Arkisto


Missä vedet vain virtaavat

19.12.2023 klo 10.00, kirjoittaja
Kategoriat: Astrobiologia , Eksoplaneetat , Elinkelpoisuus , Havaitseminen

Olemme jo pitkään ajatelleet elämän voivan esiintyä siellä, missä vain on nestemäistä vettä. Samalla olemme vähintäänkin alitajuisesti ajatelleet planeettamme pintaolosuhteiden vettä jokien, järvien ja merten muodossa, ja antaneet intuitiomme johdattaa itseämme harhaan. Meille, ihmislajiin kuuluville kaksijalkaisille apinoille, kylpyvesi on sellaista parasta mahdollista vettä ja siksi näemme helpoiten vettä vain siellä, missä esiintyy selkeitä veden ja ilman rajapintoja. Näemme joissa virtaavat vedet, näemme järvien syvänteet ja merten aallokon. Ne ovat ehkäpä juuri lajimme kokemuspiiriin keskeisimmin kuuluvia veden esiintymiä, mutta maailmankaikkeuden mittakaavassa kuitenkin siitä harvinaisemmasta päästä.

Vettä on runsain mitoin muuallakin. Arviolta ainakin valtamerten verran vettä esiintyy jo planeettamme kallioperän sisuksissa, sitoutuneena mineraaleihin ja täyttäen kivisen aineksen pienenpieniä halkeamia. Kallioperä tarjoaa valtavasti elintilaa eläville organismeille aivan jalkojemme alla, eikä inhimilliseen kokemuspiiriin kuuluvaa vettä tarvita ylläpitämään sellaisten elävien solujen aineenvaihduntaa. Tunnemme samoin monia muita välittömän kokemuspiirimme ulkopuolella olevia elinympäristöjä, joiden koko olemassaolo on selvinnyt meille vasta viime vuosikymmeninä. Tiedämme järvistä Antarktiksen mannerjään alapuolella, eristyksissä planeettamme pinnan elinympäristöistä. Vastaavia olosuhteita saattaa löytyä jopa Marsin napajäätiköiden alapuolelta. Samoin olemme oppineet tuntemaan merenpohjan geologisesti aktiivisten alueiden ekosysteemit. Samankaltaisia paikkoja, joissa geokemiallisten ja biologisten prosessien välinen rajapinta on saattanut ylittyä, saattaa esiintyä Europan ja Enceladusin valtamerten pohjista.

Kuten aina tieteessä, tutkimuskysymykset ja menetelmät niihin vastaamiseen valitaan tunnetun tiedon lähtökohdista. Siten ihmislähtöinen ajattelumme on vain yksi ymmärrykseemme harhoja aiheuttava tekijä, jonka kahleita on yllättävän vaikeaa ravistaa pois edes luonnontieteiden analyyttisessa ja matemaattisen metodologisessa maailmassa. On siksi aina ilahduttavaa nähdä sellaisten kahleiden heikkenevän ja putoavan pois haittaamasta tiedettä. Nyt niin on käymässä vinhaa vauhtia vanhentuneille ajatuksille nestemäisen veden ja elämän edellytysten esiintymisestä maailmankaikkeudessamme.


Valtaosa maailmankaikkeuden elämästä tuskin esiintyy keltaisessa auringonvalossa kimmeltävän sinisen valtameren suolaisissa aalloissa. Rantakallioihin paiskautuvat aallot, hiekkarantojen aaltoilevat kuviot vesirajassa, ja moninaiset vuorovesilammikoiden labyrintit ovat ehkä vain harvinaisia veden muodostamia elinympäristöjä, joista valtaosalla universumimme elävistä organismeista ei ole minkäänlaista kokemusta. Maa on historiansa saatossa ollut jään peitossa, mutta monia oman aurinkokuntamme kappaleista peittää ikijää, jonka alla velloo suolainen meri. Nyt tutkijat ovat ensi kertaa koettaneet huomioida sellaisten maailmojen elinkelpoisuutta arvioidessaan elinkelpoisten planeettojen lukumääriä maailmankaikkeudessa.

Oleellisessa roolissa on tietenkin nestemäinen vesi. Sen esiintymisen arviointi on kuitenkin kaikkea muuta kuin helppoa, vaikka tähtitieteilijät ovatkin julkaisseet erilaisia arvioitaan eksoplaneettojen vedestä jo niin kauan kuin planeettoja on tunnettu toisten tähtien kiertoradoilta. Tyypillisesti on keskitytty arvioimaan minkälaisissa olosuhteissa vesi voi virrata planeetan pinnalla ihmislajille tutuilla tavoilla. Kyse on silloin siitä, että etsimme maankaltaisia olosuhteita muilta planeetoilta ja koetamme oleellisesti määrittää eksoplaneettojen elinkelpoisuutta suhteessa omaan planeettaamme. Logiikka on tietenkin oikein toimivaa — kun kerran omalla planeetallamme esiintyy runsain mitoin elämää, sitä voi esiintyä muualla samankaltaisissa olosuhteissa. Tuloksena on saatu arvioita monenlaisista klassisista elinkelpoisista vyöhykkeistä, jotka rajoittuvat oleellisesti omasta planeettakunnastamme tutuilla tavoilla. Voimme sanoa karkeasti, että planeetan ollessa liian kylmä kuten Mars, sen vesi on jäässä ja elämää tuskin esiintyy. Samoin, jos planeetta on liian kuuma, kuten Venus, sen kasvihuoneilmiö karkaa käsistä ja muodostuu kuuma, elinkelvoton pätsi. Todellisuus on kuitenkin paljon monimuotoisempi.

Jää tarjoaa mainion suojan veden nestemäiselle olomuodolle, ja siksi sen esiintyminen on oleellisessa roolissa. Kun klassinen elinkelpoinen vyöhyke auttaa arvioimaan edellytyksiä maankaltaiselle elämälle, sen ulkopuolella ei periaatteessa ole kuin kevyitä rajoitteita sille, kuinka kauas elinkelpoinen vyöhyke voi ulottua, jos ei tarvitse rajoittua maankaltaisiin olosuhteisiin. Tarvitaan kuitenkin jokin lämmön lähde, joka voi pitää veden virtaamassa eristeenä toimivan jääkuoren alapuolella, kuten radioaktiivinen hajoaminen, planeetan synnystä jäljelle jäänyt lämpö, vuorovesivoimien aiheuttama kitkalämpö, tai niiden jonkinlainen kombinaatio. Vaikka jättiläisplaneettojen kuut muodostuvat tällöin merkittäväksi elinkelpoisten ympäristöjen reserviksi, myös perinteinen tavallisten kiviplaneettojen elinkelpoinen vyöhyke laajenee ulospäin (Kuva 1.).

Kuva 1. Arvioita elinkelpoisen vyöhykkeen sijainnista eri lämpötilan tähdille suhteutettuna Auringosta Maahan saapuvaan säteilyvuohon. Sama säteilyvuo saavutetaan Aurinkoa (lämpötila 5800 K) viileämmille tähdille huomattavasti lähempänä niiden pintaa, mikä aikaansaa voimakkaita vuorovesivoimia ja vuorovesilukkiutumisen (harmaa katkoviiva) likimain kaikille viileitä tähtiä kiertäville elinkelpoisille planeetoille. Punainen, tähdestä katsottuna kaukaisin katkoviiva kuvaa säteilyolosuhteita, joissa nestemäinen vesi voi vielä esiintyä kivisen planeetan pinnalla jäätiköiden alla. Sisimmät siniset katkoviivat edustavat elinkelpoisia olosuhteita jään alla vuorovesilukkiutuneiden planeettojen pimeällä puolella. Kuva: A. Wandel.

Suurimmat vaikutukset ovat kuitenkin punaisten kääpiötähtien vuorovesilukkiutuneille kiviplaneetoille, jotka ovat lähellä tähteään liian kuumia nestemäisen veden esiintymiselle mutta vain valoisalta puoleltaan. Niiden pimeät puolet pysyvät viileinä ja voivat pysyä jäätiköiden peitossa vaikka tähden säteily olisi peräti 150% voimakkaampaa (2.5 kertaista) kuin maapallolla. Lähin esimerkki sellaisesta planeetasta on Proima b, jonka pinnalleen saama säteily on noin 35% heikompaa kuin omalla planeetallamme. Mutta Proxima b ei ole yksin, vaan likimain kaikki kiviplaneetat, jotka kiertävät punaisia kääpiötähtiä kiertoradoilla, joilla vuoden pituus on mitä tahansa muutamasta päivästä muutamaan kymmeneen päivään, mahtuvat mainiosti uuden, laajennetun elinkelpoisen vyöhykkeen sisälle. Se tarkoittaa valtavaa lisäystä potentiaalisesti elinkelpoisten planeettojen määrään Auringon lähinaapurustossa ja linnunradassamme. Potentiaalisesti nestemäistä vettä ja siten elämälle soveltuvia elinympäristöjä on silloin keskimäärin ainakin yhdellä planeetalla jokaista linnunradan tähteä kohti.

Tärkeässä roolissa planeettojen elinkelpoisuuden arvioinnissa on tietenkin kaasukehä, josta emme tiedä oikein mitään yhdellekään maankaltaiselle eksoplaneetalle. Nyt voimme kuitenkin esittää optimistisia arvioita, että elinkelpoisia alueita saattaa esiintyä likimain jokaisella lähitähtien kiviplaneetalla, jonka vain kykenemme löytämään. Ja se tarkoittaa myös mahdollisuuksia havaita merkkejä maanulkopuolisesta elämästä.

Voimme kuvitella läheistä pientä tähteä kiertävän pienen kiviplaneetan, jonka valoisa puoli on kuuma ja karu autiomaa, jonka olosuhteissa mikään elävä organismi ei voi selviytyä. Sillä voi kuitenkin olla pimeällä puolellaan paksu jäätikkö, jonka alla virtaa nestemäinen vesi, ja jossa on omat monipuoliset ekosysteeminsä, jotka saavat energiansa geologisesta aktiivisuudesta. Dynaamisena järjestelmänä sellainen jäätikkö olisi alati tähden vuorovesivoimien muokattavana, mistä aiheutuisi halkeamia ja railoja, ja osittaista sulamista sekä uudelleen jäätymistä kaasukehän virtausten kuljettaessa aina ajoittain haihtuvan veden takaisin pimeälle puolelle. Sellaisissa olosuhteissa geysirit voisivat vapauttaa jään alta materiaa kaasuksi planeetan kasukehään, tuottaen muutoin kuivaan kaasukehään vesihöyryä ja sen mukana merkkejä orgaanisista molekyyleistä. Sellaisia, jotka voisimme havaita vaikkapa transmissiospektroskopian keinoin, jos vain planeettan ylikulkuja tähtensä editse voidaan tarkkailla.

2 kommenttia “Missä vedet vain virtaavat”

  1. Elämä tarvitsee vettä, ravinteita ja energiaa. Biologinen pöhinä skaalautuu sen mukaan mikä noista kolmesta on minimitekijä. Esim. kallioperän raoissa tai Europan meressä minimitekijä on arvatenkin energialähde. Antroposentrismiä on hyvä varoa, mutta toisaalta ihmiselle tuttu ympärstö, esim. aurinkoinen ranta, on absoluuttisessakin mielessä aika vahva noiden kolmen tuotannontekijän suhteen.

    Viimeisessä kappaleessa kuvattu transmissiospektroskopian käyttö kuulostaa lupaavalta tutkimussuunnalta.

  2. Seniorikosmetologi sanoo:

    Vaikka mikrobitason elämää löytyykin syvältä Maan kallioperästä ja Antarktiksen jään alta, olen ajatellut niin, että sellainen elämä on syntynyt alkujaan maankuoren pinnalla Auringon valon ja lämmön vaikutuspiirissä. Mantereiden liikkeet ja tulivuoritoiminta on johtanut siihen, että osa mikrobeista on vajonnut syvälle maaperään tai peittynyt jääkuoren alle. Niistä mikrobeista on jäänyt eloon sellaisiin olosuhteisiin sopeutuneet, muut ovat kadonneet. Kallioperässä ja paksun jääkuoren alla esiintyvä mikrobielämä ei siis ole syntynyt siellä. Se ei myöskään ole kehittynyt, vaan jäänyt satojen miljoonien tai muutaman miljardin vuosien takaiselle tasolleen.

    Eksoplaneetoilla ja planeettojen kuissa esiintyvän mikrobitasoisen elämän olisi siis mielestäni täytynyt syntyä suurin piirtein samalla tavalla kuin Maassakin. Kylmässä (tai lämpimässä) pimeydessä jään alla tai kallioperässä en usko elämää syntyvän missään. Se voi vain siirtyä sinne olosuhteiden muuttuessa.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *


Uusia arvioita elämästä lähitähtien planeetoilla

4.12.2023 klo 10.00, kirjoittaja
Kategoriat: Astrobiologia , Eksoplaneetat , Elinkelpoisuus

Onko maailmankaikkeutemme ja galaksimme elämä yleistä vai harvinaista? Onko sitä syntynyt jo kauan ennen Aurinkokunnan muodostumista vai edustaako planeettamme ensimmäistä elävien planeettojen sukupolvea? Kuinka monta elävää planeettaa galaksissamme on? Moniko niistä sijaitsee kosmisessa lähinaapurustossamme vain kymmenien valovuosien päässä? Kuinka kaukana on lähin elävä planeetta?

Kysymyksiä liittyen elämään maailmankaikkeudessa on erittäin helppoa esittää mutta luotettavien vastausten löytäminen onkin sitten likimain mahdotonta, koska tunnemme vain yhden esimerkin elävien planeettojen luokasta. Yrityksen puutteesta tutkijoita ei kuitenkaan voi syyttää. Tähtitieteilijät ja modernit astrobiologit ovat koettaneet valjastaa tiedettä vastatakseen kysymyksiin elämästä, universumista ja kaikesta niin kauan kuin nykymuotoista tieteellistä tutkimusta on tehty. Yksittäinen anekdootti ei vain salli kummoisiakaan yleistyksiä ja se, että olemme pohtimassa koko kysymystä elämän yleisyydestä takaa vastausten olevan jo lähtökohtaisesti olemassaolomme vääristämiä.

Rustatessaan eräänlaista todennäköisyyksillä leikittelevää yhtälöään lasinaluseen, Frank Drake, yhdysvaltalainen tähtitieteilijä, tuskin aavisti kirjoittavansa varsinaista kulttimaineeseen nousevaa laskukaavaa. Hän hahmotteli karkeaa tapaa arvioida teknisten sivilisaatioiden välisen kommunikoinnin mahdollisuuksia perustuen sarjaan helpommin käsiteltäviä arvioita vaadittavista reunaehdoista. Voimme esimerkiksi arvioida tähtien syntynopeutta, auringonkaltaisten tähtien yleisyyttä niiden joukossa, ja planeettojen esiintymistä niiden kiertolaisina koettaessamme arvioida kuinka usein (maankaltaiset) elämälle soveltuvat olosuhteet syntyvät. Voimme spekuloida moniko planeetoista soveltuu elämälle ja monelleko niistä elämää sitten syntyy. Sitten voimme koettaa arvioida kuinka todennäköisesti kehittyy älykkäitä lajeja, teknisiä sivilisaatioita, ja kyky kommunikoida vaikkapa radiosignaalien välityksellä muiden vastaavien sivilisaatioiden kanssa. Lopuksi voimme arvailla minkälaista halukkuutta vieraalla sivilisaatiolla olisi sellaiselle toiminnalle ja kuinka kauan sivilisaatio olisi olemassa harjoittaakseen kommunikointia.

Draken laskukaavassa ei toki sinällään ole mitään vikaa. Se vain on mahdoton käyttää millään luotettavuudella käytännön tarkoituksiin, koska sen tekijöistä vain tähtitieteellistä puolta voidaan arvioida — biologisia ja kulttuurillisia reunaehtoja voimme vain arvailla perustuen siihen, mitä oman planeettamme elämästä olemme oppineet. Onko esimerkiksi todennäköistä, että vieraan lajin tekninen sivilisaatio olisi edes millään tavalla kiinnostunut kommunikoimaan toisten sivilisaatioiden kanssa, vaikka sillä tekniset edellytykset siihen olisikin? Emme voi tietää vastauksia kuin vain kapeasti oman lajimme lähtökohdista.


On selvää, että voimme unohtaa arviot koskien teknologisten sivilisaatioiden määriä mutta elämän edellytysten esiintymisen arviointi onnistuu oikein mainiosti jatkaen Draken viitoittamalla polulla. Laskelmat eivät kuitenkaan ole aivan yksinkertaisia. On huomioitava kuinka nopeasti tähtiä on syntynyt galaksimme historian saatossa ja kuinka suuri osuus tähdistä on mitäkin tyyppiä. Syntynopeus on muuttunut jatkuvasti, riippuen paikallisista olosuhteista. Esimerkiksi Auringon syntyä 4.6 miljardia vuotta sitten edelsi noin miljardi vuotta aiemmin tapahtunut tähtien syntyryöppy. Sen kestäessä miljardit tähdet syttyivät jonkin galaktisen häiriötekijän saatua tähtienvälisen kaasun ja pölyn pilvet luhistumaan ja tuottamaan läjäpäin tähtiä. Samalla syntyi tietenkin suunnaton määrä planeettoja tähtien kiertoradoille, mikä on huomioitava elämän yleisyyttä koskevissa laskelmissa.

Toinen merkittävä tekijä on raskaampien alkuaineiden määrä. Varhaisemmassa maailmankaikkeudessa oli vähemmän heliumia raskaampia tähtitieteilijöiden yleisnimellä ”metalli” kutsumia alkuaineita. Se hidasti jättiläisplaneettojen syntyä, joten vasta ensimmäisten tähtisukupolvien kuoltua ja vapautettua raskaita alkuaineita avaruuteen supernovaräjähdysten myötä, jättiläisplaneettojen muodostuminen on päässyt vauhtiin ja on voinut syntyä enemmän aurinkokunnankaltaisia hierarkisia järjestelmiä. Edelleen, on huomioitava, että tähdet eivät elä ikuisesti, vaan tähtien elinikä riippuu oleellisesti niiden massasta. Keveimmät punaiset kääpiötähdet elävät pisimpään, jopa satoja miljardeja vuosia, ja ne eivät ole ehtineet maailmankaikkeuden eliniän aikana omaa taaperovaihettaan pidemmälle. Aurinkoa kirkkaammat ja massiivisemmat tähdet taas kuolevat supernovina jo korkeintaan parin miljardin vuoden ikäisinä kun taas Auringonkaltaiset keltaiset kääpiötähdet elävät kymmenisen miljardia vuotta.

Galaksimme noin parisataa miljardia tähteä ovat siis eri ikäisiä ja eri kokoisia, ja omaavat erilaiset koostumukset, mitkä kaikki vaikuttavat niitä ympäröivien planeettakuntien koostumukseen ja ominaisuuksiin, sekä elinkelpoisuuteen. Auringon naapurustossa, josta on tarkkoja Gaia -avaruusteleskoopin havaintoja, on arvioiden mukaan tapahtunut ainakin neljä merkittävää tähtien syntyryöppyä noin 1, 2, 6 ja 10 miljardia vuotta sitten. Jokaisen aikana syntyi tähtiä, joiden koostumus oli keskimäärin erilainen, ja Aurinko edustaa metallipitoisuudeltaan keskimääräistä tähteä. Luonnollisesti, vanhimmat tähdet ovat vähämetallisimpia kun taas nuorimmissa tähdissä metallipitoisuus on korkein.

Tarkastellessamme perinteisiä elinkelpoisia vyöhykkeitä, eli etäisyyksiä tähdistä joilla nestemäisen veden esiintyminen kiviplaneetan pinnalla olisi mahdollista, on lisäksi huomioitava tähtien kehitys. Tyypillisesti tähdet kirkastuvat vanhetessaan. Ne polttavat ytimestään vetyä fuusioreaktiossa tuottaen heliumia vedyn tilalle. Helium taas vaatii fuusioonsa huomattavasti korkeampia lämpötiloja, joten ytimen vetyvaraston vähetessä energiantuotanto hiipuu, mikä saa gravitaation ottamaan vallan ja puristamaan ydintä kovemmin kasaan. Se taas nostaa lämpötilaa vedyn fuusioreaktioon vaadittavalle tasolle myös ydintä ympäröivissä kerroksissa, jotta tähti pysyisi tasapainotilassa. Vedyn fuusiota ylläpitävä ydin siis laajenee, ja samalla ytimen lämpötila kasvaa, mikä saa myös tähden kirkastumaan. Samalla elinkelpoisen vyöhykkeen etäisyys tähden pinnasta karkaa kauemmaksi kasvaneen kuumuuden myötä. Esimerkiksi Aurinko kuumenee hiljalleen tavalla, joka tekee omasta planeetastamme korventuneen, elottoman kivenmurikan noin miljardin vuoden kuluttua. Sellaisella aikataululla saapuvasta maailmanlopusta ei kuitenkaan tarvitse huolestua.

Kaikkiaan, noin 330 valovuoden etäisyydellä Aurinkokunnasta on noin 11 000 elinkelpoisen vyöhykkeen kiviplaneettaa. Se planeettapopulaatio on kaikkein kiinnostavimmassa asemassa, koska kauempaa merkkejä elämästä on huomattavasti vaikeampaa havaita. Kun yllämainittujen tekijöiden vaikutus on huomioitu, on mahdollista arvioida alkeellisen elämän yleisyyttä naapurustossamme erilaisilla reunaehdoilla.

Yksi kriittinen tekijä on oranssien K-sarjan kääpiötähtien suotuisuus elämälle. Ne ovat stabiileja tähtiä Auringon tapaan, mutta hiukan pienempinä paljon auringonkaltaisia tähtiä yleisempiä. Jos niitä kiertävistä elinkelpoisista planeetoista edes prosentille syntyisi elämää kuten omalle planeetallemme, voidaan arvioida lähimmän elävän planeetan olevan vain 65 valovuoden etäisyydellä. Vastaavasti, jos elävien mikrobien synty on epätodennäköinen sattumus, joka onnistuu vain yhdellä kymmenestätuhannesta sille soveltuvasta planeetasta, on mahdollista, että Auringon lähinaapurustossa noin 11 tuhannen elämälle soveltuvan planeetan joukossa ei esiinny muuta elämää kuin omamme.

Jos taas elämän synty on todennäköinen seuraus geokemiallisten prosessien käynnistymiselle nestemäisen veden virratessa, on selvää, että elämä on vanhaa ja ensimmäiset biosfäärit muodostuivat jo yli 8 miljardia vuotta sitten varhaisessa maailmankaikkeudessa. Jopa kolmannes elävistä planeetoista olisi näitä varhaisen synnyn planeettoja, muiden elämän ollessa tuoreempaa alkuperää Maan tapaan. Fotosynteesin käynnistymiseen puolestaan kului kauemmin Maapallolla, ja sen seurauksena kaasukehämme muuttui suuren hapettumisen aikakautena happipitoiseksi mahdollistaen energeettisemmät elävän kemian reaktiot ja siten pidemmät ravintoketjut ja lopulta oman itsemme. Jos tapahtumat ovat edenneet samalla vauhdilla muualla, voimme ennustaa Auringon lähinaapuruston olevan täynnä vastaavia happea aineenvaihdunnassaan käyttävän biokemian ympäristöjä. On siis kaikki mahdollisuudet törmätä happipitoisen kaasukehän ympäröimään maankokoiseen eksoplaneettaan, kun vihdoin onnistumme tekemään havaintoja elinkelpoisella vyöhykkeellä sijaitsevien pienten kiviplaneettojen kaasukehistä.

Tarkkojen arvioiden tarjoaminen elävien planeettojen määrästä kosmisessa naapurustossamme on tietenkin mahdotonta, koska emme osaa tehdä yleistyksiä elämän synnystä perustuen vain yhteen havaittuun esimerkkiin. Voimme silti perustellusti sanoa, että elämä on todennäköisesti yleistä, ja parhaimmillaan suorastaan hävyttömän yleistä maailmankaikkeudessamme, vaikka lähimmälle elinkelpoiselle planeetalle saattaisi sittenkin olla matkaa jopa sadan valovuoden verran. Silloinkin omassa galaksissamme on miljoonia, ellei jopa miljardeja eläviä planeettoja. Seuraavaksi ne on vain kyettävä tunnistamaan ja on onnistuttava havaitsemaan merkkejä niiden elämästä.

Se taas on oma tulevaisuuden seikkailunsa, jonka ainakin minä toivon ihmiskunnan kokevan vielä oman elinikäni puitteissa.

Yksi kommentti “Uusia arvioita elämästä lähitähtien planeetoilla”

  1. Jotenkin tuntuu että vaikka metallipitoisuudella varmasti on vaikutusta, ehkä sen merkitystä on yliarvioitu (ehkä siksi että kyseinen parametri on mahdollista mitata, tähden spektristä, helpommin kuin moni muu eksoparametri). Toki jos metalleja ei ole juuri lainkaan, silloin ei kai maankaltaisia planeettoja voi syntyä, mutta muuten tuntuu että kaikenlaisilla tähdillä on monenlaisia planeettoja. Muistan nähneeni esim. jonkin paperin jonka aiheena oli ”galaktinen elämänvyöhyke”, joka oli jokin rengas galaksissa jonka ulkopuolella on liian vähän metalleja ja sisäpuolella liikaa supernovia. Arvelen että todellisuudessa tuollainen elinkelpoisuusrengas olisi kuitenkin aika leveä.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *