Arkisto
- elokuu 2023
- heinäkuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- syyskuu 2020
- elokuu 2020
- heinäkuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
- maaliskuu 2020
- helmikuu 2020
- tammikuu 2020
- joulukuu 2019
- marraskuu 2019
Jezeron kallistuneet kerrokset ja lehdistötiedotteiden mahti
NASAn Mars-mönkijä Perseverance kulkee Jezero-kraatterin pohjalla tutkien ympäristöään niin kameroilla kuin lukuisilla muillakin mittalaitteilla. Se myös kairaa näytteitä ja pistää ne talteen sillä oletuksella, että ne saadaan joskus myöhemmin kuljetettua Maahan tarkempiin laboratoriotutkimuksiin. Toistaiseksi vähemmän tunnettua kuitenkin on, että Perseverancella on mukanaan myös maatutka.
Jezeron tutkailua
Marsin kamaraa pintaa syvemmältä luotaava tutka on planeettageologiasta kiinnostuneille tuttu laite Marsin kiertoradalta paristakin luotaimesta. Kuun pinnalla maatutka on ollut Kiinan Yutu- ja Yutu-2 -mönkijöissä. Maatutkaa käytetään Kiinan Zhurong-mönkijässäkin Utopian tasangon reunamilla parisentuhatta kilometriä Perseverancesta itäkoilliseen. Zhurongin ensimmäisiä kiehtovia tutkatuloksia julkaistiin aiemmin tällä viikolla. Perseverance laskeutui kuitenkin kolme kuukautta kiinalaisalusta aiemmin, joten sen norjalaisvalmisteinen RIMFAX-tutka (Radar Imager for Mars Subsurface Experiment) sai kunnian olla ensimmäinen maatutka Marsin pinnalla. Sen tuloksia myös julkaistiin hieman aiemmin, eli elokuun lopulla Science Advances -verkkolehdessä.
RIMFAXin kehittäjä ja päätutkija Svein-Erik Hamranin johdolla tehty artikkeli Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars on vallan mukavaa luettavaa. Tutkijoilla on nyt Jezeron pohjalta käytössään 2,6 km pitkä yhtenäinen tutkaprofiili, jonka syvyysulottuvuus on noin 15 metriä. Kiinnostavimmat löydöt olivat suurimmillaan noin 15° kallellaan olevat kerrokset. Tutkijaryhmä ei kuitenkaan pystynyt varmuudella päättelemään, oliko kyseessä magmaattinen (siis joko syvällä Marsin uumenissa tai pinnalla sulasta kiviaineksesta kiteytymällä syntynyt) vai sedimenteistä muodostunut kerroksellisuus.

Itse artikkelissa siis ei, ainakaan omasta mielestäni, ollut mitään moitittavaa, päinvastoin. Tutkijat kertoivat sen, mitä heidän tulkintansa mukaan tässä vaiheessa voidaan maatutkaluotauksen perusteella Jezeron pohjan kerrosrakenteesta päätellä. Se, kuinka asia kerrottiin julkisuuteen, onkin sitten aivan toinen tarina.
Artikkelin innoittamana tehdyn lehdistötiedotteen kärkenä oli tutkijoiden äimistys siitä, että Jezeron pohjalla on vinossa olevia kerroksia. Tällä luodaan tietenkin vaikutelma siitä, että nyt on löydetty jotakin todella ihmeellistä ja hämmästyttävää. Tiedeuutissivusto toisensa jälkeen toisti lehdistötiedotteen viestin pääsääntöisesti varsin uskollisesti. Klikkauksia satelee ja kaikki ovat tyytyväisiä, kun Marsista on taas löydetty vallan merkillisiä juttuja.
Ulkopuolisena on tietenkin mahdotonta sanoa, kuinka ihmeissään tutkijat todella olivat RIMFAXin tuloksista. Mutta ainakaan jos on yhtään perillä geologian perusteista tai on selvinnyt geologian opintojen ensimmäisen syksyn tenteistä ja jos lisäksi tietää, että Jezero on monivaiheisen geologisen historian läpikäynyt muinainen kraatterijärvi – kuten Jezeroa työkseen tutkivat geologit epäilemättä hyvin tietävät – vinoissa kerroksissa ei pitäisi olla mitään ihmeteltävää.
Sedimenttikerrokset?
Perseverance mönkii Jezeron länsiosassa komean deltan etupuolella. Jezeroon on siis lännestä virrannut joki (ja pohjoisesta toinen, mutta unohtakaamme se tällä erää), joka on kuljettanut mukanaan sedimenttejä. Virtauksen hidastuttua ne ovat kerrostuneet järvialtaaseen. Deltoille ominaista on, että sedimentit muodostavat vinoja kerroksia eivätkä siis alkujaankaan kerrostu aina likikään vaakasuoraan, kuten tapahtuu esimerkiksi meren tai suuren järven keskialueilla, joissa virtausta ei usein juurikaan ole.
Viimeistään viime vuonna julkaistujen Perseverancen tulosten perusteella oli myös selvää, että Jezeron läntinen delta on aikoinaan ulottunut pidemmälle kuin mitä luotainkuvista helpoimmin nykyisin erottuva delta antaisi ymmärtää. Vesi on myös virrannut Marsissa eri aikoina, joten ei olisi mikään ihme, vaikka Jezerossa olisi aikojen saatossa ollut useita deltoja, joista vanhimmat ovat osittain kuluneet ja hautautuneet myöhempien kerrostumien alle.
Sekin kannattaa kerroksia ihmetellessä muistaa, että Mars on ollut pitkään kuiva autiomaaplaneetta, joten myös vanhojen tuulen kerrostamien dyynien vinoja sedimenttikerroksia voi aivan hyvin olla Jezeron pohjalla. Ei siis olisi millään muotoa yllättävää vaan päinvastoin täysin odotettua, että RIMFAXin mittauksissa näkyisi vinoja sedimenttikerroksia.
Magmaattiset kerrokset?
Kerroksia eivät kuitenkaan muodosta pelkät sedimentit, vaan myös sulasta kiteytyneet kivet ovat usein kerroksellisia. Pinnalle purkautuneen magman eli laavan kerroksellisuus on tavallista ja helposti ymmärrettävää: tuoreet laavavirrat peittävät vanhempia, muodostaen kerroksellisen rakenteen. Tällaiset ovat tuttuja mm. Venuksesta, Maasta, Kuusta ja Marsista.
Magmaattista kerroksellisuutta esiintyy kuitenkin myös hitaasti kiteytyneissä syväkivissä, kuten vaikkapa maailmankuuluissa Pohjois-Suomen kerrosintruusioissa. Kerrosintruusioissa havaittavaan kerroksellisuuteen vaikuttaa useampia tekijöitä, mutta intruusion keskiosissa pääsääntöisesti raskaammat mineraalit kerrostuvat magmasäiliön pohjalle, kevyemmät lähemmäksi pintaa. Etenkään kerrosintruusion reunavyöhykkeessä kerrosten ei kuitenkaan tarvitse olla vaakasuoria, vaan ne ennemminkin noudattelevat magmasäiliön reunan muotoja. Lisäksi magmasäiliöiden sisällä tapahtuu romahduksia, jotka kääntelevät kerroksia. Jezerossa maatutkalla nähdyt vinot kerrokset voisivat näin ollen aivan hyvin olla jonkinlaisen kerrosintruusion magmaattista kerroksellisuutta.
Hamranin tutkimusryhmän artikkelissa ei siis otettu kantaa siihen, olisiko Jezeron mahdollinen magmaattinen kerroksellisuus pinnalle purkautuneiden laavojen synnyttämää vai kenties jotain kerrosintruusioiden kerroksellisuuden tapaista. Lehdistötiedotteessa kuitenkin kerrotaan tutkalla havaittujen kerrosten syntyvaihtoehdoiksi vain delta tai laavavirrat (magmaattinen vaihtoehto mainitaan ainoastaan siinä vaiheessa, kun on jo tehty selväksi kyseessä olevan laava, siis pinnalle purkatunut magma). Tämä on sikälikin erikoista ja erittäin harhaanjohtavaa, että muissa samaan aikaan julkaistuissa artikkeleissa todettiin varsin vastaansanomattomasti, että Perseverancen tutkimat ja Maahan kuljetusta odottavat näytteet ovat hitaasti kiteytyneitä magmakiviä, jotka syntyivät raskaiden mineraalien vajotessa magmasäiliön pohjalle. Tällainen ympäristö voisi olla magmaattinen intruusio, maapallolla tavattavia laavavirtoja huomattavasti paksumpi (>100–150 m) laavavirta, tai kenties myös törmäyssulalinssi.
Vinojen kerrosten epäihmeellisyyttä miettiessä on hyvä pitää mielessä myös Perseverancen sijainti suhteessa eroosion myötä melkoisesti madaltuneeseen Jezeron kraatteriin. Magmaattinen intruusio voi lähtökohtaisesti olla Jezeron syntyä nuorempi tai vanhempi. Jos se on törmäystä nuorempi, kuten edellisissä kappaleissa oletettiin, sen kerroksia tuskin on synnyn jälkeen kovin paljon ainakaan suurissa puitteissa kallisteltu (pienet paikalliset keinahdukset ovat aina mahdollisia). Vaan jos intruusio onkin törmäystä vanhempi, tilanne on aivan toinen. Perseverance on lähellä Jezeron reunaa, joten kaikki törmäystä vanhemmat kivet ovat kraatterin syntyessä liikkuneet ylös ja alas ja päätyneet ympäristöön, jossa erilaisia romahduksia tapahtuu pitkään törmäyksen jälkeen. Ainakaan itse en muista nähneeni tutkimusta, jossa olisi varmasti kyetty osoittamaan Perseverancen nyt tutkimien magmakivien ikäsuhde kraatteriin nähden.
Lehdistötiedotteessa on siis lähinnä kaksi ongelmaa: tutkijoiden ihmettely, joka tuntuu pelkältä myynninedistämispuheelta, ja laavojen putkahtaminen suunnilleen tyhjästä. Jos artikkeli, jota lehdistötiedote mainostaa, ei ota kantaa kerroksellisuuden syntyyn, ja jos samaan aikaan ilmestyneet muut artikkelit viittaavat vahvasti siihen, ettei Jezerossa ollut mitään sellaista, jota keskivertolukija kuvittelisi ”laavavirralla” tarkoitettavan, miksi ihmeessä lehdistötiedotteessa ja sen seurauksena lukemattomissa uutisissa pitää laavavirroista höpöttää? Tiedotusalan ihmiset ehkä vastauksen tietävät, minä en.
Kuka uskoo lehdistötiedotetta?
Jezeron kerrostumien vinouden mukaomituisuuden painottaminen julkisuudessa ja laavan ilmestyminen lehdistötiedotteeseen saivat minut jälleen kerran miettimään tieteellisiä tutkimustuloksia markkinoivia lehdistötiedotteita, niiden perimmäistä tarkoitusta sekä ylipäätään tieteestä kertomisen tapoja ja moraalia. Science by press release on oma synkkä maailmansa, mutta unohdetaan se tällä kertaa.
Totta kai lehdistötiedotteita täytyy olla. Tutkijat tekevät työtään pääosin verovaroin, joten tietenkin veronmaksajille pitää kertoa tutkijoiden kiinnostavista tuloksista. Aivan liian usein lehdistötiedotteet ovat kuitenkin reippaasti yliampuvia ja tulosten ainutlaatuisuutta turhaan korostavia. Niillä haetaan näkyvyyttä, ei suinkaan sitä, että ihmiset saisivat todellisen kuvan tutkimustuloksista. Ihanko varmasti tämä on pidemmän päälle toimiva ratkaisu?
Mikä sitten olisi vaihtoehto lehdistötiedotteiden mielivallalle? Fantasiamaailmassa voitaisiin lähteä liikkeelle siitä, että tutkijat olisivat edes rehellisiä tehdessään PR-ihmisten kanssa lehdistötiedotteitaan. Joskus vuosia sitten olin esitarkastajana eräässä asiallisen lehden kaukaisen mantereen törmäyskraatterikandidaattia käsitelleessä tutkimusartikkelissa. Lehdelle lähetetyssä käsikirjoituksessa esiteltiin joitakuita kiinnostavia havaintoja, mutta niistä vedettiin tolkuttoman pitkälle menneitä johtopäätöksiä. Parin–kolmen tarkastuskierroksen jälkeen esitettyjä päätelmiä saatiin hillittyä ja saatoin esittää lehden päätoimittajalle jutun hyväksymistä – joskin edelleen hieman pitkin hampain.
Hyvin pian jutun hyväksymisen jälkeen silmiini osui uutisia aiheesta. Ne perustuivat lehdistötiedotteeseen, joka ei suinkaan kertonut lopullisesta julkaistusta artikkelista vaikka siihen viittasikin, vaan tutkimusryhmän ensimmäisestä käsikirjoitusversiosta eli hurjasta toiveajattelusta. Tällaisena tarina sitten levisi maailmalle. Tuskinpa moni on tänäkään päivänä lukenut varsinaista maksumuurin takana olevaa artikkelia. Oletan, että tällainen toiminta on varsin yleistä ja varmasti yleistyy edelleen, kun tutkimuksen vaikuttavuudesta on tullut muotimantra.
Toiseksi olisi suotavaa, jos lopullisen jakeluun lähtevän lehdistötiedotteen lukisi ennen lähetystä ajatuksella useampi tutkimusryhmän jäsen (sama tietysti pätee myös artikkelikäsikirjoituksiin, mutta sekin on toinen tarina). Voi toki olla, että esimerkiksi Jezeron tutkailutiedotteessa puhutaan ihan tarkoituksella ja tutkimusryhmän siunauksella laavasta, vaikka itse artikkelissa näin ei tehdäkään eikä ajatukselle tule muualtakaan järin vahvaa tukea. Jotenkin vaan veikkaan, että tiedotusihmiset ovat vetäneet mutkia suoriksi ja kiireinen proffa on tiedotetta puolihuolimattomasti vilkaistuaan todennut, että hyvä se on.
Kolmanneksi, edelleen keijukaisten ja vaaleanpunaisten yksisarvisten asuttamassa fantasiamaailmassa pysytellen, jossain määrin itse tiedetoimittajat (jotka toki useimmiten tekevät hyvää ja arvostamaani työtä) mutta etenkin heille jonkinlaista korvausta maksavat tahot voisivat edes pikkuisen yrittää ryhdistäytyä. Valitettavasti vain nykymedialla ei ole aikaa tarkistaa asioita, vaan klikkauksia pitää saada paitsi mahdollisimman paljon, myös mahdollisimman nopeasti. Ihan kaikkea, mitä lehdistötiedotteissa sanotaan, ei toimittajienkaan silti tarvitsisi kaiken kiireen keskellä kakistelematta niellä. Joskus voisi vaikka vilkaista sitä alkuperäistä tutkimustakin ja tarkistaa, kerrotaanko siellä samoja asioita kuin lehdistötiedotteessa, ja millaisin painotuksin.
Ongelmana tietenkin on ajan ja rahan puutteen (ja olisiko taustalla sittenkin lisäksi ihan vain tahdon puute eli vanha kunnon laiskuus?) lisäksi se, että tutkimusartikkelit tuppaavat olemaan täysin käsittämättömiä muille paitsi harvoille asiaan syvällisesti vihkiytyneille. Suurilla kielialueilla on kuitenkin helpotuksena, että erikoistuminen on – edelleen periaatteessa ja ihannemaailmassa – mahdollista. Ei tarvitse olla pelkkä ”tiedetoimittaja” vaan voi olla vaikkapa astrofysiikkaan, geotieteisiin tai ihmisen evoluutioon erikoistunut tiedetoimittaja. Jo kohtalaisella asiaan perehtymisellä lehdistötiedotteiden pahimmat ylilyönnit ja munaukset jäisivät toistamatta ja maailma olisi parempi paikka.
Sitten on myös olemassa konsti, jota ainakin Suomessa toimittajat näkyvät käyttävän erittäin kitsaasti: kysytään asiantuntijalta. Ja jos kysytään, aina ei tarvitsisi kysyä Eskolta tai hallintohimmeleiden ja rahoitushakemusten parissa viime vuodet ahdistuneelta proffalta. Vastaväitellyt tohtori tai vielä väitöskirjaansa väsäävä opiskelija on luultavasti proffaa paremmin kartalla siitä, mitä alalla juuri tällä hetkellä asiasta ajatellaan. Toisaalta myöskään akateemisilla titteleillä ei pitäisi olla merkitystä, vaan ainoastaan sillä, tietääkö kyseinen ihminen oikeasti asiasta jotain.
Itselleni ylivoimaisesti mieluisin tapa nauttia tiedeuutisista on ihan perinteinen oman alan (amerikkalaisesta) paperilehdestä lukeminen. Esimerkiksi itsenäisten tieteellisten seurojen julkaisemilla Sciencella (julkaisijana American Association for the Advancement of Science), Eosilla (julkaisijana American Geophysical Union) ja Physics Todayllä (julkaisijana American Institute of Physics, joka on useiden tieteellisten seurojen yhteenliittymä) on alansa tuntevat toimittajat, joilla on mahdollisuudet ja halua paneutua kulloinkin käsittelemäänsä aiheeseen. Ja aina kun on vähänkään pidemmästä uutisjutusta kyse, siinä ei haastatella ainoastaan uuden tutkimuksen tekijöitä ja päästetä heitä estoitta kehumaan tuloksiaan, vaan toimittajat ovat nähneet sen vaivan, että ovat etsineet tutkimukseen osallistumattoman tutkijan tai tutkijoita kommentoimaan uusia tuloksia. Näissä kommenteissa ei pelätä kertoa ja julkaista myöskään kriittisiä näkemyksiä aiheesta.
Tietenkään tällainen lähestymistapa ei toimi, jos uutisjuttu pitää saada julki viimeistään saman päivän aikana. Voi kuitenkin kysyä, ovatko nopeus, lyhyys ja klikkausten lukumäärä itseisarvoina tärkeämpiä kuin tasapainoinen ja harkittu näkemys varsinaisesta asiasta ja sen taustoista. Lyhyenkin tiedeuutisen voi nimittäin aivan hyvin julkaista muutaman päivän viiveellä. Valtaosa tieteestä kun tuppaa olemaan sen verran loivaliikkeistä, etteivät asiat muutamassa päivässä tai viikossakaan vanhene.
Kiitokset J. Korteniemelle kannustuksesta närkästymiselleni.
3 kommenttia “Jezeron kallistuneet kerrokset ja lehdistötiedotteiden mahti”
Vastaa
Kylmästä läiskästä kuumaan Saharaan?
Paras tapa saada perusteellista tietoa aurinkokuntamme kappaleiden todellisesta olemuksesta on tutkia niiltä peräisin olevia näytteitä. Kuu on tässä suhteessa ylivertainen muihin Maan ulkopuolisiin kohteisiin nähden. Apollo-astronautit toivat kuudelta laskeutumisalueelta 382 kg kiviä ja kuupölyä, Neuvostoliiton Luna-laskeutujat puolestaan kolmesta pisteestä muutaman sata grammaa pintamateriaalia. Kaksi vuotta sitten Kiinan Chang’e-5 taas kiikutti reilut 1,7 kg kuunäytteitä Mongoliaan.
Kaikkiaan ihmiskunta on siis ihmisin tai robotein tuonut näytteitä Kuusta kymmeneltä tunnetulta alueelta. Ne kaikki ovat kuitenkin Kuun lähipuolelta ja Chang’e-5:ä lukuun ottamatta kohtalaisen läheltä päiväntasaajaa. Vertailun vuoksi voi vaikka miettiä, kuinka hyvin tuntisimme Afrikan ja Australian geologian, jos meillä olisi näytteitä vain kymmenestä kohdasta Afrikasta. No, vertailu on sikäli hieman epäreilu, että Kuun geologia on paljon yksinkertaisempaa kuin Maan, mutta Afrikan ja Australian yhteenlaskettu pinta-ala on sama kuin Kuun.
Kuumeteoriitit
Luonto on kuitenkin tarjonnut meille mahdollisuuden saada näytteitä Kuusta ihan ilmaiseksi. Kuuhun törmää edelleenkin silloin tällöin kohtalaisen suuria kivenmurikoita. Pakonopeus Kuusta on vain reilut pari kilometriä sekunnissa, joten kun tavallinen asteroidin törmäysnopeus on pakonopeuteen nähden liki kymmenkertainen, merkittävä osa törmäyksessä syntyvästä heitteleestä voi ylittää pakonopeuden ja karata Kuun pinnalta avaruuteen. Tätä edesauttaa myös kaasukehän puute. Aikansa avaruudessa kierreltyään osa karanneesta heitteleestä päätyy meteoriitteina Maahan.
Tätä kirjoittaessani on virallisia kuumeteoriitteja tunnistettu ja nimetty 556 kappaletta. Massaa niistä kertyy reilut 900 kiloa, joten kuumeteoriittiainesta on noin 2,3 kertaa niin paljon kuin Apollo-, Luna- ja Chang’e-näytteitä. Mikä parasta, kuumeteoriittien määrä kasvaa koko ajan.
Viime vuonna julkaistun tutkimuksen mukaan 341 kuumeteoriittia, joista oli riittävän tarkat tiedot, oli lähtöisin 109–134:stä eri paikasta Kuun pinnalla. Jos tuo sama suhde pätee kaikkiin kuumeteoriitteihin, meillä on tällä hetkellä kuunäytteitä ei ainoastaan kymmeneltä laskeutumisalueelta, vaan parista sadasta eri paikasta Kuun pinnalta. Tämä antaa jo paljon paremmat lähtökohdat koko Kuun geologisen kehityksen ymmärtämiseksi.
Ongelma on kuitenkin siinä, että emme tiedä, mistä kohdasta Kuuta kuumeteoriitit tarkkaan ottaen ovat peräisin. Niiden rakenne, mineraalit, kemiallinen koostumus ja isotoopit voidaan kyllä laboratoriossa syynätä äärimmäisen tarkasti, mutta ilman tietoa lähtöpaikasta jää tarina väkisinkin vajaaksi. Geologiassa kontekstilla on merkitystä, minkä Apollo 15:n komentaja Dave Scottkin hyvin tiesi.
Northwest Africa 11962
Tuoreimmassa Meteoritics & Planetary Science -lehden numerossa on mielenkiintoinen artikkeli, joka tarjoaa toivoa kuumeteoriittien lähtöalueiden ja jopa tarkkojen paikkojen selvittämiseksi. Andreas Bechtold kollegoineen tutki Northwest Africa eli NWA 11962 -nimistä kuumeteoriittia. Wienin luonnontieteellinen museo osti sen vuonna 2013 marokkolaiselta kauppiaalta. Sen löytöpaikasta ei kuitenkaan tiedetä muuta kuin että se on peräisin jostain päin Luoteis-Afrikkaa.

Bechtold kollegoineen tutki NWA 11962:n syvintä olemusta jo viime vuonna julkaistussa artikkelissaan. Tämä vain jokusen sentin läpimittainen ja 86 gramman painoinen meteoriitti on regoliittibreksia, eli törmäysten kokoonpuristama sekoitus Kuun pinta-ainesta. Siitä löytyi niin ylänköainesta kuin tasankojen mare-basaltin kappaleitakin. Oleellisia olivat myös vulkaaniset lasipallerot eli sferulit. Niinpä jo viime vuoden artikkelissaan tutkijat päättelivät, että todennäköisin lähtöalue NWA 11962:lle on sellainen, jossa on lähellä niin ylänköä, tasankoa, kuin sellaistakin aluetta, jossa näkyy merkkejä pinnalle tuhkaa ja lasipalleroita pölläyttäneestä pyroklastisesta purkauksesta. Tarkempi paikan haarukoiminen vaati kuitenkin yllättäviin kraatterihavaintoihin perehtymistä. Niiden alkuperä yltää 50 vuoden taakse.
Kuun kylmät läiskät
Yksi joulukuussa 1972 Kuuhun lentäneen Apollo 17:n huoltomoduulin kylkeen tyrkätyistä mittalaitteista oli infrapunaradiometri. Se kartoitti Kuun pinnan lämpötilavaihteluja etenkin öisin. Pinnan yölämpötilaa hallitsevat kivien fysikaaliset ominaisuudet ja raekoko, käytännössä siis se, onko pinnalla vähintään nyrkin kokoisia lohkareita tai paljasta kalliota, vai onko se kuupölyn peitossa. Kuten kokemusperäinen tieto kesäisiltä rannoiltakin kertoo, lohkareet ja kallio pysyvät lämpiminä pitkään Auringon laskettuakin. Siksi ne näkyivät Apollo 17:n infrapuna-aineistossakin kirkkaina kohteina.
Mittausaineistosta löytyi kuitenkin myös kohtia, joissa lämpötila oli kymmenkunta astetta keskimääräistä kylmempi. Yksi näistä kylmistä läiskistä (cold spots) saatiin yhdistettyä valokuvissa nähtyyn kirkkaaseen läiskään, mutta niin kirkkaan kuin kylmienkin läiskien synty jäi tuolloin arvoitukseksi.
Kuun kylmistä läiskistä saatiin tarkempaa tietoa vasta 2010-luvulla Lunar Reconnaissance Orbiter -luotaimen Diviner– radiometrin myötä. Vuonna 2014 Joshua L. Bandfieldin johdolla niitä löydettiin peräti pari tuhatta 50:nnen eteläisen ja pohjoisen leveyspiirin väliseltä alueelta. Uusien valokuvien myötä ilmeni myös, että se mikä 1960-luvun kuvissa oli näyttänyt vain epämääräiseltä kirkkaalta töhryltä, olikin aina pieni nuori törmäyskraatteri ja sitä ympäröivä heittelekenttä.
Kylmät läiskät ovat huomattavasti laajempia kuin niiden keskellä olevat tyypillisesti vain joidenkin kymmenien tai satojen metrien läpimittaiset kraatterit ja niiden heittelekentät. Hiemankaan isompien kraattereiden tapauksessa itse kraatterit ja heittelekentät näkyvät lämpöisinä kohteina, aivan kuten niiden lohkareisuutensa vuoksi sopii olettaakin tekevän. Tämä lämmin alue yltää enimmillään suunnilleen kymmenen kraatterin säteen päähän. Kylmä läiskä voi kuitenkin yltää aina sadan kraatterin säteen päähän, eli merkittävästi etäämmälle kuin normaali valokuvissa näkyvä heittelekenttä. Osassa kylmiä läiskiä kuitenkin erottuu heittelekentille tyypillinen säteittäinen rakenne, joten jonkinlainen heitteleilmiö kyseessä lienee.

Bandfieldin ryhmä ehdotti läiskien synnylle kahta vaihtoehtoista mallia. Perinteisemmän idean mukaan näkyvän heittelekentän ulkopuolelle lentää hienojakoista ainesta, joka ei kasaa merkittäviä heittelekerrostumia. Se ei toisaalta myöskään kaiva ajan saatossa tummentuneen regoliitin alta näkyviin kirkkaampaa ainesta, vaan ainoastaan pöyhii pintaa sen verran, että siitä tulee entistä kuohkeampi.
Vaihtoehtoisen mallin mukaa pöyhimisestä olisi vastuussa joko törmänneen kappaleen, kohdekallioperän tai molempien höyrystymisestä peräisin oleva kaasu. Joka tapauksessa lopputuloksena on alue, jossa regoliitin ylin osa ehkäpä noin viidestä sentistä muutamaan kymmeneen senttiin on höttöisempää kuin ympäristön koskemattoman regoliitin pinta. Siksi se on myös öisin kylmempää.
Vuonna 2018 Jean-Pierre Williams ja Bandfield kollegoineen julkaisivat tutkimuksen, joka tarkensi aiempia käsityksiä kylmien läiskien nuoresta iästä. Kraatterilaskujen perusteella suurimmat kylmät läiskät ovat korkeintaan noin miljoona vuotta vanhoja, pienemmät vain joitain satoja tuhansia vuosia. Kuun miljardeja vuosia vanhaa pintaa on pidetty muuttumattomuuden perikuvana, joten tällaiset geologisessa mielessä nopeasti katoavat mutta kymmenien kilometrien läpimittaiset piirteet vaativat ainakin pienimuotoista ajattelutavan muutosta.
NWA 11962:n (mahdollinen) alkuperä
Kuumeteoriittien valtaosan tiedetään singahtaneen Kuun pinnalta avaruuteen viimeisen puolen miljoonan vuoden aikana. Noin nuoria vähänkään suurempia kraattereita ei ole likikään riittävästi selittämään kuumeteoriittien kirjoa. Näin ollen pienet, nuoret, kylmien läiskien ympäröimät kraatterit ovat kuumeteoriittien todennäköisin lähtöpaikka.
Bechtoldin ryhmä käytti Williamsin ja Bandfieldin läiskälistaa, 1990-luvun lopulla Kuuta kiertäneen Lunar Prospector -luotaimen gammaspektrometrin tuottamia geokemiallisia karttoja ja omia tutkimuksiaan NWA 11962:n koostumuksesta selvittääkseen sen todennäköisen lähtöpaikan. Kyseessä on tiettävästi ensimmäinen kerta, kun kasassa on riittävän yksityiskohtaista tietoa kuumeteoriitin koostumuksesta yhdistettynä kaukokartoitusaineistoon ja riittävään ymmärrykseen nuorimmista Kuun kraattereista, jotta meteoriitin lähtöpaikan selvittämistä voidaan yrittää kohtalaisen uskottavasti perustellen. (Eriasteisia enemmän tai vähemmän vakuuttavia ideoita toki on aiemminkin esitetty.) Bechtold kollegoineen löysikin yhden – ja vain yhden – kylmän läiskän keskellä sijaitsevan kraatterin, joka on ylängön ja mare-basalttien rajaseudulla, jota ympäröivien basalttien titaanipitoisuus sopii NWA 11962:sta määritettyihin, ja jonka lähistöllä on todennäköisiä pyroklastisia kerrostumia, jotka voisivat selittää NWA 11962:n sisältämät vulkaaniset sferulit.


Kraatteri sijaitsee lähes keskellä Kuun lähipuolta Sinus Mediin eli Keskuslahden kaakkoisrannalla, suunnilleen Réaumur D ja Rhaeticus J -kraatterien välissä kymmenkunta kilometriä ensin mainitusta kaakkoon kohdassa 3,009° itäistä pituutta, 0,387° eteläistä leveyttä. Sen läpimitta on noin 320 m. Itse kraatteri ja sen kirkas lähiheittele näkyvät Diviner-aineiston yölämpötilakartoissa lämpiminä. Sitä ympäröi noin 5 km:n läpimittainen kylmä läiskä. Ehkäpä täältä, kenties vain joitain satoja tuhansia vuosia sitten NWA 11962 sai räjähtävän lähdön matkalleen, joka äskettäin päättyi jonnekin päin luoteisen Afrikan aavikoita.


On kiehtovaa ja Kuun geologian tutkimuksen kannalta lupauksia herättävää ajatella, että NWA 11962:n lähtöpaikka Kuussa saatetaan tietää paljon tarkemmin kuin sen löytöpaikka maapallon pinnalta. Ei lähtöpaikka toki varma ole. Kuun pintakerrosten sekoittuminen törmäysten vaikutuksesta niin pysty- kuin vaakasuunnassakin on edelleen kohtalaisen huonosti ymmärretty prosessi. Näin ollen on periaatteessa täysin mahdollista, että sopiva yhdistelmä mare-basaltteja, ylänköainesta ja vulkaanisia sferuleja on päätynyt myös jonkin muun sopivan kraatterin kohdalle. Myös meteoriittien laukaisuun Kuun (tai minkä tahansa muun isomman kappaleen) pinnalta liittyy vielä paljon asioita, jotka tunnetaan melkoisen kehnosti.
Vaikka Bechtoldin ryhmä olisikin oikeassa, ei kaukokartoitusaineistosta tulkittu geologinen konteksti koskaan ole lähellekään yhtä tarkkaa kuin mihin geologisen koulutuksen saanut astronautti pystyy paikan päällä. Kukaan ei kuitenkaan varmuudella tiedä, milloin saamme seuraavat robotti- tai ihmisgeologit Kuuhun hakemaan näytteitä. Uusien näytteenhakupaikkojen lukumäärä tulee myös ainakin seuraavat vuosikymmenet olemaan hyvin rajallinen. Siksi onkin niin äärimmäisen kutkuttava ajatus, että nyt meillä lienee ainakin kohtalainen mahdollisuus selvittää museoissa ja tutkimuslaitosten varastoissa lojuvien kuumeteoriittien lähtöpaikkojen geologinen konteksti kuulentoihin verrattuna erittäin halvalla ja helpolla tavalla.
Tämä juttu ilmestyy aikanaan hivenen pidempänä versiona myös Hieman Kuusta -blogissani.
Muokkaus 28.10.2022: Kakkoskuvaan lisätty, että kyseessä on kraatteri Bandfield ja korjattu sen läpimitta ja koordinaatit virallisten lukujen mukaisiksi. Bandfield nimettiin vasta heinäkuussa 2022, joten Williams et al.in artikkelissa, jossa Joshua Bandfield (1974–2019) vielä oli kakkoskirjoittajana mukana, tuota tietoa ei luonnollisestikaan voinut olla, mutta itse se olisi tietysti pitänyt huomata. No, tulipa ainakin nyt päivitetyksi.
Mitä luulet, missä määrin huoli tulevasta rahoituksesta voi ajaa tutkijoita paisuttelemaan tuloksiaan? (Tässä en koeta samalla kiistää yliopistojen viestinnän tai median osuutta asiaan.)
Tai niinhän tuolla kirjoititkin tutkimuksen vaikuttavuudesta muotimantrana. My bad, missasin sen ekalla lukukerralla.
Kyllähän se on äärimmäisen suuri paisuttelun motivaattori, ja ihan ymmärrettävästi, kun asuntolainat ja etenkin Amerikassa lasten koulut on tutkijoidenkin jotenkin maksettava. Kun NASAn Mars-tutkimuksen virallinen linja suunnilleen vuosituhannen vaihteesta alkaen oli ”Follow the Water” (saattaa se sitä olla vieläkin, tai ainakaan ei ole tarttuvampaa slogania keksitty), niin kuinka ollakaan sitä vettä myös löydettiin vähintään kerran vuoteen, aina suuren mediamyllytyksen saattelemana. Näissä tietysti yhdistyi tutkijoiden tarve taata oma rahoituksena ja NASAn tarve taata omansa. Noloa noissa etenkin alkuvuosina oli se, että ne löydöt oli periaatteessa ihan samoja kuin jo 70-luvulla. Ei se kuitenkaan pitkään aikaan tahtia hillinnyt, eikä media missään vaiheessa ainakaan julkisesti kysynyt vaikeita kysymyksiä. Tämä tietenkin tutkimusrahoituksen ja tutkimuksen kannalta oli hyvä asia. Jos vaikeita kysymyksiä olisi esitetty, populistit olisivat saaneet lisää vettä myllyynsä ja mummonvaippakortti (tai mikä se kussakin maassa milloinkin on kun pitää kaikesta heidän mukaansa turhasta leikata ja käyttää rahat tarpeellisiin asioihin täällä maapallolla) olisi vedetty esiin entistäkin useammin.
Vaan ei se tietenkään ikuisuuksia voinut kestää, ja viimeistään vuosikymmen sitten veden löytäminen Marsista oli jo tutkijoiden parissa vitsi – niidenkin, jotka NASAn rahoituksella Marsia tutkivat. Ainakaan omaan mieleeni ei muistu viime vuosilta enää ihan samanlaisen rummutuksen saattelemia vesilöytöjä. Taisivat eteläisen napa-alueen järvet olla edellinen oikein suuri juttu. Sittemminhän järvistä tuli savea ja viime viikolla se savikin meni katoamaan ja muuttui pelkäksi kerroksellisuudeksi.
Pienemmässä mittakaavassa sama homma näkyi kuututkimuksen parissa kymmenen vuotta sitten (ja osittain jatkuu edelleen) kun Kuusta tehtiin taas salonkikelpoinen. Istuin useammassakin konferenssissa tai pienemmissä pippaloissa, joissa joku uransa nousukiitovaiheessa ollut tutkija kovasti hehkutti uusia mahtavia tuloksiaan. Sitten esitelmän kyselyvaiheessa takarivistä tuli esiin milloin kukakin varttuneempi partajäärä, joka ystävällisesti kehui uutta tutkimusta ja sanoi sitten lopuksi, että tämähän mukavasti vahvistaa tuloksen, jonka he saivat jo 1960-luvulla… Männä viikolla blogissa mainitsemani kylmät läiskät oli yksi tämmöinen tapaus. Jotta uudet tulokset saadaan yleisön, rahoittajien ja virkanimitystoimikuntien silmissä näyttämään myyvemmiltä, joko ”unohdetaan” vanhat julkaisut tai, kuten haluan uskoa, ei oikeasti edes tiedetä niistä, koska kellään ei ole enää aikaa tehdä kunnollista taustatutkimusta aiheesta, kun omat tulokset pitää saada isosti esille mahdollisimman nopeasti.
Sanottakoon tässä vielä yksi näkökulma. Kerran eräs varttuneempi ja arvostettu tutkija kertoi artikkelinsa julkaisuprosessista. Lehti oli toinen näistä, joiden nimeä ei koskaan voida julkisuudessa mainita käyttämättä lisämäärettä ”arvostettu”. Juttu oli jo periaatteessa hyväksytty, mutta editori tai assosiaattieditori oli kysynyt, että eikö tätä juttua voisi saada vähän seksikkäämmäksi. No, kollega oli tietysti vaan pyöritellyt päätään ja todennut että näillä mennään koska tulokset ja johtopäätökset nyt sattuvat olemaan nämä. Joku toinen olisi voinut myöntyäkin. Isojen lehtien osuutta vääränlaisen kuvan levittämisessä ei siis kannata unohtaa.