Arkisto


Jättiläisten harteilla

18.6.2020 klo 12.00, kirjoittaja
Kategoriat: Eksoplaneetat , Havaitseminen

Kertomukset on hyvä aloittaa alusta. Aivan alusta.

Luin vuonna 1996 artikkelin juuri löydetyistä uusista planeetoista. Siinä kerrottiin yksityiskohtaisesti, miten sveitsiläiset ja yhdysvaltalaiset tutkijat olivat kyenneet tekemään vuosikymmenten haaveesta totta. He olivat havainneet luotettavia merkkejä planeetoista kiertämässä toisia aurinkoja, galaktisen lähinaapuruston muita auringonkaltaisia tähtiä.

Ensimmäiset havainnot eksoplaneetoista edustivat tieteellistä vallankumousta. Ne merkitsivät samankaltaista paradigman muutosta kuin kopernikaaninen vallankumous, jossa koko kosmologinen näkökulma muuttui ja todettiin Maan olevan vain yksi planeetta muiden joukossa Aurinkoa kiertävällä radalla. Tai se Alfred Russell Wallacen ja Charles Darwinin työhön perustuva havainto, että ihminen on vain yksi evoluutiohistorian saatossa kehittyneistä miljoonista Maapallon lajeista.

Maa ei ole erityisasemassa muutoin kuin siitä subjektiivisesta näkökulmasta, että se on kehtomme ja kotimme. Aurinkokunta on vain yksi monista planeettakunnista galaksissamme, joka on puolestaan vain yksi monista näkyvän maailmankaikkeuden tähtijärjestelmistä. Emme ole millään periaatteellisella tavalla erityisasemassa maailmankaikkeudessamme, galaksissamme tai aurinkokunnassamme. Se oli ensimmäisten eksoplaneettahavaintojen oleellinen tulos — bonuksena löydettiin uusia mielenkiintoisia kohteita, joiden havainnointi on opettanut runsaasti uutta maailmankaikkeuden toiminnasta, monimuotoisuudesta, historiasta ja kehityksestä, sekä omasta paikastamme siinä.

Kiinnostukseni heräsi. Alitajuisesti aavistin, että halusin astua jonakin päivänä näiden suurten tähtitieteilijöiden, ”planeettojen metsästäjien”, valtaviin saappaisiin. Halusin olla löytämässä uusia maailmoja, elää modernin ajan löytöretkeilijänä jossakin jännittävän tieteiskirjallisuuden ja huipputieteen rajapinnalla. Halusin kiivetä aina vain ylemmäs, sinne, mistä näkee kauemmaksi.

En koskaan kehdannut mainita alitajuista aavistustani edes itselleni. Miten yksi keskinkertaisesti koulussa menestyvä pohjoisen periferian lapsi voisi saavuttaa mitään suurta tai tehdä mitään jännittävää? En osannut haaveilla. En osannut asettaa itselleni tavoitteita. Niinpä päädyin vain kulkemaan sinne, minne mielenkiinto johdatti, yksi kirja ja artikkeli kerrallaan. Kiipesin historian suurten tutkijoiden tukeville hartioille, kohti tunnetun tieteen ja tuntemattoman rajaseutua. Kurkistin lopulta sinne, minne kukaan ei ollut vielä nähnyt.


Ajatus planeetoista kiertämässä lähitähtiä ei ole uusi. Taivaan tähtien katsottiin voivan olla toisia aurinkoja jo 1500-luvulla kopernikaanisen vallankumouksen mukanaan tuoman paradigman muutoksen pyörteissä. Jos Maa on vain yksi planeetoista kiertämässä Aurinkoa, miksei tähtitaivaan muidenkin aurinkojen kiertoradoilla olisi planeettoja? Niiden havainnointi ajateltiin kuitenkin mahdottomaksi. Verrattaen himmeän, pikkuruisen planeetan havaitseminen kirkkaasti loistavan, valtaisan tähden vieresssä vaikutti teknisesti saavuttamattomalta — kuin koetettaisiin nähdä pienen kiiltomadon valonkajetta järven vastarannalla sijaitsevan, aivan ilmiliekeissä palavan talon vieressä.

Planeetat kuitenkin paljastavat olemassaolonsa monella tapaa. Tähtitieteilijöillä oli käytössään muuttumattomat fysiikan lait ja alati paraneva teknologia. He keksivät useita menetelmiä eksoplaneettojen havainnoimiseksi.

Barnardin tähden valssi

Isaac Newtonin jo 1600-luvulla muotoilema teoria gravitaatiovoiman vaikutuksesta tarjoaa tavan havaita planeettoja näkemättä niiden loistetta valokuvissa. Tarvitsee vain tarkkailla tähtien liikettä taivaalla, ja etsiä niistä jaksollisia poikkeamia perustuen siihen, että tähdet kiertävät avaruudessa liikkuessaan itsensä ja jonkin toisen kappaleen yhteisen massakeskipisteen ympäri. Jos kumppanina on planeetta, tähti ei heilahtele paljon mutta sen liikkeessä voi silti havaita kumppanin vetovoiman aiheuttamia vaikutuksia. Aivan kuin tähdet tanssisivat valssia kosmisen musiikin säestämänä, näkymättömän partnerin ohjatessa niiden liikettä.

Peter van de Kamp tiesi, että planeetan aiheuttaman heilahtelun voisi havaita helpoiten, jos kohteena oli mahdollisimman lähellä Aurinkoa sijaitseva lähitähti. Kohteeksi oli helppoa valita yksi lähinaapureista, vuonna 1916 löydetty pieni punainen kääpiötähti, Barnardin tähti — lähempänä sijaitsee vain alpha Kentaurin kolmoistähti. Heilahtelun suuruudesta voisi laskea planeetan massan — heilahtelun jakso taas vastaisi suoraan planeetan vuoden pituutta. Oli vain havaittava tarkasti tähden liikkeen poikkeamia sen luotisuorasta ominaisliikkeestä, joka Barnardin tähdellä on tunnetuista tähdistä kaikkein suurinta.

Vuosikymmeniä kestäneen havaintokampanjan päätteeksi van de Kamp teki 1960-luvulla havainnon planeetasta — tai niin hän ainakin havaintonsa tulkitsi. Havaintojen variaatiot oli mallinnettavissa yhden tai kahden planeetan aiheuttamina mutta ongelmana olivat vaikeudet saavuttaa riittävä tarkkuus. Tarkkuutta koetettiin parantaa ottamalla joka vuosi sadan valokuvauslevyn tulosten keskiarvo sekä laittamalla usea kollega ja opiskelija mittaamaan tähden paikka suhteessa taustataivaan kohteisiin jokaiselta levyltä inhimillisen virheen minimoimiseksi. Sekään vain ei riittänyt. Kävi ilmi, että useat tähdet näyttivät liikkuvan van de Kampin valokuvissa samalla tavalla. Kyse ei siis voinut olla planeetoista, vaan kiusallisista teleskoopin ja muun laitteiston muutoksista, joita ei oltu otettu huomioon.

Barnardin tähden tanssia valokuvauslevyillä ei aiheuttanut planeetta tai kaksi tähden kiertoradalla huolimatta van de Kampin tulkinnasta. Barnardin tähti ei kuitenkaan ole yksin. Sen kiertolaiset vain eivät ole rittävän massiivisia, jotta van de Kamp olisi voinut havaita niistä merkkejä.

Peter van de Kamp etsi planeetan aiheuttamaa signaalia, näki signaalin, ja päätteli sen olevan todiste planeetan olemassaolosta. Kyseessä oli tavanomainen virhetulkinta, jollaisille kaikki tutkijat ovat aina alttiita, elleivät ole varovaisia. Vahvistusharha hoitaa lopun.

1980-luvulla moni oli kuitenkin ryhtynyt aavistelemaan, että ehkäpä eksoplaneettojen havainnointi ei olisikaan täysin mahdoton saavutus. Se saattaisi olla jopa seuraavan sukupolven tähtitieteilijöiden toteutettavissa. Van de Kampin virhe Barnardin tähden kanssa kuitenkin kasvatti tutkijoiden kynnystä ryhtyä epätodennäköiseen eksoplaneettojen etsintään. Juuri kukaan ei halunnut ottaa pienintäkään riskiä siitä, että tulisi muistetuksi vain tekemästään virheestä.

Planeettalöytöjen pioneerit

Vuonna 1988 yhdysvaltalainen Bruce Campbellin johtama tutkimusryhmä julkaisi tuloksensa, joiden mukaan eräs lähitähti, gamma Cephei A, liikkui avaruudessa aavistuksen heilahdellen. He olivat mitanneet tähden lähettämän valon sini- ja punasiirtymiä, keräten informaatiota nopeuden muutoksista meitä kohti ja meistä poispäin. Kyseistä Doppler spektroskopiaksi kutsuttua menetelmää oli käytetty ansiokkaasti kaksoistähtien ratojen määrittämiseen. Menetelmä oli nerokas, koska sen soveltamiseen tarvittiin vain riittävän kirkas tähti, josta oli tehtävä spektrimittauksia. Planeettojen etsintä tuli mahdolliseksi muutaman lähitähden sijaan tuhansien riittävän kirkkaiden tähtien ympäriltä.

Doppler spektroskopiassa mitataan tarkalleen ottaen tähden säteilyspektrin absorptioviivojen paikkojen muutosta. Jos ne heiluvat syklisesti punaiseen ja siniseen päin, on tavallisesti kyse näkösäteen suunnassa heilahtelevan tähden valon Doppler-siirtymästä. Se taas aiheutuu tähden tanssista planeetan vetovoiman vaikutuksesta. Voidaan sanoa, että menetelmällä havaitaan planeettoja tarkkailemalla pienenpieniä tähden värin muutoksia.

Kuva 3. Esimerkki siitä, miltä spektrografien kuvaamat spektrit näyttivät 1990-luvulla. Mustat pystyviivat ovat tähden absorptioviivoja, joiden kohdalla tähden uloimman kaasukehän ionisoituneet atomit estävät valon kulkua. Värikoodit kuvaavat näkyvän valon eri värejä. Kuva: R. P. Butler, Carnegie.

Gamma Cephein kaksoistähden A-komponentti käyttäytyi kuin sitä kiertäisi planeetta. Tutkijat olivat kuitenkin julkaisussaan varovaisia ja totesivat vain saaneensa ”luotettavaa todistusaineistoa pienimassaisesta kappaleesta”. Pienimassainen tarkoitti massaltaan vajaan kahden Jupiterin kokoista kiertolaista vajaan kolmen vuoden kiertoradalla. Campbell ryhmineen oli varovainen ja tiedosti virhehavainnon mahdollisuuden olevan valtava. Kollegoiden paineen vuoksi ryhmä vältti sanomasta suoraan, että gamma Cephei A:ta kiersi planeetta ja Campbell itse vaihtoi alaa ryhtyen verokonsultiksi — hän ilmeisesti kyllästyi ainaisiin vaikeuksiin saada työpaikkaa tai edes rahoitusta akateemisessa maailmasta.

Vuonna 2002 Campbellin löytö varmistui. Tähteä gamma Cephei A tosiaan kiertää jättiläisplaneetta. Campbell vain ei saanut kunniaa ensimmäisen eksoplaneetan löytäjänä, koska hänen kollegansa eivät uskoneet tulokseen. Luultavasti myös van de Kampin virhetulkintojen eksoplaneettojen etsinnän ylle langettama varjo esti häntä tuomasta löytöään esille sen ansaitsemalla tarmokkuudella.


Samoihin aikoihin toinenkin yhdysvaltalaisryhmä työskenteli oman spektrografinsa parissa, havaiten omia kohteitaan.

David Lathamin johtama joukko tähtitieteilijöitä ei ollut epävarma julkistaessaan löytönsä. He kertoivat havainneensa luettelokoodilla HD 114762 tunnettua tähteä kiertävän kappaleen, jonka olemassaolon paljasti vain sen vetovoima. Tähti heilui selvästi mutta näkymätön kappale oli sekin moninkertaisesti Jupiteria massiivisempi. Sen minimimassaksi saatiin arvioitua peräti 11 Jupiterin massaa, mikä sai tutkijat pohtimaan tosissaan miten he voisivat kuvailla kohteen luonnetta. HD 114762 b osoittautui niin massiiviseksi, että se saattoi kyetä fuusioimaan vedyn raskaampaa isotooppia deuteriumia heliumiksi ytimessään. Sellainen kappale olisi ruskeaksi kääpiöksi luokiteltava tähtien ja planeettojen välimuoto, ei planeetta.

Julkaisemassaan artikkelissa Lathamin tutkijaryhmä joutui hyväksymään tosiasiat. He olivat tosiaan löytäneet erittäin mielenkiintoisen tähtiin verrattuna pienimassaisen kappaleen mutta sen luokittelulle planeetaksi ei ollut tarpeeksi vahvoja perusteita. Ryhmä totesi, että ”kyseessä on todennäköisesti ruskea kääpiö tai jopa jättiläisplaneetta”, painottaen kohteen luokittelun planeetaksi olevan perusteetonta. Siksi sitä ei myöskään pidetty ensimmäisenä eksoplaneettalöytönä.

On puhdasta kohtalon ivaa, että nykyisellään HD 114762 b luokitellaan eksoplaneetaksi likimain jokaisessa eksoplaneettojen luettelossa.

Eksoplaneettojen aika

Uudet tieteenalat voivat alkaa hyvinkin nopeasti. Yksittäinen löytö voi paljastaa uuden eksoottisten tutkimuskohteiden luokan, jonka ympärille muotoutuu oma tutkimussuuntauksensa vuosien saaatossa.

Eksoplaneettojen suhteen niin kävi parissa viikossa. Ensin ei tunnettu — Campbellin, Lathamin ja kumppaneiden tuloksista huolimatta — ainuttakaan auringonkaltaista tähteä kiertävää eksoplaneettaa. Seuraavassa hetkessä niitä tunnettiin jo kourallinen ja kokonainen tutkijoiden armeija käänsi katseensa eksoplaneettojen metsästykseen.

Mutta sitä ennen, vuonna 1992 Aleksander Wolszczan ja Dale Frail raportoivat ensimmäisestä luotettavasta eksoplaneettalöydöstä. Löytö oli täysin odottamaton, fantastisen kummallinen planeettakunta kuolleen tähden jäänteen, neutronitähden PSR1257+12 ympärillä. Planeetat ovat ilmeisesti muodostuneet valtaisan supernovaräjähdyksen jäljiltä kiertoradalle jääneestä materiasta. Yksikään tähtitieteilijä ei ollut tullut ajatelleeksi, että vinhasti pyörivän, säteilyllään lähiympäristönsä steriloivan tähden jäänteen kiertoradoilla voisi olla planeettoja. Joskus maailmankaikkeus vain on erikoisempi kuin kukaan on edes osannut kuvitella.


Ensimmäinen auringonkaltaista tähteä kiertävä planeetta löytyi vuonna 1995. Tähden 51 Pegasi kiertoradalta havaittiin kuuma jättiläisplaneetta 51 Pegasi b, joka myöhemmin sai nimen Dimidium. Löydön tehneet sveitsiläisastronomit Michel Mayor ja Didier Queloz palkittiin vuoden 2019 fysiikan Nobelin palkinnolla. Kun yhdysvaltalaiset Paul Butler ja Geoffrey Marcy julkaisivat omat tuloksensa vain kahta viikkoa myöhemmin, he eivät vain varmistaneet 51 Pegasi b:n olemassaoloa, vaan raportoivat samalla kahdesta muustakin eksoplaneetasta.

Kuva 4. taiteilijan näkemys kuumasta jättiläisplaneetasta, kuten 51 Pegasi b, kiertämässä aktiivista, auringonkaltaista tähteä. Kuva: NASA/JPL-Caltech.

Butler ja Marcy eivät olleet ajatelleet, että jättiläismäiset kaasuplaneetat voisivat kiertää tähtiään lähellä, niiden pintaa viistäen. Siksi he eivät olleet osanneet etsiä Merkuriusta nopeammin tähtensä kiertäviä planeettoja, vaan vasta hioivat menetelmiään ja tekivät havaintoja koettaessaan nähdä jupiterinkaltaisia planeettoja lähitähtien kiertolaisina. He riensivät analysoimaan mittauksiaan välittömästi kuultuaan Mayorin ja Quelozin löydöstä ja onnistuivat varmistamaan sen ennätysnopeasti. Samalla he muuttivat eksoplaneettojen etsinnän muutaman optimistisen tutkijan haihattelusta varteenotettavaksi tähtitieteen haaraksi, koska yhden yksittäisen löydön voi aina kyseenalaistaa hatarinkin perustein mutta kolmen havaintovirheen esittäminen ei ole mahdollista edes ankarimmalle epäilijälle.

Eksoplaneettojen aika oli alkanut.

Tunnemme tuhansia planeettoja lähitähtien kiertolaisina. Mutta eksoplaneettojen aika ei ole tulossa päätökseen, siinä vain alkaa uusi vaihe. Tavoitteena ei ole enää vain planeettalöytöjen tekeminen, vaan niiden ominaisuuksien ja pintojen olosuhteiden määrittäminen. Eksoplaneettatutkimus on modernia löytöretkeilyä, jossa emme löydä ja tutki vain uusia maita, vaan kokonaisia uusia maailmoja.


Minulla on ollut kunnia olla mukana etsimässä ja löytämässä kymmeniä eksoplaneettoja. Se on ollut mahdollista vain, koska sinnikkäämmät tutkijat ovat periksiantamattomasti kehittäneet havaintomenetelmiä, keränneet havaintoja ja etsineet eksoplaneettoja vuosien ja vuosikymmenten ajan.

Olen löytänyt uusia maailmoja. Mutta vaikka olen hetken verran, pienen vilauksen ajan nähnyt kauemmaksi, se on ollut mahdollista vain, koska olen seissyt jättiläisten harteilla.

Yksi kommentti “Jättiläisten harteilla”

  1. Lasse Reunanen sanoo:

    Eksoplaneettatutkimuksesta hyvä kooste.
    Viimeiset sanat: – ”jättiläisten harteilla” / kommentoin:
    Sanonta ollut käytössä monen aikaisemman tiedemiehen kertomana myös.
    Sitä käsitettä voinee hieman laajentaakin. Jättiläinen tietysti kookasta tarkoittaen,
    jolla eläneiden tieteentekijöiden runsasta tietomäärää osoitettu. Sanasta toinen merkitys: Jättää myös sopii kun jälkeensä jättäneet tietonsa ovat…
    Tieteentekijät yleensä olleet myös toisten aikalaistensa tuen saaneita
    (rahoitukseen, asumiseen, ravintoon vaatetukseen, tieteen avustajiinsa jne.),
    joka mahdollistanut saavutuksiaan. Kirjoitus- ja lukutaito sekä opiskelu edistäneet.
    Nyttemmin voisi kenties jo ymmärtää asiaa ns. jättiläisen harteilla olemista,
    joka kaikkea kertynyttä maailmanlaajuista tietomäärää ja se monipuolistunutta jakautumista kaikille ihmisille ollut – siis maapallon laajuista tietokapasiteettiamme.
    Meemeiksi näitä ajatuskertymien perimää kutsuttanee geeniperimämme lisänä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Katoavat planeetat

9.6.2020 klo 12.00, kirjoittaja
Kategoriat: Eksoplaneetat , Havaitseminen

Tieteessä on aina mukana tulkintaa. Kukaan tieteentekijä ei ole absoluuttisen objektiivinen, vaan aivan jokainen on altis alitajuisille näkemyksille, omakohtaisille kokemuksille ja oman ajattelunsa rajoituksille. Ne taas vaikuttavat siihen, miten tiedettä tehdään, mitä tutkitaan ja minkälaisessa valossa saatuja tuloksia tarkastellaan.

Jokaisella on omaa ennakkotietoa. Tieteessä sillä tarkoitetaan tietoa, joka tutkijalla oli ennen kuin hän suoritti tieteellisen kokeensa, keräsi mittauksia ja informaatiota, teki havaintoja ja analysoi niitä. Saatuaan uutta tietoa, tutkijat sitten yhdistävät sen ennakkotietoihinsa Bayesilaisen inferenssin avulla ja saavuttavat synteettisen tiedon, joka voi toimia uutena ennakkotietona ennen seuraavaa tieteellistä koetta. Jokainen tutkija jatkaa tätä prosessia koko uransa, saaden samalla jatkuvasti tietoa lukuisten muiden tutkijoiden kokeista. Ideaalitapauksessa kaikki tutkijat päätyvät lopulta samaan synteettiseen tietoon mutta käytännössä niin ei koskaan käy. Tutkijat päätyvät vain keskimäärin löytämään tarkasti todellisuutta kuvaavan selitysmallin — siitä esiintyy tutkijoiden keskuudessa aina poikkeavia ja ainakin osittain virheellisiä selitysmalleja.

Tähän kuitenkin perustuu tieteellisen metodin voima. Tiede on oikeastaan vain itseohjautuva, maailmankaikkeutta selittämään pyrkivä prosessi, joka hakeutuu asymptootisesti kohti totuutta muttei koskaan saavuta sitä. Tiede harhailee aina vain lähempänä totuuden tuntumassa, ottaen tosin joskus mittaviakin sivuaskeleita. Parasta mahdollista käsitystämme totuudesta kutsutaan tieteelliseksi tiedoksi — tieteellinen tieto ei siis ole totuus, vaan vain parhaiten havaintoihin sopiva selitys maailmankaikkeuden ominaisuuksista ja toiminnasta.


Planeettojen havainnointi ei ole immuunia ihmisten alttiudelle takertua subjektiivisiin näkemyksiinsä. Mikään tiede ei ole. Edes Maapallon tapauksessa havainto planeetasta, pallomaisesta kappaleesta kiertämässä radallaan tähden ympäri, ei ole kiistaton tosiasia kaikille. On olemassa hämmästyttävän nopeasti kasvava joukko litteään maahan uskovia tieteenkieltäjiä, jotka valitsevat heittää romukoppaan suuren osan vakiintunutta tieteellistä tietoa, koska se ei sovi heidän omakohtaiseen kokemukseen ja voimakkaaseen ennakkotietoon maailmasta. Siksi on oikeastaan hämmästyttävää, että olemme kyenneet havaitsemaan jo tuhansia planeettoja kiertämässä tähtiä Auringon lähinaapurustossa tai vieläkin kauempana ja asiasta vallitsee lähes täydellinen tieteellinen konsensus. Lähes.

Kaikkien eksoplaneettojen olemassaolo ei ole kiistatonta, johtuen tutkijoiden subjektiivisista lähtökohdista, jotka joskus vaikuttavat tehtyihin päätelmiin. Jos tähtitieteilijä koettaa etsiä planeetan merkkejä, hän hyvin usein merkkejä löytäessään tarkastelee ensin voisivatko ne olla planeetan aiheuttamia. Joskus muut selitysmallit, joita tähtitieteessä lähes aina on runsain mitoin, jäävät liian vähälle huomiolle.

Hubble avaruusteleskoopin kuvaama läheistä nuorta tähteä Fomalhaut kiertävä planeetta tarjoaa hyvän esimerkin. Vuonna 2004 tähtitieteilijät havaitsivat kirkkaan kohteen tähteä ympäröivän pölykiekon lähettyvillä. Kohde näytti liikkuvan radallaan tähden ympäri ja havainto sai nopeasti planetaarisen tulkinnan — kirkkaan kohteen ajateltiin olevan tähteä kiertävä jättiläisplaneetta Fomalhaut b, jolle annettiin nimeksi Dagon kansainvälisen tähtitieteen unionin toimesta. Vaikka kävi nopeasti ilmi, että planeettakandidaatin rata oli hyvin soikea ja sen etäisyys tähdestään vaihtelisi noin 30 ja 300 AU:n välillä, mikä häiritsisi vakavalla tavalla tähteä ympäröivää pölyrengasta, havainnon planetaarinen tulkinta pysyi suosituimpana selityksenä.

Kuva 1. Hubble avaruusteleskoopin kuvaa tähden Fomalhaut läheltä. Kuvassa näkyy tähteä ympäröivä jäinen pölyrengas ja sen vieressä havaitun planeettakandidaatin muutos vuosikymmenen aikana. Kandidaatti osoittautui planeetan sijaan laajenevaksi pölypilveksi. Kuva: NASA, ESA, A. Gáspár, G. Rieke (University of Arizona).

Tuoreemmat havainnot kuitenkin osoittivat, että Dagon oli kadonnut — se oli himmentynyt ja laajentunut tasaisesti ja muuttunut lopulta niin himmeäksi, ettei sitä enää näkynyt Hubble avaruusteleskoopin tarkoissa kuvissa. Planeetat eivät voi kadota tällä tavalla. Mitä oikein oli tapahtunut?

Osa tähtitieteilijöistä oli alusta lähtien kiinnittänyt huomiota siihen, että planeetaksi tulkittu kirkas kohde ei näkynyt lainkaan infrapuna-alueen havainnoissa — se ei siis lähettänyt lämpösäteilyä planeettojen tavoin. Kyse oli siten todennäköisemmin jostakin muusta. Se jokin muu näyttää olleen kirkas pölypilvi, joka laajeni ja himmeni hajotessaan avaruuteen. Havainnoissa näkyi jättiläisplaneetan sijaan kirkas välähdys, joka aiheutui tähteä kiertävien pienempien kappaleiden törmäyksestä, ja josta jäljelle jääneen pölyn Fomalhaut puhalsi tähtituulen mukana kauemmaksi avaruuteen.

Eksoplaneetta hukassa

Tähtitieteilijät hukkaavat planeettoja. Tarkemmin sanoen, heidän tulkintansa havainnoista saattavat olla vääriä, jolloin planeettalöytönä pidetty havainto haihtuu ilmaan uuden paremmin perustellun tulkinnan tieltä, kuten kävi Fomalhaut b:n tapauksessa. Planeettakandidaatti voi kadota, kun sen olemassaolon paljastaneet havainnot onnistutaan mallintamaan aiempaa tarkemmin. Koska ensimmäinen askel uusien matemaattisten ja tilastollisten mallien ja työkalujen sekä mallinnusmenetelmien käyttöönotossa on aina niiden soveltaminen vanhoihin havaintoihin, planeettalöydöt joutuvat armotta uuteen testiin aina menetelmien kehittyessä — ei vain silloin, kun saadaan kerättyä uusia havaintoja.

Pohjimmiltaan on kyse siitä, minkälaiset selitysmallit sopivat havaintoihin parhaiten. Jos mittaukset voi selittää ilman planeettaa yhtä hyvin kuin planeetan kanssa, oletukselle planeetan olemassaolosta ei voida katsoa olevan todistusaineistoa. Se ei kuitenkaan tarkoita, että planeettaa ei ole. Todistusaineiston olemattomuus ei ole sama asia kuin olemattomuuden todiste.

Omakohtaisesti tutuin esimerkki hukatusta eksoplaneetasta liittyy lähitähteen nimeltään Gliese 581. Sitä kiertävien planeettojen määrän laskeminen on osoittautunut vuosien saatossa eritäin hankalaksi toimenpiteeksi. Vaikka järjestelmässä väitettiin olevan jopa kuusi planeettaa, en saanut laskettua kuin neljään tarkastellessani niiden määrää vuonna 2011. Sittemmin järjestelmän kaksi planeettaa — toisen niistä arveltiin olevan maankaltainen, potentiaalisesti elinkelpoinen supermaapallo — ovat pysyneet hukassa. Kukaan ei ole myöskään kyennyt osoittamaan, että niiden olemassaolon voisi poissulkea havaintojen perusteella.

Tilanne on tieteessä yleinen. On todettu, että aiemmin esitetylle hypoteesille, tai selitysmallille, ei ole todistusaineistoa. Vaikka se ei tarkoita, että hypoteesi olisi väärä, tilanteessa tehdään aina se yksinkertaistus, että ylimääräiset oletukset jätetään huomiotta.

Todistustaakka on sillä, joka esittää väitteen. Bertrand Russellin kuuluisan analogian mukaisesti, kukaan ei voi aukottomasti todistaa, että Jupiterin radan tuolla puolen ei ole pikkuruista teekannua kiertämässä radallaan Aurinkoa. Todistustaakka on sillä, joka esittää teekannun olevan olemassa.

Eksoplaneetta kiertämässä jotakin kaukaista tähteä on filosofisessa mielessä kuin Russellin teekannu. Joitakin poikkeuksia lukuunottamatta, kukaan ei voi osoittaa, että sitä ei ole olemassa. Sen olemassaolon taas voi osoittaa tekemällä siitä havaintoja, joita ei voida selittää ilman planeettaa. Siksi Fomalhaut b:n ei voida katsoa olevan olemassa. Aivan samoin planeetta Gliese 581 g ei ole olemassa, eikä ole kuvainnollinen Russellin teekannukaan — ennen kuin joku havaitsee sen.

2 kommenttia “Katoavat planeetat”

  1. Lasse Reunanen sanoo:

    Tähti Fomalhaut kuvasta voinee tulkita myös, että sellaista tähteä ympäröivän pölykiekon kirkkaita pölypilviä olisi symmetrisesti kuten usein niiden muodostelmissa ollut – kuvista havaittavissa. Siis ulkokaarteeseen kiertyvinä vasemmassa yläkulmassa ja oikeassa alakulmassa ja sitten himmeämpiä kertomasi havainto ylhäällä oikeassa sisäkulmassa ja mahdollisesti sille vastinsuunnassa – vasemmassa alakulmassa olisi tai ollut samaa (ei kuvasta havaittavissa, olettamalle).
    Sanonta, että Maa kiertää Aurinkoa planeettojen tavoin selvästi havaittuna ja tiedossamme. Avaruudessa kappaleet kiertänevät jotain yhteistä painopisteen keskiötä (Maakaan ei siten aivan täsmälleen kiertäne Auringon keskiötä).
    Esimerkkisi ns. teekannun kokoisen kohteen kiertämisestä havaintoja vaikea olisikin tehdä mikäli ei kohteen näköetäisyyteen pääsisi (ihmisten lähettäminä avaruuteen sellaisia teekannuja ei vielä lienekään tiedossa), vaihtamalla nimikkeitä tietysti epätosia väittämiä muodostuisi.
    Sikäli kun kappaleet kiertää yhteisen painopisteen ympäri ja mikäli kohteet suhteellisen samaa kokoa eikä muita vetokohteita lähellä niin voinee olettaa kummankin kiertävän toisiaan. Sitten kun kokoero vähitellen kasvaa niin kierto kohdistunee enempikin vain toisen ympäri, mutta kenties kuitenkin toinenkin jossain hitaammassa tahdissa kiertyy pienemmänkin ympäri.
    Aurinkokunnassa muitakin kiertoja ja Auringon kiertymistä (esim. Maahan nähden) vaikeampaa hahmottaa kun useita pienempiä ja suurempia kiertolaisia tasaamassa Aurinkoon kohdistuvia siirtymiä, mutta vain Maan kokoinen ja samalla etäisyydellä kohde kiertämässä Auringon kokoista tähteä kenties jossain aikasuhteessa saisi myös tähtensä kierähtämään painopisteidensä ympäri ja siirtymä siten osaltaan isomman kohteen kierto myös pienemmän kohteen ns. ympäri (vaikka ei täyttä kierrosta tekisikään).

  2. Erkki Tietäväinen sanoo:

    Piti lukea blogi ihan kahteen kertaan ennen kuin uskoin, että kerrankin joku oppinut kertoo rehellisesti, mitä tieteen tekeminen raadollisuudessaan on. Kiitos siitä!

    Minua on jo pitkään kummeksuttanut erityisesti kosmologien hapuilu, kun yrittävät selittää uusien, toinen toistaan parempien havaintovälineiden paljastamia universumin saloja. Kun uudet havainnot eivät vastaa omaa käsitystä, havainnoille haetaan selitystä kehittämällä uusia, omaa vanhaa käsitystä tukevia teorioita. Eikä kukaan ole oikeasti lähtenyt kyseenalaistamaan vanhojen oppi-isien työn tuloksia, vaan omat teoriat rakennetaan niiden pohjalta ja jatkoksi. Siinä piilee suuri harhautumisen riski. Ratkaisemattomien asioiden ja uusien teorioiden pino vain kasvaa, kun ei uskalleta edetä puhtaalta pöydältä.

    Olen verrannut kosmologian nykytilaa mielessäni ristisanatehtävään, joka ei koskaan ratkea, koska siinä on varmana pidettyjä, mutta vääriä sanoja.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Proxima b — kauan odotettu riippumaton varmistus

1.6.2020 klo 10.38, kirjoittaja
Kategoriat: Eksoplaneetat , Havaitseminen

Tieteessä mikään ei ole varmaa. Huomisen tulokset voivat aina kyseenalaistaa tai kumota sen, minkä tiedämme tänään. Uudet havainnot, selitysmallit ja teknologia tarjoavat keinoja ymmärtää maailmankaikkeutta aina vain tarkemmin, paremmin ja luotettavammin. Usein se tarkoittaa sen tiedon hylkäämistä, mitä pidimme totena vielä eilen. Vanha tieteellinen totuus väistyy uuden tieltä oltuaan epätarkka, riittämätön tai puhtaasti virheellinen. Silloin olemme oppineet jotakin uutta.

Proxima Kentaurin eksoplaneettahavainnon julkistamisesta on kulunut jo lähes neljä vuotta. Toistaiseksi kukaan ei ole raportoinut tuloksen olevan virheellinen tai riittämätön — epätarkka se on luultavasti ollut, ainakin jossakin määrin. Hyväksytyn tieteellisen näkemyksen mukaan Proxima b on olemassa, eikä kukaan ole onnistunut raportoimaan tulosta, joka olisi asian kanssa ristiriidassa.

Havainto Proxima Kentauria kiertävästä eksoplaneetasta on kestänyt mittausten uudelleenanalysoinnin. Kymmenet tutkimusryhmät ovat käyneet läpi havaintomateriaalin ja analysoineet sen koettaen osoittaa, että Proxima b ei olekaan olemassa. Kukaan ei ole raportoinut voivansa selittää havaintoja ilman planeetan aiheuttamaa efektiä. Kukaan ei ole osoittanut, että planeetan aiheuttamaksi tulkittu signaali voisikin aiheutua aktiivisesta tähden pinnasta tai jostakin muusta häiriöstä.

Viimeinenkin mahdollinen virhelähde, instrumentin aiheuttama häiriö, on saatu eliminoitua mahdollisena vaihtoehtoisena selitysmallina planeetan aiheuttamalle signaalille. Uudet havainnot maailman tarkimmalla spektrometrillä, ESPRESSO:lla, ovat tuottaneet Proxima b:n havainnon riippumattomasti (3). Se tarkoittaa sitä, että planeetan olemassaolo on käytännössä varmistunut.

Kuva 1. Proxima b:n ja sitä pienemmän toisen planeettakandidaatin radiaalinopeussignaalit ESPRESSO-instrumentin havaintsemana. Kuva: S. Mascareno et al.

Proxima b on olemassa mutta järjestelmässä on luultavasti kaksi muutakin planeettaa. Vaikka emme tiedä planeetoista kovinkaan paljon, tiedämme nyt erittäin suurella varmuudella, että Proxima Kentaurin järjestelmä on lähimmän eksoplaneetan koti. Sen ominaisuuksista ei vielä ole olemassa paljoakaan yksityiskohtaista tietoa mutta voimme nyt levollisin mielin siirtyä odottamaan mitä seuraavan sukupolven teleskoopit ja niillä tehtävät suorat havainnot Proxima Kentaurin planeetasta tai planeetoista paljastavat. Lähin eksoplaneettamme ei ole menossa enää minnekään.

2 kommenttia “Proxima b — kauan odotettu riippumaton varmistus”

  1. Lasse Reunanen sanoo:

    Hyvä tieto sinulle ja muille asiaa tutkineille, asia jää vakiintuneeksi tähtitieteen historian kirjauksiin.
    Eksoplaneetta Proxima b mahdollisine muine kiertolaisineen lähitähtemme ympärillä jatkanevat kuitenkin likimain samaa kiertoa Linnunradan ympäri kuin oma Aurinkomme planeettoineen (etäisyytemmekin säilynee pienin vaihteluin vuosimiljoonia samoin).
    Muista lähitähdistä etsittänee eksoplaneettoja edelleen, mutta useimmissa tapauksissa löytöjä läheltämme ei vielä ollut.

    Otit viimeksi kirjoituksessasi esiin Linnunradan liftarit kirjasta luvun 42 tarkemmat numerot – ns. maailmankaikkeuden tarkoituksen kysymykselle (kommenttini hieman myöhässä tähän yhteyteen).
    Maailmankaikkeudella tietysti on joitakin täsmällisyyksiä, jotka toistuu havaitussa ympäristössämme (kenties useiden lukusarjojen yhteismerkityksiä).
    Kiinalaisilla ollut vuosituhansia käytössä 64 luvun merkityksiä selittämään maailmaamme (8×8 ruudukolla), josta sumennettuna kirja; Muutosten kirja – joka usein antaa ns. sumealla logiikalla likimääräistä vinkkiä näihin maailmamme kysymyksiin (ei tietenkään tieteellisen tarkkoja vastauksia, mutta kenties niissäkin jokin totuuden ydin löytyy).

    1. Mikko Tuomi sanoo:

      Proxima Kentauri on juuri nyt lähin tähtemme mutta tilanne tulee muuttumaan tulevaisuudessa. Kun tähti poistuu lähinaapurustostamme, sen ja aurinkokunnan tiet tuskin enää kohtaavat.

      Lähitähdistämme monilta on jo löydetty planeetoja kiertolaisina. Barnardin tähti, alpha Kentaurin kolmoistähden (johon Proximakin kuuluu) jälkeen lähin tähtemme, tarjoaa siitä mainion esimerkin.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Todellinen elinkelpoinen vyöhyke

19.5.2020 klo 12.00, kirjoittaja
Kategoriat: Eksoplaneetat , Elinkelpoisuus

Linnunradan käsikirja liftareille kertoo, että kun vastaus lopulliseen kysymykseen elämästä, universumista ja kaikesta vihdoinkin saatiin, vastaukseksi selvisi numero 42. Silloin oli pakko selvittää mikä tarkalleen ottaen olikaan se varsinainen kysymys. Kaikkien mielestä kysymykseksi ei kelpaa mikä on lukujen -80538738812075974, 80435758145817515 ja 12602123297335631 kuutioiden summa, joka sattuu olemaan juuri 42, joten oleellisempaa kysymystä on etsittävä hiukan kauempaa.

Sillä matematiikan havainnolla on vain marginaalisesti mielenkiintoa, että 42 sattui olemaan viimeinen numero alle sadan, jolle löydettiin ilmaisu kolmen kokonaisluvun kuutioiden summana. Tärkeämpi havainto on, että matemaattisia lainalaisuuksia tutkimaan kykenevää elämää voi esiintyä vain tietyissä olosuhteissa. Ainakin ajattelemme niin — perustaen ajattelumme yhteen esimerkkiin elämälle suotuisista olosuhteista.

Koska juuri näissä olosuhteissa voi syntyä laji, joka kykene ajattelemaan matemaattisia totuuksia ja planeettojen elinkelpoisuutta, on luonnollista ajatella samanlaisten fysikaalisten ja geokemiallisten olosuhteiden mahdollistavan samankaltaisen elonkirjon muuallakin. Jos aloitamme tästä yksinkertaisesta lähtökohdasta, ei tarvitse ryhtyä mahdottoman vaikeaan arvausleikkiin siitä, minkälaisissa olosuhteissa elämä, jota ei esiinny Maassa, voisi potentiaalisesti kasvaa ja kehittyä.


Tähtitieteilijöille ja planetologeille on mahdollista kartoittaa elämälle soveltuvia paikkoja niin Aurinkokunnassa kuin lähitähtienkin planeettakunnissa. Kotijärjestelmässämme ne eivät rajoitu vain Maahan ja Marsiin, jonka historiaan mahtuu virtaavia vesiä, jokia ja järviä, sekä kokonainen pohjoisen pallonpuoliskon peittävä meri, vaan myös useat ulkoplaneettojen kuut piilottelevat elämälle soveltuvia valtameriä jäisten kuortensa sisällä. Aurinkokunnan ulkopuolelta taas etsimme elämälle soveltuvia olosuhteita koettamalla havaita mahdollisimman tarkasti Maapalloa muistuttavia eksoplaneettoja lähitähtien kiertoradoilta.

Ehkäpä käytännöllisin mahdollinen lähestymistapa on mitata epäsuorasti eksoplaneetan elinkelpoisuutta perustuen siihen, miten tarkasti se on maankaltainen. Maa on ainoa tuntemamme elävä planeetta, joten on luonnollista koetaa etsiä samankaltaisia paikkoja avaruudesta. Tuntemamme elämä voisi helposti kukoistaa planeetalla, joka muistuttaa Maata massaltaan, koostumukseltaan, kaasukehältään, lämpötilaltaan ja säteilyolosuhteiltaan. Kyseeseen tulevat luonnollisesti myös eksoplaneetat, jotka muistuttavat sitä, millainen Maa oli ennen kuin elämä ryhtyi muokkaamaan sen kaasukehän koostumusta ja vapauttamaan siihen voimakasta reagenssia, happea.

Ennen kuin vapaata happea havaitaan jonkin toisen planeetan kaasukehästä todennäköisenä merkkinä planeetan valloittaneesta biosfääristä, voimme koettaa asettaa tunnettuja eksoplaneettoja järjestykseen sen mukaan, mikä niistä tietojemme mukaan muistuttaa Maata eniten. Siinä on kunnostautunut erityisesti Puerto Ricon yliopiston Abel Mendez.

Mendezin ylläpitämä planeettojen elinkelpoisuuden vertailuun pyrkivä projekti on määrittänyt tunnetuille eksoplaneetoille maankaltaisuusindeksin, jonka perusteella voidaan tarkastella niiden potentiaalista soveltuvuutta eläviksi planeetoiksi. Lähin mahdollisesti elinkelpoinen planeetta on luonnollisesti Proxima b, mutta se ei ole maankaltaisuusindeksiltään kärjessä. Kärkipaikkaa pitää tällä hetkellä hallussaan läheistä Teegardenin tähteä kiertävä lämmin kiviplaneetta Teegarden b, jonka elinkelpoisuutta voi tosin heikentää aivan vieressä loistavan tähden purkaukset ja säteily — planeetta kiertää tähtensä vain vajaassa viidessä päivässä.

Kuva 1. Lähimmät eksoplaneetat, jotka ovat koostumukseltaan todennäköisesti kiviplaneettoja ja joiden pinnalla vesi voi esiintyä nestemäisessä olomuodossaan. Kuva: PHL/Arecibo.

Pelkkä maankaltaisuus ei riitä, jos jokin tekijä tuhoaa planeetan elämän edellytykset. Teegarden b on ehkä maankaltaisuudeltaan kärjessä tuntemistamme planeetoista mutta se kääntää tähteensä aina saman kyljen, joten puolet planeetasta on ainaisessa valossa ja puolet ikuisessa pimeydessä. Planeetta on myös niin lähellä tähteään, että muutoin vakaasti loistavan Teegardenin punaisen kääpiötähden purkaukset ja hiukkastuuli riisuvat helposti Teegarden b:n kaasukehästä, puhaltaen sen avaruuteen vuosimiljoonien ja miljardien kuluessa, kuten on luultavasti käynyt Proxima b:n tapauksessa. Mitä oikeastaan vaaditaan siihen, että planeetta olisi elinkelpoinen?

Elinkelpoiselle planeetalle tarvitaan ainakin kivinen pinta. Emme osaa kuvitella elinkelpoista planeettaa, joka olisi kaasusta koostuva jättiläisplaneetta. Juuri muita kiinteän pinnan muodostavia materiaaleja ei ole tarjolla — jäinen pinta tarkoittaisi huomattavan alhaista lämpötilaa, joten pinnalla ei voisi virrata nestemäistä vettä. Jotkin planeetat koostuvat lähes yksinomaan raskaammista metalleista, kuten raudasta ja nikkelistä ja pienestä määrästä muita alkuaineita, mutta niidenkin pinnalla on ainakin muutamia kilometrejä paksu kiveksi kutsumamme silikaattikerros, koska kivi nousee pintaan rautaa kevyempänä hydrostaattisen tasapainotilan saavuttaneilla kappaleilla.

Kaasuplaneettojen elämän edellytykset näyttävät heikoilta. Vaikka Maapallon ilmakehä onkin täynnä elämää, leijailevista mikrobeista lintuihin ja perhosiin, ei ole näköpiirissä tapaa saada orgaanisten molekyylien tiheyttä kasvamaan kaasumaisissa olosuhteissa riittävän suureksi elämän syntyä varten. Emme voi sanoa elämän synnyn kaasuplaneettojen kaasukehissä olevan mahdotonta, mutta vaikeaa se varmasti on. Siksi kaasuplaneetat on käytännössä rajattu elämän etsintöjen ulkopuolelle.

Maankaltaista elämää ylläpitävälle planeetalle tarvitaan vettä ja lämpötila, joka estää sitä jäätymästä kauttaaltaan tai kiehumasta pelkäksi kaasukehän vesihöyryksi. Sopiva lämpötila on mahdollinen kiviplaneetan pinnalla, jos tähdestä saapuva lämpösäteily on sopivissa rajoissa. Kasvihuoneilmiö ei kuitenkaan saa karata käsistä, kuten on käynyt Venuksen paksun hiilidioksidista koostuvan kaasukehän alla, jossa on niin kuuma, että jopa lyijy sulaa.

Tarvitaan myös rauhallinen, tasaisesti valaiseva tähti riittävän kaukana, jotta liian voimakas ultraviolettisäteily ja purkaukset eivät steriloisi planeetan pintaa. Lisäksi tarvitaan magneettikenttä suojaamaan säteilyltä ja suurienergisiltä hiukkasilta. Esimerkiksi Proxima b on luultavasti elinkelvoton pinnaltaan juuri voimakkaan säteilyn ja Proxima Kentaurin jättiläismäisten purkausten vuoksi.


Todelliseksi elinkelpoiseksi vyöhykkeeksi määriteltiin hiljattain julkaistussa ”artikkelissa” olosuhteet, joissa ginistä ja tonic -vedestä valmistettuja virvoitusjuomia on saatavilla. Artikkeli oli ilmeinen aprillipila — se julkaistiin huhtikuun ensimmäisenä päivänä — mutta se toi puolitahattomasti esiin erään hyvinkin oleellisen elinkelpoisuuteen liittyvän asian.

Maapallo sijaitsee kiistatta elinkelpoisella vyöhykkeellä. Siitä huolimatta kaikki planeettamme ihmiset eivät elä ”todellisella elinkelpoisella vyöhykkeellä”. Tietyn virvoitusjuoman saatavuus on tietenkin yhdentekevää tässä kontekstissa mutta mahdollisuutta käyttää aikaa ja resursseja vapaa-aikaan ja omaan fyysiseen ja henkiseen hyvinvointiin ei kaikilla ole olemassa. Maailmamme ei ole oikeudenmukainen tai tasa-arvoinen.

Samalla kun tähtitieteilijät keskittyvät etsimään elinkelpoisia planeettoja lähitähtien kiertoradoilta, olisi kaikki ihmiset saatava siirrettyä planeettamme ”todelliselle elinkelpoiselle vyöhykkeelle”. Siihen on kyllä varaa — hyvinvointia riittää mainiosti kaikille, vaikka leikkaisimmekin luonnon resurssien kulutuksen globaalisti kestävälle tasolle. Tarvitaan pelkkiä poliittisia päätöksiä jakaa planeettamme resurssit tasaisemmin kaikille.

Sellaisen politiikan toteuttaminen voi tosin olla vaikeampaa kuin elinkelpoisten planeettojen metsästys.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Valokuvassa Proxima c

5.5.2020 klo 12.00, kirjoittaja
Kategoriat: Eksoplaneetat , Havaitseminen

Havaitsin vuonna 2013 jaksollisuuden Proxima Kentaurin radiaalinopeushavainnoissa. Tutkimusryhmäni julkaisi tuloksen intensiivisen havaintokampanjan päätteeksi vuonna 2016, kun kävi vastaansanomattoman selväksi, että olimme onnistuneet varmistamaan signaalin olevan Maata lähinnä sijaitsevan eksoplaneetan, Proxima b:n, aiheuttama.

Vähemmälle huomiolle jäi vuonna 2014 julkaisemani artikkeli, jossa mainitsin sivulauseessa Proxima Kentaurin radiaalinopeushavaintojen luultavasti sisältävän kaksi muutakin signaalia. Toisen näistä havaittiin voimistuneen uusien havaintojen myötä vuonna 2020 ja tulkittiin planeettakandidaatin Proxima c aiheuttamaksi. Kyseessä saattaa olla tähden noin 2000 päivässä kiertävä kylmä, paksun kaasukehän ympäröimä kivi- ja jääytimen omaava planeetta mutta on hyvinkin mahdollista, että planeetan olemassaolon paljastavaksi tulkittu signaali aiheutuukin jostakin muusta, kuten tähden magneettisesta syklistä.

Magneettinen sykli oli tulkintani jaksollisen signaalin aiheuttajaksi vuonna 2014 ja suurin syy siihen, etten kutsunut signaalia planeettakandidaatiksi. Tähden aktiivisuutta ei kuitenkaan ole edelleenkään voitu sulkea täysin pois signaalin aiheuttajana, kuten on kyetty tekemään Proxima b:n tapauksessa. Se taas kuvastaa hyvin sitä, kuinka vaikeaa eksoplaneettojen havaitseminen edelleenkin on. Yksinkertaiselta kuulostava planeettojen määrän laskeminen jonkin lähitähden kiertoradoilla on erittäin vaikeaa, jos niiden aiheuttamat signaalit ovat heikkoja ja tähden aktiivisuus huonosti tunnettua. Siksi Proxima c on korkeintaan planeettakandidaatti ja sellaisenakin sen olemassaolo on hyvin kyseenalainen.

Tähtitieellinen konsensus voi kuitenkin muuttua hyvin nopeasti yhdenkin uuden havainnon myötä.


Proxima Kentauri tarjoaa läheisyytensä vuoksi mainion mahdollisuuden Jupiteria ja Saturnusta pienempien planeettojen suoraan kuvaamiseen. Edellytyksenä tietenkin on, että sen kiertoradalla on vähintäänkin yksi planeetta, joka ei ole liian lähellä tähteä, jotta kirkas pallo fuusioreaktiossa vapautuvan energian kuumentamaa plasmaa ei estäisi sitä kiertävän kivenmurikan näkemistä. Vaikka Proxima c tarjoaisi suoraan havaitsemiseen ensiluokkaisen mahdollisuuden, nykyisten instrumenttien herkkyyden ei pitänyt riittää siihen. Tutkijat kuitenkin havaitsivat jotakin Paranalin observatorion VLT:n SPHERE-instrumentilla huhtikuussa 2018.

Kuva 1. Infrapunakuva Proxima Kentaurin lähiavaruudesta — Proxima Kentaurin valo on eliminoitu kuvan keskeltä. Sininen katkoviiva kuvaa planeettakandidaatin Proxima c rataa ja keltainen ympyrä vuoden 2018 huhtikuussa radan kohdalta havaittua kirkasta anomaliaa. Toinen keltainen ympyrä kertoo missä planeetta olisi radallaan vuoden 2020 huhtikuussa. Kuva: R. Gratton.

Huhtikuussa 2018 Proxima Kentaurin lähiympäristöstä SPHERE-instrumentilla otetuissa infrapuna-alueen kuvissa näkyy vaatimaton, pikkuruinen tuhru. Se saattaa merkitä jotakin hiukan taustaansa kirkkaampaa ja siten lämpimämpää kohdetta, joka on juuri ja juuri instrumentin erotuskyvyn rajoilla. Kuvan ottaneet tutkijat kuitenkin totesivat analyyttisen viileästi, että vaikka on tietyin oletuksin alle yhden prosentin todennäköisyys, että pikkuruinen tuhru olisi puhtaan taustakohinan aiheuttama, sitä ei voida vielä pitää luotettavana havaintona. Planeetaksi se voitaisiin tulkita vain, jos sen havaittaisiin liikkuvan tähden ympäri.

Kiinnostavaksi havainnon tekee se, että tuhru sattuu sijaitsemaan juuri siinä kohdassa kuvaa, jossa Proxima c kiertää radallaan Proxima Kentaurin tähteä. Se voisi siis olla ensimmäinen infrapuna-alueen valokuva lähitähtemme eksoplaneetasta ja samalla riippumaton varmistus radiaalinopeushavainnoista löydetyn signaalin planetaariselle tulkinnalle. On vain yksi pieni ongelma. Proxima c:n ei pitäisi kokonsa ja lämpötilansa perusteella voida olla riittävän kirkas, jotta sen havaitseminen olisi mahdollista SPHERE-instrumentilla.

Proxima c voisi näkyä kuvassa ennakoitua kirkkaampana tietyin ehdoin. Se voisi näyttäytyä suurempana ja kirkkaampana kuin sen massa-arvio antaa olettaa, jos planeetan ympärillä on saturnuksenkaltainen rengasjärjestelmä. Mutta onko syytä rakennella näin pitkälle meneviä hypoteeseja yhden tuhrun perusteella?

Fantastisen lisähypoteesin tuominen mukaan paikkaamaan edellisen hypoteesin ongelmia ei ole tieteellisesti kovinkaan vakuuttavaa. Se on ehkä mielenkiintoista mutta tieteellisesti lähes arvotonta spekulointia sillä, miten asiat voisivat olla. On epävarmaa, että Proxima c on olemassa. On lisäksi epävarmaa onko saatu minkäänlaista todellista suoraa infrapunahavaintoa yhtään mistään. Vielä epävarmempaa on, onko havainto juuri planeetasta Proxima c. Rengasjärjestelmillä spekulointi kaiken tämän lisäksi menee siksi jo pitkälle tieteiskirjallisuuden puolelle. Tieteenfilosofinen työkalu Occamin partaveitsi leikkaa armotta näin pitkälle menevät rönsyilevät hypoteesiketjut pois luotettavien selitysmallien joukosta.

Spekulointi on kuitenkin hauskaa.

Monimuotoinen kuiden ja renkaiden sekä niiden vuorovaikutuksesta vapautuvan pölyn järjestelmä Proxima c:n kiertoradalla voisi helposti tehdä kohteesta niin kirkkaan, että sen näkyisi SPHERE-instrumentin kuvassa. Aurinkokunnan jättiläisplaneettojen tarjoamien esimerkkien mukaisesti voimme olettaa, että kuut ja renkaat ovat yleisiä myös riittävän massiivisten eksoplaneettojen ympärillä. Proxima c — jos se on olemassa — on massaltaan ainakin noin kymmenen kertaa Maata suurempi ja saattaa hyvinkin olla jopa Neptunuksen kokoinen kappale. Olisi suorastaan hämmästyttävää, jos sellaisen planeetan kiertoradoilla ei olisi kirjoa pienempiä kappaleita pienistä pölyhiukkasista aina kuihin asti.

Sitten vuoden 2016, Proxima Kentauri ja sen kiertolaiset ovat olleet kiivaan tutkimuksen kohteena. Viime vuosien aikana olemme oppineet hämmästyttävän paljon asioita tästä lähimmästä tähdestämme ja sitä ympäröivästä aurinkokunnasta. Tiedämme, että järjestelmässä on lämmin, kivinen sisäplaneetta Proxima b. Tähteä myös ympäröi pölykiekko, joka loistaa ALMA-interferometrin infrapuna-alueen havainnoissa. Olemme havainneet ja oppineet ymmärtämään tähden voimakkaita purkauksia ja magneettista aktiivisuutta ja on olemassa ainakin jonkinlaista todistusaineistoa toisestakin Proxima Kentauria kiertävästä planeetasta Proxima c.

Kuva 2. Taiteilijan näkemys Proxima Kentaurin järjestelmän pölykiekoista. Kuva: ESO/M. Kornmesser.

Ei ole realistista ajatella, että löytöretkemme Proxima Kentaurin järjestelmään olisi saatu päätökseen. Uudet instrumentit ja tähtitieteilijöiden uudet, nerokkaammat tavat havaita ja tutkia lähitähteämme paljastavat varmasti vielä lukemattomia uusia asioita kosmisen lähinaapurustomme kenties mielenkiintoisimmasta kohteesta. Siihen työhön aion osallistua itsekin.

4 kommenttia “Valokuvassa Proxima c”

  1. Very nice post. I just stumbled upon your blog and wanted
    to say that I’ve truly enjoyed browsing your blog posts. After all I’ll be subscribing to your feed and
    I hope you write again soon! Maglia Atletico Madrid JettaSkin Manchester United fodboldtrøjer SeleneMil

    1. Mikko Tuomi sanoo:

      Many thanks, watch this space for more!

  2. Lasse Reunanen sanoo:

    Hämmästyttävän tarkkoja havaintoja kyetään nykyään tekemään lähitähtien eksoplaneetoista. Itse en varmaankaan näkisi niitä himmeitä ”tuhru” (mahdollinen ensimmäinen kuvallinen eksoplaneetta) havaintoja tarkoin kun pistetesteissä olen osittain ns. värisokea – enkä lähikontrasteja esim. vihersävyissä lähekkäin numerokuvioina havaitse vaikka isona kokonaisuuksina eri värit hyvin toisistaan erilleen tunnistankin.
    Eksoplaneetat numeroitu b-kirjaimesta alkaen (a-kirjain varattuna tähdelle) – onko sille lähitähdeltämme löytämällesi eksoplaneetalle jo kertynyt tarkempia nimiehdotuksia ja nimetäänkö se tieteellisen nimikoodinsa lisäksi lähivuosina?

    1. Mikko Tuomi sanoo:

      Lähin eksoplaneetta, Proxima b, ei ole saanut vielä virallisempaa nimeä, koska se on havaintona niin tuore. Sen viralliseen nimeämiseen ei ole olemassa aikataulua. Tunnemme kohteen vain luettelonimillä Gliese 551 b ja HIP 70890 b tai triviaalinimellä Proxima Centauri b.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Luvassa sulaa rautaa ja muita sadekuuroja

24.4.2020 klo 12.00, kirjoittaja
Kategoriat: Eksoplaneetat , Elinkelpoisuus , Havaitseminen , Koostumus

Eksoplaneettojen olosuhteet voivat olla todella erikoisia. Oikeammin, ne voivat olla niin hämmästyttäviä ja Maapalloon rajoittuneen kokemuspiirimme vastaisia, että niiden kaasukehille ominaiset, tavalliset sääilmiöt vaikuttavat meidän maapallokeskeisestä näkökulmastamme katsottuna uskomattoman brutaaleilta ja omituisilta. Vai miltä kuulostaisi monsuunisade, jonka aikana taivas aukenisi ja sataisi sulaa rautaa?

Yli 2400 celsiusasteen lämpötiloja, joissa rautakin höyrystyy, ei esiinny lauhkeassa ilmastossamme oman planeettamme pinnalla. Tarkalleen ottaen niitä ei esiinny myöskään planeetan WASP-76 b pinnalla, koska se on jättiläismäinen kaasuplaneetta, jolla ei ole kiinteää pintaa ja joka kiertää Aurinkoa kirkkaamman ja kuumemman F-tyypin tähtensä ympäri sen koronaa viistäen vain kahdessa päivässä. Lähellä loistava tähti on syy planeetan valtaisaan, raudankin höyrystävään kuumuuteen.

Mutta WASP-76 b on vielä tätäkin oudompi. Tähden voimakkaat vuorovesivoimat ovat saaneet planeetan pyörimisen lukkiutumaan sen kiertoaikaan. Siksi se näyttää aina saman puolensa tähdelleen kuten Kuu näyttää Maalle. Voimakkaan säteilyn armotta korventamalla puoliskolla rauta höyrystyy kaasukehässä ja ankarat kaasukehän virtaukset kuljettavat sitä planeetan pimeän puolen rajalle, jossa lämpötila ei riitä pitämään rautaa kaasumaisena. Siellä rauta sataa kaasukehän alempiin kerroksiin, joista se taas kulkeutuu virtausten mukana kuumalle puolelle höyrystyäkseen uudelleen.

Planeetan WASP-76 b:n olosuhteiden rinnalla, Maapallon suurinkin hurrikaani ja rankinkin sade näyttäytyvät lähinnä rauhallisen kevätpäivän tuulenvireenä ja harmittomana pikku ripotteluna.


Vesisade on ilmakehän ilmiöistä ehkäpä paras merkki planeettamme elinkelpoisuudesta. Kaikki elämä tarvitsee vettä ja sateet saavat kuivat autiomaat, arot ja savannit virkoamaan eloon ja täyteen kukoistukseensa — ainakin lyhyeksi aikaa. Sademetsät puolestaa luovat omat sadepilvensä ja järjestävät oman veden kiertonsa pysyäkseen ikuisesti kosteina. Avainasemassa on ilmakehän vesihöyry, joka näkyy parhaiten pilvinä ennen tiivistymistään sadepisaroiksi ja putoamistaan takaisin maanpinnalle. Vesihöyryä on havaittu myös planeetan K2-18 b kaasukehästä.

Kuva 1. Taiteilijan näkemys planeetasta Ka-18 b. Taustalla näkyvät tähti K2-18 ja järjestelmän sisempi c planeetta. Kuva: A. Boersma.

K2-18 b on yksi Kepler-avaruusteleskoopin löytämistä eksoplaneetoista noin 120 valovuoden päässä Auringosta. Sen tähti K2-18 on pieni punainen kääpiötähti, josta ei tiedetty ennen planeetan löytymistä juuri mitään. Se kuitenkin tiedettiin, että sellaisia tähtiä kiertää keskimäärin vähintään noin kolme planeettaa. Tarvittiin vain se onnellinen sattuma, että planeetat kulkevat radoillaan täsmälleen tähtensä editse.

Mielenkiintoista planeetassa K2-18 b on se, että sen kaasukehässä on pilviä. Ne ovat tavallisia vesihöyrystä koostuvia pilviä. Kuten Maapallo, K2-18 on koostumukseltaan pääosin kiviplaneetta mutta sillä on huomattavasti Maan ilmakehää paksumpi kaasukehä. Kaasukehä koostuu suureksi osaksi vedystä, kuten hiukan suuremmilla Neptunuksen kokoisilla kaasuplaneetoilla, mutta veden merkit ovat selviä mittauksissa sen koostumuksesta.

On oikeastaan hämmästyttävää, että kykenemme tutkimaan sadan valovuoden päässä sijaitsevan ja pientä punaista tähteä kiertävän pienen kiviplaneetan kaasukehän ominaisuuksia. Se on kuitenkin mahdollista käyttämällä hyväksi sitä, mitä ei havaita: planeetan kaasukehän tähtensä valosta pois suodattamia aallonpituuksia.

Lähitähtiä kiertävien planeettojen kaasukehiä voidaan tutkia ovelalla tekniikalla. Tiedetään, että planeetan kulkiessa tähtensä pinnan yli, tähti näyttää himmenevän jokaisen ylikulun aikana. Jos tähti on tarpeeksi kirkas, voidaan katsoa sen spektriä ja tarkastella miten tähden säteily muuttuu eri aallonpituuksilla himmenemisen lisäksi.

Koska osa tähden säteilystä kulkee planeetan kaasukehän läpi sen ollessa suoraan tähden edessä, voidaan spektrin muutoksia havaitsemalla saada tietoa siitä, mistä planeetan kaasukehä on koostunut. Se mahdollistaa myös vesihöyryn havaitsemisen kaukaisten eksoplaneettojen kaasukehissä. Havainto kiinnostaa, koska vesi on elämän edellytys. Mutta voiko K2-18 b olla elinkelpoinen planeetta?


Voimme kuvitella eläviä organismeja, jotka pärjäisivät planeetan K2-18 b kaasukehän suuressa paineessa. Tähden K2-18 voimakkaiden purkausten ja ultraviolettisäteilyn tuhovoimalta ne olisivat hyvin suojattuja kaasuhehän sisällä. Seuraava askel niiden havainnoinnissa on kuitenkin ottamatta. Biologisten organismien ja niistä kertovien signaalien havaitseminen ei ole vielä teknisesti mahdollista.

James Webb -avaruusteleskooppi voi kuitenkin muuttaa kaiken. Sen tarkkuus riittää jopa kivisten eksoplaneettojen suoraan havaitsemiseen, jolloin emme joutuisi tyytymään vain tarkkailemaan, miten planeetat vaikuttavat tähdestään Maahan saapuvaan säteilyyn. Voisimme ryhtyä jopa tutkimaan kivisten lähitähtiä kiertävien eksoplaneettojen sääilmiöitä. Suorat havainnot ovat mahdollisia toistaisesi vain tapauksissa, joissa lähitähtiä kiertää jättiläismäisiä kaasuplaneettoja kaukana, Saturnuksen radan tienoilla. Sellaiset planeetat taas tuskin ovat elinkelpoisia millään tuntemallamme mittarilla.

Suorat eksoplaneettahavainnot tarjoavat uuden, entistä tarkemman työkalun Auringon lähinaapuruston planeettojen ominaisuuksien kartoittamiseen. Erityisen kiinnostavia ovat tarkat havainnot kaasukehien koostumuksista ja siten planeettojen pintojen fysikaalisista ja geokemiallisista olosuhteista. Ensimmäisten kohteiden joukossa on varmasti Barnardin tähden jäinen kiviplaneetta, josta tutkimusryhmäni raportoi vuonna 2018. Silloin eksoplaneettojen tutkimus ottaa jälleen yhden jännittävän askeleen eteenpäin.

2 kommenttia “Luvassa sulaa rautaa ja muita sadekuuroja”

  1. Harrastaja sanoo:

    Kauniisti kirjoitettu, kuin runoa. Kiitos.

    Terveisin
    Tähtein harrastaja*

  2. valtaojanesko(ei ehkä se oikea) sanoo:

    Hieno ja mielenkiintoinen blogi! Ja hienoa, että suomalaisiakin on mukana eksoplaneetta-tutkimuksen kansainvälisellä huipulla.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Aavistuksen himmenevä tähti

17.4.2020 klo 15.00, kirjoittaja
Kategoriat: Eksoplaneetat , Havaitseminen , Koostumus

Henry Draperin valtaisan tähtiluettelon kohde numero 95338 himmeni äkkiä hetkeksi. Aivan hitusen verran. Sen kirkkaus putosi seitsemän tunnin ajaksi vajaat kaksi promillea ennen palaamistaan takaisin normaaliksi, noin puoleen siitä kirkkaudesta, jolla Aurinko loistaa. Se olisi himmentynyt uudelleen, täsmälleen samalla tavalla, aina 55 päivän välein, mutta kukaan ei kyennyt tarkkailemaan tähteä niin pitkään. Maata kiertävä TESS avaruusteleskooppi tuijotti samaa tähtitaivaan aluetta vain 27 päivän ajan, kunnes kääntyi tarkkailemaan aikataulunsa mukaisesti seuraavaa aluetta, joten sen havainnot rekisteröivät vain yhden ainoan himmenemisen.

Mitättömältä vaikuttanut himmeneminen johtui kiertoradallaan vaeltavasta planeetasta HD 95338 b, joka sattui kulkemaan tähtensä editse. Pelkästään yden ylikulun perusteella ei kuitenkaan olisi voinut päätellä mitä edes havaittiin.

Kuva 1. Taiteilijan näkemys massiivisen eksoplaneetan ylikulusta tähtensä pinnan editse. Kuva: M. Weiss/CfA.

Eksoplaneettojen havainnoinnissa ylikulkumenetelmän idea on ehkäpä helpoin ymmärtää. Ajatuksena on tarkkailla kohteena olevaa tähteä niin tiiviisti kuin mahdollista koettaen nähdä himmeneekö se hiukan sen editse radallaan kulkevien planeettojen estäessä murto-osan tähden säteilyä saapumasta Maahan ja teleskooppeihimme. Kuulostaa helpolta mutta käytännössä planeettojen etsintä ylikulkujen avulla on hämmästyttävän vaikeaa, koska emme tiedä minkä tähtien planeetat ovat oikeanlaisella radalla ja milloin ne kulkevat radallaan tähtensä editse. Yhdenkin havainnon tekoa varten on kyettävä havaitsemaan tuhansia tähtiä samanaikaisesti päivien ja kuukausien ajan. Sellainen onnistuu vain avaruusteleskooppien avulla.

Jos planeetta on kooltaan kymmenesosan tähdestä, sen ylikulku himmentää tähteä noin sadasosan. Maapallo on kooltaan noin prosentin Auringosta. Jos jonkin vierasta tähteä kiertävällä planeetalla asuvan sivilisaation tutkija tarkkailisi teleskoopillaan Aurinkoa havaiten Maan ylikulun, se tarkoittaisi kykyä nähdä Auringon himmeneminen noin promillen kymmenesosan verran. Tuhansia planeettoja löytäneelle Kepler avaruusteleskoopille sellainen tarkkuus oli mahdollista, joten tekniset sivilisaatiot kyllä kykenevät havaitsemaan Maan ylikulun — jos vain tarkkailevat Aurinkoa suunnasta, josta katsottuna Maa kulkee radallaan Auringon editse.

Kun havaitaan vain yksittäinen ylikulku, ei voida tehdä päätelmiä siitä, mitä on havaittu. Kyseessä voi olla suuri yksittäinen tähden pilkku tai niiden ryhmä taikka jonkin himmeän taustataivaan kaksoistähden tuottama efekti. Periaatteessa vaaditaan kaksi ylikulkuhavaintoa, jotta voidaan määrittää niiden välinen aika ja siten planeetan kiertoradan jakso — planeetan vuosi. Jotta vieraan sivilisaation tutkija voisi mitata Maan vuoden pituuden, hänen tulisi tarkkailla herkeämättä Auringon kirkkautta ylikulkujen varalta vähintään vuoden ajan. Käytännössä vieläkin pidempään.

Vaikka havaittaisiin kaksi ylikulkua, ne eivät välttämättä ole saman planeetan aiheuttamia. Ne voivat aiheutua kahdesta erillisestä suunnilleen saman kokoisesta planeetasta, jolloin kahden pienen himmenemisen rekisteröinti havaintoinstrumentin digitaalikameralla ei vielä riitä. Tarvitaan kaksi mittausta planeetan ratajaksosta, eli vähintään kolmen ylikulun havainnointi, jotta voidaan selvittää planeetan radan ominaisuuksia tai arvioida planeetan kokoa.

Maankaltaisen planeetan havaitsemiseen vaaditaan siis jatkuvaa auringonkaltaisen tähden kirkkauden havainnointia keskeytyksettä parin vuoden ajan. Sellainen ei voi olla mahdollista planeettamme pinnalta käsin. Maanpäällisillä teleskoopeilla voimme havaita tähtiä vain öisin, ja tyypillisesti vain osan vuodesta, jolloin havaintojen tekoon tarvitaan käytännössä paljon enemmän aikaa kuin kaksi ratajaksoa. Jos ylikulku sattuu väärään vuodenaikaan tai päivällä, se jää armotta havaitsematta. Siksi silmää räpäyttämättä taivasta tuijottavat avaruusteleskoopit, sellaiset kuin Kepler tai TESS, ovat parhaita instrumentteja eksoplaneettojen ylikulkujen havainnointiin ja niiden ominaisuuksien tutkimiseen.

Tähden HD 95338 tapauksessa ylikulkuja kuitenkin havaittiin vain yksi. Se oli onnellinen sattuma, koska TESS avaruusteleskooppi tuijotti tähden sisältämää taivaan aluetta vain 27 päivää. Yksittäinen seitsemäntuntinen ylikulku olisi aivan hyvin saattanut jäädä osumatta havaintojaksoon. Tiesimme kuitenkin etsiä planeetan merkkejä HD 95338:n havainnoista, koska olimme selvillä sen olemassaolosta jo entuudestaan.


HD 95338 sijaitsee 37 parsekin päässä Auringosta ja on siksi yksi Auringon lähinaapuruston tavallisista spektriluokan K oransseista kääpiötähdistä. Se ei loista niin kuumana kuin Aurinko, eikä ole aivan yhtä suuri massaltaan tai halkaisijaltaan, mutta se kuuluu galaksimme tavallisiin kääpiötähtiin, joden ympärillä on runsaasti tähden synnyn sivutuotteena muodostuneita planeettoja. Käytännössä voidaan olettaa, että jokaista tähteä kiertää planeetta tai planeetoja. Kysymys on vain siitä, voidaanko niitä havaita.

Teimme havaintoja kohteesta HD 95338 kahdella eri teleskooppeihin asennetulla spektrometrillä, joiden tarkoituksena on mitata tähden huojumista näkösäteen suunnassa planeetan vetovoiman vaikutuksesta. Yhdessä Calanin observatoriossa Santiagossa työskentelevien Matias Diazin ja James Jenkinsin sekä useiden muiden tutkijoiden kanssa, olimme havainneet tähteä HARPS-instrumentilla La Sillan observatoriossa sekä Las Campanasin observatorion PFS-instrumentilla.

Tiesimme havaintojen perusteella, että tähteä kiertää vähintäänkin kaksi kertaa Neptunusta massiivisempi planeetta 55 päivän kiertoradalla. Muuta emme tienneet ja planeetta näytti olevan vain yksi monista tavanomaisista kaasuplaneetoista kiertämässä lähitähtiä. Olimme keskustelleet löydön julkaisemisesta mutta se ei vaikuttanut niin kiinnostavalta, että kenenkään kannattaisi käyttää viikkoja tieteellisen julkaisun huolelliseen valmisteluun.

Sitten TESS muutti kaiken.

Radiaalinopeushavainnoista saa selville vain planeetan minimimassan, koska sen ratatason kallistuskulma jää tuntemattomaksi. Jos kuitenkin havaitaan planeetan ylikulku, radan kallistuskulma selviää hetkessä — se on silloin noin 90 astetta taivaan tasoon nähden, koska rata kulkee täsmälleen tähden ja havaitsijan välistä. Selvisi, että HD 95338 b oli massaltaan lähes täsmälleen kaksi kertaa Neptunusta suurempi ja siten luultavasti suhteellisen tyypillinen kaasuplaneetta.

Kuva 2. Tähden HD 95338 raskaasti prosessoidut suhteelliset kirkkaushavainnot TESS-avaruusteleskoopin havaintojaksolta 10. Havaintosarjassa näkyy selvästi tähteä kiertävän planeetan aiheuttama noin 7 tuntia kestävä noin kahden promillen suuruinen himmentymä. Kuva: M. Diaz, M. Tuomi.

Mutta ylikulusta selvisi myös planeetan halkaisija, joka osoitti sen olevan Neptunuksen kanssa saman kokoinen. Kahden Neptunuksen massa oli siis pakkautunut vain yhden Neptunuksen kokoiseksi planeetaksi.

Toisin kuin Neptunus, jonka koostumuksesta suunnilleen 20% on kaasumaista vetyä ja heliumia, HD 95338 b on koostunut likimain kokonaan vetyä ja heliumia raskaammista aineksista. Havainnot planeetan koosta ja massasta on selitettävissä parhaiten kappaleella, joka koostuu jäästä. Olemme siis löytäneet valtaisan, noin 40 kertaa Maapalloa massiivisemman, lumipallon kiertämässä tähteä 120 valovuoden päässä meistä.

Se ei tosin muistuta lainkaan tavanomaisia lumipalloja, sillä planeetan vetovoima on valtaisa ja jää on kovassa paineessa hyvin erilaista kuin Maapallon lauhkeissa olosuhteissa. Lisäksi, noin 130 celsiusasteen lämpötilassa planeetta ei voi olla jäässä pinnaltaan — eikä niin massiivisella kappaleella voi Neptunuksen tapaan edes olla kiinteää pintaa.

HD 95338 b ei ole aivan tavaton tunnettujen eksoplaneettojen joukossa, mutta on vaikeaa selittää, miten jokin kappale voisi kasata 40 Maapallon edestä jäätä itseensä keräämättä vetovoimansa avulla ympärilleen paksua vedyn ja heliumin vaippaa, kuten Jupiter ja Saturnus. Emme osaa selittää miten jättiläismäiset lumipallot syntyvät. Se kuvastaa sitä, miten puutteellisia tietomme planeetoista, niiden synnystä ja kehityksestä ovat.

Mutta HD 95338 b:n löytöprosessi kuvastaa myös toista asiaa. Se kertoo, että puhtaalla tuurilla on edelleen merkittävä osuus tähtitieteessä. Koskaan ei voi tarkkaan tietää mitä onnistumme havaitsemaan. Emme todellakaan odottaneet törmäävämme massaltaan 40 Maapallon suuruiseen lumipalloon kaukana avaruudessa.

2 kommenttia “Aavistuksen himmenevä tähti”

  1. Juhani Mäntynen sanoo:

    Hieno aloitus blogille!

    Olen usein pähkinyt miten monta prosenttia planeetoista voitaisiin havaita ylikulkumenetelmällä, kun varsin harvan planeeten kiertorata sattuu juuri sille hiuksen hienolle tähtäysviivalle.

    Lisää samanlaista t: Jussi

    1. Mikko Tuomi sanoo:

      Noin prosentti suhteellisen lähellä tähteään kiertävistä planeetoista kulkee tähden pinnan editse ja niiden havainnointi onnistuu. Mitä kauempana planeetat kiertävät tähteään, sitä hankalampaa havaitseminen on, koska ylikulkujen todennäköisyys ja niiden määrä aikayksikköä kohti pienenevät.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *