäin suurella mielenkiinnolla.
1Osittaisena poikkeuksena saattaa olla yksi vanha saksankielinen diplomityö, jota en ole lukenut. Sen yksityiskohtaisia tuloksia ei laajemman tutkimusyhteisön tietoon ole levitetty. Kyseisestä työstä saattaisi hyvässä lykyssä myös löytyä tieto, onko Sääksjärven törmäyssulakivissä ja -breksioissa jäänteitä Satakunnan hiekkakivestä.
Tämä juttu ilmestyy myös Suomen kraatterit -blogissa.
2 kommenttia “Sääksjärvi palaa parrasvaloihin”
-
Tärkeä ja mielenkiitoinen artikkeli.
Sääksjärvi on tuttu ”kotijärvi” Kokemäellä.Odotan samoin mielenkiinnolla G.G.Kennyn ko. tutkimusta
Lappajärven meteoriitti voiko mistään päätellä millä leveyspiireille Lappajärvi oli kun meteoriitti iski maahan. Millainen ympäristö oli silloin iskupaikalla. Kun isot maamassat lensivät olemassa olleen ympäristön päälle. Ovatko todisteet silloisesta kasvustoista säilössä maakerroksesta alla. Onko niitä tutkittu ja mitä sieltä voisi löytyä.olisiko kenties kivihiiltä tai öljykerroksia? Millaisia ajatuksia näistä pohdinnoissa voi syntyä.
Vastausta odotellen tiedon Halminen.
Hei,
paleomagneettisten tutkimusten perusteella Suomi oli 78 miljoonaa vuotta sitten hieman nykyistä etelämpänä, jossain Keski-Euroopan leveysasteella. Suomi oli kuitenkin melko kaukana merestä, sillä Atlantti oli tuolloin vasta alkanut avautua. Oletettavasti Lappajärven alue oli tuolloin kuivaa maata, ja eroosiotaso oli jo varsin lähellä nykyistä. Maailmanlaajuinen ilmasto liitukauden lopulla oli nykyistä lämpimämpi. Ei ole mitään syytä olettaa, etteikö Suomessa tuolloin olisi tallustellut dinosauruksia, vaikkei niistä todisteita olekaan (koska tuolta ajalta ei ole säilynyt sedimenttikerrostumia).
78:n miljoonan vuoden takaisesta kasvillisuudesta tai maaperästä ei ole jäljellä mitään, sillä eroosio on jo aikaa sitten hävittänyt jäljet niistä. Lappajärven kraatterissa Vimpelin Pokelassa on kyllä säilynyt maaperägeologisesti erittäin kiinnostavia viimeisintä jäätiköitymisvaihetta vanhempia moreenikerrostumia. Niiden ikä on yli 270 000 vuotta. Muualta Suomesta eroosio on hävittänyt ne, mutta Lappajärven kraatterissa ne ovat säilyneet kulutukselta suojassa. Yksi törmäyskraattereiden merkittävimmistä tieteellisistä anneista onkin se, että törmäykset paitsi synnyttävät täysin uusia kivilajeja, myös säilyttävät vanhoja. Useat Suomen kraattereista ovatkin erittäin merkittäviä Suomen mittakaavassa nuorten sedimenttikivien arkistoja.
Kivihiiltä tai öljyä ei Suomessa ole, koska kallioperämme on aivan liian vanhaa niiden esiintymisen kannalta.
Suht paljon Lappajärven perusasioita on selvitettynä toimittamassani Kraatterijärven georeitti –oppaassa. Kommentteja ja korjauksia raporttiin, sekä enemmän kuvia on raportin Google Maps -osiossa, johon pääsee käsiksi täällä. Raportin teon jälkeen valmistuneita Lappajärvi-tutkimuksia on esiteltynä Suomen kraatterit -blogissa.