Europan kraatterit, aineen suuri kiertokulku ja elämä

27.1.2023 klo 10.52, kirjoittaja
Kategoriat: Europa , Ganymedes , Heittele , Io , Komeetat , Kraatterit , Kuiperin vyöhyke , Törmäykset , Törmäysaltaat

Europa on Galileo Galilein tammikuussa 1610 löytämästä neljästä Jupiteria kiertävästä valopisteestä vähäisin. Läpimitaltaan (3122 km) se on vain hieman omaa Kuutamme (3476 km) pienempi. Aurinkokunnan kuiden joukossa se kuitenkin kuuluu suurien ja kiinnostavimpien joukkoon.

Kuukausi sitten kirjoittelin hieman enemmän Europan tektoniikasta ja samalla myös sen tutkimushistoriasta. Vallankaan jos Europa ei ole erityisen tuttu ja asia kuitenkin kiinnostaa, voi olla järkevää lukaista se ennen kuin uppoutuu yhtään syvemmälle tämänkertaiseen tarinaan.

Planeettageologien parissa Europa tunnetaan lähinnä sen pintaa raidoittavista tektonisista rakenteista ja aktiivisiin geysireihin viittaavista havainnoista. Useimpien astrobiologien mielestä Europa puolestaan on yksi aurinkokunnan kiinnostavimmista kohteista. Tästä on kiittäminen lähinnä Europan syvyyksissä lymyilevää valtamerta.

Yksi asia, josta Europaa ei tunneta, on törmäyskraatterit. Niitä on nimittäin erittäin vähän. Kraatterit ovat kuitenkin harvalukuisuudestaan huolimatta hyvin käyttökelpoinen työkalu tutkittaessa Europan geologista kehitystä ja rakennetta. Niillä voi olla myös aivan keskeinen merkitys mahdollisen Europan valtameren elinkelpoisuuden kannalta. Siksi niitä kannattaakin vilkaista hieman tarkemmin. Ja jotta Europan kraattereita voi ymmärtää, on ensin oltava käsitys siitä, millaiset kappaleet niitä synnyttävät.

Europaan törmäävät kappaleet

Täällä aurinkokunnan sisäosissa, maankaltaisten planeettojen valtakunnassa, törmäävät kappaleet ovat jokseenkin tuttuja. Niiden alkuperässä on vuosimiljardien kuluessa luultavasti tapahtunut hieman muutoksia, mutta lähtökohtaisesti Marsin, Kuun, Maan, Venuksen ja Merkuriuksen kraatterit ovat ihan tavallisten asteroidien synnyttämiä. Niiden ominaisuudet tunnetaan hyvin, sillä museoissa on kymmeniä tuhansia esimerkkejä Maata lähelle tulevista asteroideista, jollaiset ovat hallinneet aurinkokunnan sisäosien kraatteroitumista ainakin viimeiset 3,8 miljardia vuotta. Kun nämä asteroidit ovat pudonneet Maan tai muun planeetan pinnalle ja säilyneet höyrystymättä tai sulamatta, ne tunnetaan meteoriitteina.

Asteroidien ja meteoriittien ominaisuuksissa on toki merkittäviä eroja riippuen siitä, onko kyse tiiviistä rautamöykyistä vai niukin naukin vetovoiman kasassa pitämistä sorakasoista. Ainekset ovat kuitenkin Maapallon geologiasta tuttuja ja niitä voidaan kohtalaisen helposti tutkia laboratorioissa. Kun siirrytään ulommille planeetoilla ja niiden kuille, tilanne muuttuu ratkaisevasti.

Europalla, samoin kuin muillakin jättiläisplaneettojen kuilla, asteroidit eivät suinkaan ole tärkein törmäävien kappaleiden ryhmä. Kivien sijasta Europan pinnalle nimittäin putoilee jäätä, eli lähinnä Jupiterin komeettaperheen kappaleita (engl. Jupiter-family comets, JFC).Ne ovat komeettoja, joiden kiertoaika Auringon ympäri on nykyisin alle 20 vuotta.

Jupiter-perheen komeetat ovat peräisin kahdesta eri lähteestä. Perinteisen Kuiperin (eli Kuiperin–Edgeworthin) vyöhykkeen kappaleet ovat luultavasti suunnilleen synnynsijoillaan muun Aurinkokunnan kanssa likimain samassa tasossa ja melko pyöreillä radoilla. Hajanaisen kiekon (engl. scattered disk) komeetat puolestaan ovat jättiläisplaneettojen vaikutuksesta joutuneet soikeammille ja jyrkemmille radoille. Näitä molempia on Jupiter aikojen saatossa valtavalla vetovoimallaan rohmunnut perheeksi oman kiertoratansa tuntumaan.

Alkuperän ja siitä seuraavan koostumuksen lisäksi Europaan törmäävät kappaleet eroavat meille tutummista aurinkokunnan törmääjistä myös nopeudellaan: Europan tyypillinen törmäysnopeus on noin 26 km/s, kun Maa–Kuu-systeemissä se on noin 17 km/s ja Marsissa vain noin 10 km/s. Tämä ei johdu Europasta itsestään vaan vieressä möllöttävästä massiivisesta Jupiterista, joka kiihdyttää lähelleen erehtyviä kappaleita. Törmäysnopeus on syntyvien kraatterien kannalta sikäli oleellinen tekijä, että kraatterin koon määrittelee lähinnä törmäys- eli liike-energia. Ja kuten kaikki yläasteen fysiikasta epäilemättä muistavat, liike-energia on puolet massan ja nopeuden neliön tulosta (Ek=½mv2).

Europan planetaarisissa ominaisuuksissa on vielä yksi erityinen piirre, joka vaikuttaa merkittävästi syntyviin kraattereihin: Europa on tuttuihin ja turvallisiin kiviplaneettoihin nähden pieni. Niinpä sen painovoimakin on vähäinen, vain noin 1,3 m/s2. Tämä on vajaa kahdeksasosa Maan painovoimasta (9,8 m/s2) ja niukasti alle kolmasosa Marsin painovoimasta (3,7 m/s2). Siten myös pakonopeus Europan pinnalta on vähäinen, vain 2 km/s, kun se esimerkiksi Maassa on 11 km/s. Näin ollen lujaa tapahtuvat törmäykset heittävät tavaraa kauas, ja varsin helposti koko kuun vaikutuspiirin ulkopuolelle Jupiteria kiertävälle radalle. Oleellista on, että sama pätee myös Europan lähinaapuriin, tulivuoritoiminnan hallitsemaan Ioon.

Pienten kraatterien alkuperä

Laattatektoniikkaa muistuttava Europan geologinen aktiivisuus pitää sen pinnan nuorena. Käsitykset pinnan iästä vaihtelevat, mutta konservatiivinen arvio on 200–20 miljoonaa vuotta. Kun pinta on näin nuorta, on väistämätöntä, ettei törmäyskraattereita ole ehtinyt kertyä järin paljon. Vanhat kraatterit jauhautuvat jäälaattojen törmäillessä toisiinsa ja peittyvät uusilla jääkerroksilla, sekä paikoin kenties myös uppoavat Europan syvyyksiin niin nopeasti, ettei koko ajan hiljenevä törmäysvuo ehdi tuottaa uusia kraattereita kadonneiden tilalle.

Koska suuret törmäilevät kappaleet käyvät aurinkokunnassa ajan myötä yhä harvinaisemmiksi, ovat Europan nykyiset kraatterit myös melkoisen pieniä. Kun tähän yhdistetään se, ettei saatavilla oleva kuva-aineisto Europasta ole kaikin osin kovin hääppöistä – vain noin 20 % pinnasta on kuvattu alle puolen kilometrin erotuskyvyllä – on havaittavissa olevia kraattereita väkisinkin vähän verrattuna lähes kaikkiin muihin aurinkokuntamme kappaleisiin.

Yli kymmenen kilometrin läpimittaisia törmäyskraattereita on löydetty koko Europan pinnalta vain 23. Tämä on selvästi vähemmän kuin vaikkapa pinta-alaltaan pienemmältä Pohjois-Amerikan mantereelta. Kun kraatterien koko pienenee, kasvaa tietysti myös niiden määrä erittäin nopeasti. Pikkuruisia, alle kilometrin läpimittaisia kraattereita tunnetaan Europan pinnalta tuhansittain. Näistä kuitenkin valtaosa, kenties jopa yli 95 %, on sekundäärikraattereita. Europan vähäisestä vetovoimasta johtuen melko pienenkin, parin–kolmenkymmenen kilometrin läpimittaisen kraatterin puolikilometrisiä sekundäärikraattereita voi löytyä hyvinkin tuhannen kilometrin päästä. Esimerkiksi Europan nuorimman kraatterin, noin 26-kilometrin läpimittaisen Pwyllin sekundäärikraattereita on laskettu yli 3300 kappaletta, minkä perusteella sen on arveltu synnyttäneen niitä vähintään miljoona.

Kuva 1. Väärävärikuva Europan nuorimmasta kraatterista Pwyllistä ja sen säteistä. Kirkkaan heittelekentän keskellä oleva noin 40 km:n läpimittainen tumma ympyrä sisältää noin 26-kilometrisen Pwyllin ja sen lähimmän heittelekerroksen (ks. kuva 2). Kauimmaiset Pwyllin säteet ulottuvat noin tuhannen kilometrin päähän. Pwyllin ikä lienee alle miljoona vuotta, sillä ionipommitus kuluttaa pintaa noin sentin 100 000 vuodessa, eivätkä ohuet säteet näin ollen pysy näkyvissä pitkään. Kuva: NASA / JPL/ University of Arizona.

Europan pienten, alle kilometrin läpimittaisten sekundäärikraattereiden alkuperässä on erikoinen piirre: likikään kaikki niistä eivät välttämättä ole Europan törmäyskraattereiden sekundäärikraattereita. Vaikka aurinkokunnan vulkaanisesti aktiivisimman kappaleen eli Ion pinnalta ei ole löydetty ainuttakaan törmäyskraatteria, niitä täytyy tietysti sielläkin syntyä. Pakonopeus Ion pinnalta on lähes yhtä alhainen kuin Europastakin, joten Ion törmäyskraatterien heittelettä päätyy Jupiteria kiertävälle radalle runsaasti. Mallinnusten perusteella on esitetty, että 9 % kappaleista, jotka karkaavat Iosta, törmäävät lopulta Europaan. Suunnilleen saman verran Ganymedeen pinnalta päätyvistä kappaleista päätyy tekemään kraatterin Europan pintaan. Matka Iosta Europaan kestää tyypillisesti vajaat 60 vuotta.

Kraatterit, jotka syntyvät toisen kraatterin heitteleestä, joka on päätynyt kuun pinnalta planeettaa kiertävälle radalle törmätäkseen myöhemmin saman tai toisen kuun pintaan, tunnetaan englanniksi nimellä sesquinary craters. Hankalahkon nimen taustalla on latinan puoltatoista tarkoittava etuliite sesqui-. Kutsuttakoon niitä nyt tilapäisellä väännöksellä ”seskinääriset” kraatterit (latinistit ovat erittäin tervetulleita antamaan kunnollisen nimiehdotuksen). Seskinäärisiä kraattereita synnyttävien kappaleiden törmäysnopeus on alhaisempi kuin normaaleilla primäärikraattereita synnyttävillä kappaleilla, mutta suurempi kuin kuun pakonopeus.

Seskinäärisiä kraattereita Europan pinnalla pitäisi olla eritoten 200–1000 metrin kokoluokassa. Ongelmana on, että havaintojen perusteella tämän kokoiset kraatterit muistuttavat tavallisia sekundäärikraattereita etenkin sikäli, että ne esiintyvät ryppäinä. Planeettaa vuosikymmeniä kierrettyään heittelekappaleet hajaantuvat hyvin tehokkaasti, joten seskinääristen törmäysten ei kuuluisi tapahtua rykelminä vaan tavallisten primääritörmäysten tapaan yksitellen. Niinpä laskujen ja simulaatioiden pätevyydestä ei tällä hetkellä ole varmuutta. Selvää kuitenkin on, että Galilein kuiden välillä tapahtuu heitteleen siirtymistä kuulta toiselle, mutta sen yleisyydestä ja merkittävyydestä ei yhteisymmärrystä ole.

Kraatterien kummalliset muodot

Europalla aivan tavallisissakin primääritörmäysten synnyttämissä kraattereissa on erikoislaatuisia piirteitä. Jäisten kappaleiden kraattereille tyypillistä on, että niiden reuna on hyvin kapea verrattuna kiviplaneettojen kraattereihin. Tämä pätee Europallakin. Täysin omalaatuista sen sijaan on Europan kraattereiden mataluus. Europan kraatterit syvenevät kasvavan läpimitan myötä ihan kiltisti noin 8–12 km:n läpimittaan saakka, kunnes ne yhtäkkiä käyvätkin matalammiksi.

Nyt joku takarivistä saattaa ihan ymmärrettävästi huutaa innoissaan: ”Viskoosi relaksaatio!” Vaan eipä tämä kavereiden kesken lätsähtämisenä (engl. viscous relaxation) tunnettu ilmiö riitä selittämään Europan kraattereiden vähäistä syvyyttä. Matalaksi päätymisen lisäksi kraattereissa nimittäin tapahtuu paljon muutakin outoa. Suuremmilta kraattereilta katoavat reunat lähes kokonaan, ja niiden pohja on käytännössä ympäröivän pinnan tasolla. Ja vaikka reunat katoavat, keskuskohoumat säilyvät jokseenkin normaalin näköisinä. Tällaista ei muilta jäisiltä kappaleilta tunneta, joten kyse täytyy olla jostain itse kraatteroitumisprosessiin ja sen muokkautumisvaiheeseen liittyvästä minuuttien aikaskaalalla tapahtuvasta dynaamisesta ilmiöstä eikä vuosituhansia ja -miljoonia kestävästä verkkaisesta lätsähtämisestä.

Edellisiin omituisuuksiin liittynee sekin, että Europan melko normaalit, tavallisen keskuskohouman sisältävät kompleksikraatterit vaihtuvat läpimitan kasvaessa häkellyttävän nopeasti (27–33 km:n läpimitassa) erittäin monia renkaita sisältäviksi Valhalla-tyypin törmäysaltaiksi. Poissa tavallisten kompleksikraatterien ja törmäysaltaiden välistä ovat niin kiviplaneetoilta tutut protoaltaat, joissa on sekä keskuskohouma että keskusrengas ja aidot kaksirengasaltaat, kuin vaikkapa Ganymedeellä ja Kallistolla yleiset keskuskuoppakraatterit.

Oma lukunsa Europan kraattereiden joukossa on Manannán, jonka läpimitta on tutkijasta riippuen jotain 23 km:n ja 26×30 km:n väliltä. Sen reunalla on tulkittu olevan Europalla erittäin harvinainen kielekemäinen esiintymä törmäyssulaa, siis törmäyksessä jäästä sulanutta vettä. Manannánilla on keskuskohoumaa muistuttava rakenne, mutta se sijaitsee kaikkea muuta kuin keskellä. Reunaa ei juuri ole ja kraatterin pohja on ympäristön tasalla. Erikoisin piirre on keskellä sijaitseva noin 150 m syvä kuoppa, joka ei kuitenkaan alkuunkaan muistuta muilta planeetoilta tuttua keskuskuoppaa. Kuopasta lähtee säteittäisesti rakoja, jotka saavat sen muistuttamaan ylimääräisiä jalkoja kasvattanutta mutanttipunkkia. Sitä ympäröivät hieman epäsymmetriset rengasmaiset vajoamat.

Kuva 2. Valikoima Europan törmäyskraattereita. Vasemmalla ylhäällä Pwyll, josta erottuu hieman omituinen keskuskohouma ja tummana reunan ulkopuolella näkyvä heittelekentän sisin ja samalla myös syvimmältä peräisin oleva sisäosa (ks. kuva 1). Oikealla ylhäällä Cilix, joka on yksi Europan parhaiten kuvatuista normaaleista kompleksikraattereista. Se on nuorempi kuin Europalle ominaiset double ridge –­tyyppiset tektoniset harjanteet, jotka pisimmillään voivat olla yli 1000 km:n mittaisia. Vasemmalla alhaalla Manannán (ks. kuva 3). Sen keskuskohoumamainen rakenne on selvästi sivussa kraatterin keskustasta ja nousee ylemmäksi kuin suuri osa reunaa, toisin kuin perinteiset keskuskohoumat. Tumma kehä lienee heittelettä. Oikealla alhaalla Valhalla-tyyppinen erittäin monirenkainen törmäysallas Tyre. Tällaisia ei tunneta kiviplaneetoilta lainkaan (vaikkakin Pohjanmeressä sijaitsevaa Silverpitiä sellaiseksi on ehdotettukin). Kuva: NASA / JPL / DLR / Galileo SSI / PIA01661.
Kuva 3. Väärävärikuva Manannánin keskustasta ja länsireunasta. Kraatterin keskellä kuvan oikean reunan tuntumassa näkyy tumma kuoppa, josta lähtee säteittäisiä rakoja. Niitä ympäröivät rengasgrabenit. Kraatterin reuna on lähellä kuvan vasenta laitaa kohdassa, jossa ruskea aines muuttuu vaaleammaksi. Kuvan koko on noin 18×4 km. Kuva: SSI / Galileo / NASA / PIA 01402.

Europan kraattereiden erikoisia piirteitä ei ole kiistattomasti pystytty selittämään, mutta yritetty on. Todennäköisimmin ratkaisu piilee siinä, että pienet Europan kraatterit käyttäytyvät normaalisti, koska ne syntyvät kokonaan kivikovassa jäässä. Suuremmat kraatterit, siis vähintään noin 8–12 km:n läpimittaiset, alkavat sen sijaan jo ”aistia” kovan jääkerroksen alla olevan hyvin pehmeän kerroksen. Kyseessä voi olla joko lämmin ja siksi notkea jää, tai jopa sula meri.

Törmäyskraatterit ovatkin yksi luotettavimmista keinoista määrittää Europan jääkerroksen tai ainakin sen kovan yläosan paksuus. Erilaiset tulkinnat, laskut, mallit ja simulaatiot antavat luonnollisesti hieman erilaisia tuloksia, mutta suurin yksimielisyys saavutetaan siitä, että kraatterien perusteella Europan kovan jääkerroksen paksuus on 15–20 km. Tämä on varsin erilainen näkemys kuin esimerkiksi jääkuoren mekaanisten ominaisuuksien mallintajilla, jotka ovat tulkinneet kovan kuoren paksuudeksi ohuimmillaan vain sata metriä ja paksuimmillaankin noin 10 km.

Toisessa ääripäässä ovat ne, jotka pohjaavat mallinsa termodynamiikkaan. Näissä malleissa kovan jääkerroksen paksuus on muutamien kymmenien kilometrien luokkaa. Törmäyskraatterit antavat kuitenkin mekaanisia ja termodynaamisia malleja suorempaa tietoa jääkerroksesta. Kyse on vain siitä, osaammeko tulkita kraatterit oikein.

Pinnalta mereen

Pitkähköksi venähtäneen johdannon jälkeen päästään lopultakin tarinan varsinaiseen pihviin, johon jo viime kerralla viittasin. Menemättä yksityiskohtiin voi huoletta todeta, että planeettatutkijoiden keskuudessa vallitsee siis yksimielisyys siitä, että Europan jääkuoren alla todellakin on meri. Siitäkään ei ole epäselvyyttä, että Jupiterin vetovoiman aiheuttama massiivinen vuorovesi-ilmiö pitää sen sulana. Meren syvyydestä ei sen sijaan ole tarkempaa tietoa, mutta yleinen arvio on satakunta kilometriä (±50 km). Vettä Europassa lienee enemmän kuin maapallon valtamerissä yhteensä.

Nestemäinen vesi ja tarjolla oleva energia (vuorovesivoimat, sekä mahdollinen merenalainen vulkanismi) saavat yleensä astrobiologit innostumaan. Elämälle tämä ei kuitenkaan yksistään riitä. Tuntemamme kaltainen elämä pyörii pitkälti erilaisten hapetus–pelkistys-reaktioiden varassa. Arkipäiväisiä esimerkkejä näistä ovat vaikkapa hengitys ja yhteyttäminen.

Europan mahdollisesta elämästä kiinnostuneita tutkijoita on jo pidemmän aikaa pohdituttanut, kuinka Europan mereen saadaan riittävästi hapettavaa ainetta, jotta hapetus–pelkistys-reaktiot pysyvät käynnissä elämän kehittymisen kannalta riittävän pitkään. Viimeisin malli, Evan Carnahanin johdolla Geophysical Research Letters -lehdessä esitelty tutkimus Surface-To-Ocean Exchange by the Sinking of Impact Generated Melt Chambers on Europa julkaistiin viime vuoden lopulla.

Europan pinnan merkittävin hapettava aine on, ehkä hieman yllättäenkin, happimolekyyli (O2). Niitä syntyy runsaasti, kun Jupiterin magneettikentän kiihdyttämät, alkujaan Ion sisuksistaan sylkemät ionit piiskaavat jäätä hajottaen vesimolekyylejä vedyksi ja hapeksi. Happea siis riittää, mutta sen saaminen parinkymmenen kilometrin paksuisen jääkerroksen läpi ei ole ihan helppoa.

Maapallolla laattatektoniikka ja erityisesti litosfäärilaattojen työntyminen toistensa alle vaippaan eli subduktoituminen on keskeisessä osassa aineen suuressa kiertokulussa. Kuten viime blogitekstissäni totesin, Europalla on jotain laattatektoniikan kaltaista toimintaa, mutta ei ole laisinkaan varmaa, kuinka tehokasta (tai edes todellista) Europan jäälaattojen työntyminen toistensa alle lopulta on. Pelkästään sen varaan siis Europan aineen kiertokulkua pinnalta mereen ei voi laskea.

Vuosi sitten esitetyn idean mukaan Europan niin kutsutuilla kaaosalueilla voisi tapahtua suolaisen veden kulkeutumista ohentuneen jään läpi mereen saakka. Tämän mallin mukaan siis sisäsyntyiset tai vuorovesivoimien ylläpitämät prosessit pitäisivät hapetus–pelkistys-reaktiot käynnissä, ainakin paikallisesti. Carnahanin ja kollegoiden malli sen sijaan hyödyntää täysin ulkoista prosessia, eli kraatteroitumista.

Pohjimmiltaan Carnahanin ryhmän idea on hyvin yksinkertainen. Törmäyskraattereiden synty tuottaa aina törmäyssulaa. Europan ja muiden jäisten kappaleiden tapauksessa törmäyssula on käytännössä vettä. Vesi on erittäin eksoottinen yhdiste muun muassa siksi, että se on nestemäisenä tiheämpää kuin kiinteänä. Siksi talvisin Suomessakin pääsee – tai ainakin vanhoina hyvinä aikoina pääsi – järvelle luistelemaan tai pilkille. Järvet eivät jäädy pohjiaan myöten, vaan jäät kelluvat veden päällä.

Europalainen törmäyssula pyrkii siis luontaisesti valumaan syvemmälle jääkuoreen. Tätä edesauttaa kaksi kraattereille ominaista piirrettä. Niissäkin osissa vastasyntynyttä kraatteria, missä kohdeaines ei sula, se lämpenee merkittävästi, helpottaen veden läpäisyä. Lisäksi kohdeaines myös rakoilee. Veden on siis periaatteessa suhteellisen helppo valua kraatterin pohjalta alaspäin kohti merta.

Carnahanin ja kollegoiden mallissa jääkuoren paksuudeksi oletettiin 10 km, mikä nykykäsitysten valossa on hieman vähänlaisesti. Mahdollinen se silti toki on. Manannánin kokoisen kraatterin tapauksessa noin 28 km3 törmäyksessä sulanutta vettä valuisi 10 km:n jääkerroksen läpi mereen noin tuhannessa vuodessa. Jonkinlaisena nyrkkisääntönä voi pitää sitä, että kun niin sanotun kaivautumiskraatterin syvyys (eli kraatterin tilapäinen, syntyprosessin aikana saavutettava maksimisyvyys) on vähintään puolet jääkuoren paksuudesta, yli 40 % törmäyssulasta päätyy mereen viimeistään noin kymmenen tuhannen vuoden aikaskaalassa.

Törmäyssulan kaivama huokoinen kanava kraatterin pohjalta mereen on sikälikin ajatuksena mukava, että sellainen voi osaltaan olla selittämässä eräitä Europan kraatterien erikoisia muotoja. Mikäli Europan meri on riittävän korkean paineen alainen, voi merivesi päästä tällaista huokoista kanavaa pitkin pinnalle täyttämään ja muokkaamaan kraatteria. Kanava pysyisi auki yli tuhat vuotta, mikä hyvinkin riittäisi kraatterin ulkomuodon muuttamiseen. Mikäli tällaista meriveden nousua kraattereihin todella tapahtuisi, kraatterit olisivat kaaosalueiden ohella kiinnostavimpia kohteita koettaa saada näytteitä merestä yrittämättä epätoivoisesti kairata parinkymmenen kilometrin mittaista reikää jäähän.

Carnahanin vetämä ryhmä otti artikkelissaan kantaa vain hapettavien aineiden kuljettamiseen pinnalta mereen. Sama malli toimisi kuitenkin tietysti myös muiden aineiden kierrättämisessä. Kuten edellä tuli todettua, Europaan törmäävät kappaleet ovat komeettoja. Niissä on runsaasti jos jonkinlaisia hiilipitoisia yhdisteitä. Aminohapoista eli proteiinien rakennuspalikoista ainakin glysiiniä (C2H5NO2) on havaittu komeetoissa. Aurinkokunnan ulko-osista peräisin olevista hiilikondriiteista on lisäksi löydetty useampiakin aminohappoja, joten ei ole järin kaukaa haettu ajatus, että niitä olisi Jupiterin komeettaperheen jäsenissäkin. Jos vain aminohapot selviävät komeetan törmäyksestä Europan pintaan, niitä päätyy myös törmäyssulaan ja – sikäli kun Carnahanin ryhmän esittämä malli pätee – sen mukana mereen. Aminohapot eivät ainakaan olisi haitaksi elämän kehittymisen kannalta.

Toinen orgaanisten aineiden lähde on ihan tavallinen Europan pinta-aines. Europan, aivan samoin kuin monien muiden aurinkokunnan jäisten kappaleiden pinnoilla on nähtävissä punaruskeita alueita. Ne koostuvat yleensä toliineista, jotka ovat säteilypommituksen yksinkertaisista ja yleisistä hiili- ja typpipitoisista yhdisteistä kuten hiilidioksidista (CO2), metaanista (CH4), typestä (N2) ja ammoniakista (NH3) tuottamia pidempiketjuisia mönjämolekyylejä. Myös tämän jankin kulkeutuminen Europan mereen törmäyssulan mukana on astrobiologian näkökulmasta kiintoisaa.

Kuulta toiselle

Seskinääriset törmäykset tuovat vielä yhden mielenkiintoisen vivahteen aineen ja sen myötä myös mahdollisen elämän kiertoon Jupiterin kuilla. Iolla ei meidän tuntemamme kaltaista elämää voi olla, mutta Europan ohella myös Ganymedeellä on erittäin suurella todennäköisyydellä pinnanalainen meri. Todisteet Kalliston meren puolesta eivät ole aivan yhtä vakuuttavia, mutta hyvin mahdollisena sitäkin silti pidetään.

Seskinääristen törmäysten myötä kraatterien heittelettä on kulkeutunut kuulta toiselle iät ja ajat. Jos jonkin kuun meressä on syntynyt elämää ja se on päätynyt törmäysten, kaaosalueiden tai harjanteiden synnyn myötä pinnalle, on elämää tai ainakin merkkejä siitä väkisinkin päätynyt  seskinäärisen heitteleen myötä myös muille kuille.

Törmäykset tarjoavat siis ainakin periaatteessa elämän rakennuspalikoille keinot kulkeutua Kuiperin vyöhykkeeltä tai hajanaisesta kiekosta Europan pinnalle ja edelleen säteilysuojaan Europan lämpimän meren syleilyyn. Samoin elämä voi törmäysten ansiosta kulkeutua geologisessa aikaskaalassa äärimmäisen nopeasti ja helposti kuulta toiselle. Huomattavasti hankalampi kysymys sitten on, oliko elämällä alkujaankaan mahdollisuuksia syntyä millään Jupiterin kuista.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *