Arkisto
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- maaliskuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- toukokuu 2020
- huhtikuu 2020
Jättiläisten harteilla
Kertomukset on hyvä aloittaa alusta. Aivan alusta.
Luin vuonna 1996 artikkelin juuri löydetyistä uusista planeetoista. Siinä kerrottiin yksityiskohtaisesti, miten sveitsiläiset ja yhdysvaltalaiset tutkijat olivat kyenneet tekemään vuosikymmenten haaveesta totta. He olivat havainneet luotettavia merkkejä planeetoista kiertämässä toisia aurinkoja, galaktisen lähinaapuruston muita auringonkaltaisia tähtiä.
Ensimmäiset havainnot eksoplaneetoista edustivat tieteellistä vallankumousta. Ne merkitsivät samankaltaista paradigman muutosta kuin kopernikaaninen vallankumous, jossa koko kosmologinen näkökulma muuttui ja todettiin Maan olevan vain yksi planeetta muiden joukossa Aurinkoa kiertävällä radalla. Tai se Alfred Russell Wallacen ja Charles Darwinin työhön perustuva havainto, että ihminen on vain yksi evoluutiohistorian saatossa kehittyneistä miljoonista Maapallon lajeista.
Maa ei ole erityisasemassa muutoin kuin siitä subjektiivisesta näkökulmasta, että se on kehtomme ja kotimme. Aurinkokunta on vain yksi monista planeettakunnista galaksissamme, joka on puolestaan vain yksi monista näkyvän maailmankaikkeuden tähtijärjestelmistä. Emme ole millään periaatteellisella tavalla erityisasemassa maailmankaikkeudessamme, galaksissamme tai aurinkokunnassamme. Se oli ensimmäisten eksoplaneettahavaintojen oleellinen tulos — bonuksena löydettiin uusia mielenkiintoisia kohteita, joiden havainnointi on opettanut runsaasti uutta maailmankaikkeuden toiminnasta, monimuotoisuudesta, historiasta ja kehityksestä, sekä omasta paikastamme siinä.
Kiinnostukseni heräsi. Alitajuisesti aavistin, että halusin astua jonakin päivänä näiden suurten tähtitieteilijöiden, ”planeettojen metsästäjien”, valtaviin saappaisiin. Halusin olla löytämässä uusia maailmoja, elää modernin ajan löytöretkeilijänä jossakin jännittävän tieteiskirjallisuuden ja huipputieteen rajapinnalla. Halusin kiivetä aina vain ylemmäs, sinne, mistä näkee kauemmaksi.
En koskaan kehdannut mainita alitajuista aavistustani edes itselleni. Miten yksi keskinkertaisesti koulussa menestyvä pohjoisen periferian lapsi voisi saavuttaa mitään suurta tai tehdä mitään jännittävää? En osannut haaveilla. En osannut asettaa itselleni tavoitteita. Niinpä päädyin vain kulkemaan sinne, minne mielenkiinto johdatti, yksi kirja ja artikkeli kerrallaan. Kiipesin historian suurten tutkijoiden tukeville hartioille, kohti tunnetun tieteen ja tuntemattoman rajaseutua. Kurkistin lopulta sinne, minne kukaan ei ollut vielä nähnyt.
Ajatus planeetoista kiertämässä lähitähtiä ei ole uusi. Taivaan tähtien katsottiin voivan olla toisia aurinkoja jo 1500-luvulla kopernikaanisen vallankumouksen mukanaan tuoman paradigman muutoksen pyörteissä. Jos Maa on vain yksi planeetoista kiertämässä Aurinkoa, miksei tähtitaivaan muidenkin aurinkojen kiertoradoilla olisi planeettoja? Niiden havainnointi ajateltiin kuitenkin mahdottomaksi. Verrattaen himmeän, pikkuruisen planeetan havaitseminen kirkkaasti loistavan, valtaisan tähden vieresssä vaikutti teknisesti saavuttamattomalta — kuin koetettaisiin nähdä pienen kiiltomadon valonkajetta järven vastarannalla sijaitsevan, aivan ilmiliekeissä palavan talon vieressä.
Planeetat kuitenkin paljastavat olemassaolonsa monella tapaa. Tähtitieteilijöillä oli käytössään muuttumattomat fysiikan lait ja alati paraneva teknologia. He keksivät useita menetelmiä eksoplaneettojen havainnoimiseksi.
Barnardin tähden valssi
Isaac Newtonin jo 1600-luvulla muotoilema teoria gravitaatiovoiman vaikutuksesta tarjoaa tavan havaita planeettoja näkemättä niiden loistetta valokuvissa. Tarvitsee vain tarkkailla tähtien liikettä taivaalla, ja etsiä niistä jaksollisia poikkeamia perustuen siihen, että tähdet kiertävät avaruudessa liikkuessaan itsensä ja jonkin toisen kappaleen yhteisen massakeskipisteen ympäri. Jos kumppanina on planeetta, tähti ei heilahtele paljon mutta sen liikkeessä voi silti havaita kumppanin vetovoiman aiheuttamia vaikutuksia. Aivan kuin tähdet tanssisivat valssia kosmisen musiikin säestämänä, näkymättömän partnerin ohjatessa niiden liikettä.
Peter van de Kamp tiesi, että planeetan aiheuttaman heilahtelun voisi havaita helpoiten, jos kohteena oli mahdollisimman lähellä Aurinkoa sijaitseva lähitähti. Kohteeksi oli helppoa valita yksi lähinaapureista, vuonna 1916 löydetty pieni punainen kääpiötähti, Barnardin tähti — lähempänä sijaitsee vain alpha Kentaurin kolmoistähti. Heilahtelun suuruudesta voisi laskea planeetan massan — heilahtelun jakso taas vastaisi suoraan planeetan vuoden pituutta. Oli vain havaittava tarkasti tähden liikkeen poikkeamia sen luotisuorasta ominaisliikkeestä, joka Barnardin tähdellä on tunnetuista tähdistä kaikkein suurinta.
Vuosikymmeniä kestäneen havaintokampanjan päätteeksi van de Kamp teki 1960-luvulla havainnon planeetasta — tai niin hän ainakin havaintonsa tulkitsi. Havaintojen variaatiot oli mallinnettavissa yhden tai kahden planeetan aiheuttamina mutta ongelmana olivat vaikeudet saavuttaa riittävä tarkkuus. Tarkkuutta koetettiin parantaa ottamalla joka vuosi sadan valokuvauslevyn tulosten keskiarvo sekä laittamalla usea kollega ja opiskelija mittaamaan tähden paikka suhteessa taustataivaan kohteisiin jokaiselta levyltä inhimillisen virheen minimoimiseksi. Sekään vain ei riittänyt. Kävi ilmi, että useat tähdet näyttivät liikkuvan van de Kampin valokuvissa samalla tavalla. Kyse ei siis voinut olla planeetoista, vaan kiusallisista teleskoopin ja muun laitteiston muutoksista, joita ei oltu otettu huomioon.
Barnardin tähden tanssia valokuvauslevyillä ei aiheuttanut planeetta tai kaksi tähden kiertoradalla huolimatta van de Kampin tulkinnasta. Barnardin tähti ei kuitenkaan ole yksin. Sen kiertolaiset vain eivät ole rittävän massiivisia, jotta van de Kamp olisi voinut havaita niistä merkkejä.
Kuva 1. Barnardin tähden liikettä taivaalla kuvaavat havainnot vuodelta 1969. Havaintojen vaihtelut on mallinnettu yhden tähteä kiertävän planeetan vetovoimavaikutuksella. Kuva: P. van de Kamp. Kuva 2. Barnardin tähden liike mallinnettuna kahden tähteä kiertävän planeetan vetovoimavaikutuksella. Kuva: P. van de Kamp.
Peter van de Kamp etsi planeetan aiheuttamaa signaalia, näki signaalin, ja päätteli sen olevan todiste planeetan olemassaolosta. Kyseessä oli tavanomainen virhetulkinta, jollaisille kaikki tutkijat ovat aina alttiita, elleivät ole varovaisia. Vahvistusharha hoitaa lopun.
1980-luvulla moni oli kuitenkin ryhtynyt aavistelemaan, että ehkäpä eksoplaneettojen havainnointi ei olisikaan täysin mahdoton saavutus. Se saattaisi olla jopa seuraavan sukupolven tähtitieteilijöiden toteutettavissa. Van de Kampin virhe Barnardin tähden kanssa kuitenkin kasvatti tutkijoiden kynnystä ryhtyä epätodennäköiseen eksoplaneettojen etsintään. Juuri kukaan ei halunnut ottaa pienintäkään riskiä siitä, että tulisi muistetuksi vain tekemästään virheestä.
Planeettalöytöjen pioneerit
Vuonna 1988 yhdysvaltalainen Bruce Campbellin johtama tutkimusryhmä julkaisi tuloksensa, joiden mukaan eräs lähitähti, gamma Cephei A, liikkui avaruudessa aavistuksen heilahdellen. He olivat mitanneet tähden lähettämän valon sini- ja punasiirtymiä, keräten informaatiota nopeuden muutoksista meitä kohti ja meistä poispäin. Kyseistä Doppler spektroskopiaksi kutsuttua menetelmää oli käytetty ansiokkaasti kaksoistähtien ratojen määrittämiseen. Menetelmä oli nerokas, koska sen soveltamiseen tarvittiin vain riittävän kirkas tähti, josta oli tehtävä spektrimittauksia. Planeettojen etsintä tuli mahdolliseksi muutaman lähitähden sijaan tuhansien riittävän kirkkaiden tähtien ympäriltä.
Doppler spektroskopiassa mitataan tarkalleen ottaen tähden säteilyspektrin absorptioviivojen paikkojen muutosta. Jos ne heiluvat syklisesti punaiseen ja siniseen päin, on tavallisesti kyse näkösäteen suunnassa heilahtelevan tähden valon Doppler-siirtymästä. Se taas aiheutuu tähden tanssista planeetan vetovoiman vaikutuksesta. Voidaan sanoa, että menetelmällä havaitaan planeettoja tarkkailemalla pienenpieniä tähden värin muutoksia.

Gamma Cephein kaksoistähden A-komponentti käyttäytyi kuin sitä kiertäisi planeetta. Tutkijat olivat kuitenkin julkaisussaan varovaisia ja totesivat vain saaneensa ”luotettavaa todistusaineistoa pienimassaisesta kappaleesta”. Pienimassainen tarkoitti massaltaan vajaan kahden Jupiterin kokoista kiertolaista vajaan kolmen vuoden kiertoradalla. Campbell ryhmineen oli varovainen ja tiedosti virhehavainnon mahdollisuuden olevan valtava. Kollegoiden paineen vuoksi ryhmä vältti sanomasta suoraan, että gamma Cephei A:ta kiersi planeetta ja Campbell itse vaihtoi alaa ryhtyen verokonsultiksi — hän ilmeisesti kyllästyi ainaisiin vaikeuksiin saada työpaikkaa tai edes rahoitusta akateemisessa maailmasta.
Vuonna 2002 Campbellin löytö varmistui. Tähteä gamma Cephei A tosiaan kiertää jättiläisplaneetta. Campbell vain ei saanut kunniaa ensimmäisen eksoplaneetan löytäjänä, koska hänen kollegansa eivät uskoneet tulokseen. Luultavasti myös van de Kampin virhetulkintojen eksoplaneettojen etsinnän ylle langettama varjo esti häntä tuomasta löytöään esille sen ansaitsemalla tarmokkuudella.
Samoihin aikoihin toinenkin yhdysvaltalaisryhmä työskenteli oman spektrografinsa parissa, havaiten omia kohteitaan.
David Lathamin johtama joukko tähtitieteilijöitä ei ollut epävarma julkistaessaan löytönsä. He kertoivat havainneensa luettelokoodilla HD 114762 tunnettua tähteä kiertävän kappaleen, jonka olemassaolon paljasti vain sen vetovoima. Tähti heilui selvästi mutta näkymätön kappale oli sekin moninkertaisesti Jupiteria massiivisempi. Sen minimimassaksi saatiin arvioitua peräti 11 Jupiterin massaa, mikä sai tutkijat pohtimaan tosissaan miten he voisivat kuvailla kohteen luonnetta. HD 114762 b osoittautui niin massiiviseksi, että se saattoi kyetä fuusioimaan vedyn raskaampaa isotooppia deuteriumia heliumiksi ytimessään. Sellainen kappale olisi ruskeaksi kääpiöksi luokiteltava tähtien ja planeettojen välimuoto, ei planeetta.
Julkaisemassaan artikkelissa Lathamin tutkijaryhmä joutui hyväksymään tosiasiat. He olivat tosiaan löytäneet erittäin mielenkiintoisen tähtiin verrattuna pienimassaisen kappaleen mutta sen luokittelulle planeetaksi ei ollut tarpeeksi vahvoja perusteita. Ryhmä totesi, että ”kyseessä on todennäköisesti ruskea kääpiö tai jopa jättiläisplaneetta”, painottaen kohteen luokittelun planeetaksi olevan perusteetonta. Siksi sitä ei myöskään pidetty ensimmäisenä eksoplaneettalöytönä.
On puhdasta kohtalon ivaa, että nykyisellään HD 114762 b luokitellaan eksoplaneetaksi likimain jokaisessa eksoplaneettojen luettelossa.
Eksoplaneettojen aika
Uudet tieteenalat voivat alkaa hyvinkin nopeasti. Yksittäinen löytö voi paljastaa uuden eksoottisten tutkimuskohteiden luokan, jonka ympärille muotoutuu oma tutkimussuuntauksensa vuosien saaatossa.
Eksoplaneettojen suhteen niin kävi parissa viikossa. Ensin ei tunnettu — Campbellin, Lathamin ja kumppaneiden tuloksista huolimatta — ainuttakaan auringonkaltaista tähteä kiertävää eksoplaneettaa. Seuraavassa hetkessä niitä tunnettiin jo kourallinen ja kokonainen tutkijoiden armeija käänsi katseensa eksoplaneettojen metsästykseen.
Mutta sitä ennen, vuonna 1992 Aleksander Wolszczan ja Dale Frail raportoivat ensimmäisestä luotettavasta eksoplaneettalöydöstä. Löytö oli täysin odottamaton, fantastisen kummallinen planeettakunta kuolleen tähden jäänteen, neutronitähden PSR1257+12 ympärillä. Planeetat ovat ilmeisesti muodostuneet valtaisan supernovaräjähdyksen jäljiltä kiertoradalle jääneestä materiasta. Yksikään tähtitieteilijä ei ollut tullut ajatelleeksi, että vinhasti pyörivän, säteilyllään lähiympäristönsä steriloivan tähden jäänteen kiertoradoilla voisi olla planeettoja. Joskus maailmankaikkeus vain on erikoisempi kuin kukaan on edes osannut kuvitella.
Ensimmäinen auringonkaltaista tähteä kiertävä planeetta löytyi vuonna 1995. Tähden 51 Pegasi kiertoradalta havaittiin kuuma jättiläisplaneetta 51 Pegasi b, joka myöhemmin sai nimen Dimidium. Löydön tehneet sveitsiläisastronomit Michel Mayor ja Didier Queloz palkittiin vuoden 2019 fysiikan Nobelin palkinnolla. Kun yhdysvaltalaiset Paul Butler ja Geoffrey Marcy julkaisivat omat tuloksensa vain kahta viikkoa myöhemmin, he eivät vain varmistaneet 51 Pegasi b:n olemassaoloa, vaan raportoivat samalla kahdesta muustakin eksoplaneetasta.

Butler ja Marcy eivät olleet ajatelleet, että jättiläismäiset kaasuplaneetat voisivat kiertää tähtiään lähellä, niiden pintaa viistäen. Siksi he eivät olleet osanneet etsiä Merkuriusta nopeammin tähtensä kiertäviä planeettoja, vaan vasta hioivat menetelmiään ja tekivät havaintoja koettaessaan nähdä jupiterinkaltaisia planeettoja lähitähtien kiertolaisina. He riensivät analysoimaan mittauksiaan välittömästi kuultuaan Mayorin ja Quelozin löydöstä ja onnistuivat varmistamaan sen ennätysnopeasti. Samalla he muuttivat eksoplaneettojen etsinnän muutaman optimistisen tutkijan haihattelusta varteenotettavaksi tähtitieteen haaraksi, koska yhden yksittäisen löydön voi aina kyseenalaistaa hatarinkin perustein mutta kolmen havaintovirheen esittäminen ei ole mahdollista edes ankarimmalle epäilijälle.
Eksoplaneettojen aika oli alkanut.
Tunnemme tuhansia planeettoja lähitähtien kiertolaisina. Mutta eksoplaneettojen aika ei ole tulossa päätökseen, siinä vain alkaa uusi vaihe. Tavoitteena ei ole enää vain planeettalöytöjen tekeminen, vaan niiden ominaisuuksien ja pintojen olosuhteiden määrittäminen. Eksoplaneettatutkimus on modernia löytöretkeilyä, jossa emme löydä ja tutki vain uusia maita, vaan kokonaisia uusia maailmoja.
Minulla on ollut kunnia olla mukana etsimässä ja löytämässä kymmeniä eksoplaneettoja. Se on ollut mahdollista vain, koska sinnikkäämmät tutkijat ovat periksiantamattomasti kehittäneet havaintomenetelmiä, keränneet havaintoja ja etsineet eksoplaneettoja vuosien ja vuosikymmenten ajan.
Olen löytänyt uusia maailmoja. Mutta vaikka olen hetken verran, pienen vilauksen ajan nähnyt kauemmaksi, se on ollut mahdollista vain, koska olen seissyt jättiläisten harteilla.
3 kommenttia “Jättiläisten harteilla”
Vastaa
Katoavat planeetat
Tieteessä on aina mukana tulkintaa. Kukaan tieteentekijä ei ole absoluuttisen objektiivinen, vaan aivan jokainen on altis alitajuisille näkemyksille, omakohtaisille kokemuksille ja oman ajattelunsa rajoituksille. Ne taas vaikuttavat siihen, miten tiedettä tehdään, mitä tutkitaan ja minkälaisessa valossa saatuja tuloksia tarkastellaan.
Jokaisella on omaa ennakkotietoa. Tieteessä sillä tarkoitetaan tietoa, joka tutkijalla oli ennen kuin hän suoritti tieteellisen kokeensa, keräsi mittauksia ja informaatiota, teki havaintoja ja analysoi niitä. Saatuaan uutta tietoa, tutkijat sitten yhdistävät sen ennakkotietoihinsa Bayesilaisen inferenssin avulla ja saavuttavat synteettisen tiedon, joka voi toimia uutena ennakkotietona ennen seuraavaa tieteellistä koetta. Jokainen tutkija jatkaa tätä prosessia koko uransa, saaden samalla jatkuvasti tietoa lukuisten muiden tutkijoiden kokeista. Ideaalitapauksessa kaikki tutkijat päätyvät lopulta samaan synteettiseen tietoon mutta käytännössä niin ei koskaan käy. Tutkijat päätyvät vain keskimäärin löytämään tarkasti todellisuutta kuvaavan selitysmallin — siitä esiintyy tutkijoiden keskuudessa aina poikkeavia ja ainakin osittain virheellisiä selitysmalleja.
Tähän kuitenkin perustuu tieteellisen metodin voima. Tiede on oikeastaan vain itseohjautuva, maailmankaikkeutta selittämään pyrkivä prosessi, joka hakeutuu asymptootisesti kohti totuutta muttei koskaan saavuta sitä. Tiede harhailee aina vain lähempänä totuuden tuntumassa, ottaen tosin joskus mittaviakin sivuaskeleita. Parasta mahdollista käsitystämme totuudesta kutsutaan tieteelliseksi tiedoksi — tieteellinen tieto ei siis ole totuus, vaan vain parhaiten havaintoihin sopiva selitys maailmankaikkeuden ominaisuuksista ja toiminnasta.
Planeettojen havainnointi ei ole immuunia ihmisten alttiudelle takertua subjektiivisiin näkemyksiinsä. Mikään tiede ei ole. Edes Maapallon tapauksessa havainto planeetasta, pallomaisesta kappaleesta kiertämässä radallaan tähden ympäri, ei ole kiistaton tosiasia kaikille. On olemassa hämmästyttävän nopeasti kasvava joukko litteään maahan uskovia tieteenkieltäjiä, jotka valitsevat heittää romukoppaan suuren osan vakiintunutta tieteellistä tietoa, koska se ei sovi heidän omakohtaiseen kokemukseen ja voimakkaaseen ennakkotietoon maailmasta. Siksi on oikeastaan hämmästyttävää, että olemme kyenneet havaitsemaan jo tuhansia planeettoja kiertämässä tähtiä Auringon lähinaapurustossa tai vieläkin kauempana ja asiasta vallitsee lähes täydellinen tieteellinen konsensus. Lähes.
Kaikkien eksoplaneettojen olemassaolo ei ole kiistatonta, johtuen tutkijoiden subjektiivisista lähtökohdista, jotka joskus vaikuttavat tehtyihin päätelmiin. Jos tähtitieteilijä koettaa etsiä planeetan merkkejä, hän hyvin usein merkkejä löytäessään tarkastelee ensin voisivatko ne olla planeetan aiheuttamia. Joskus muut selitysmallit, joita tähtitieteessä lähes aina on runsain mitoin, jäävät liian vähälle huomiolle.
Hubble avaruusteleskoopin kuvaama läheistä nuorta tähteä Fomalhaut kiertävä planeetta tarjoaa hyvän esimerkin. Vuonna 2004 tähtitieteilijät havaitsivat kirkkaan kohteen tähteä ympäröivän pölykiekon lähettyvillä. Kohde näytti liikkuvan radallaan tähden ympäri ja havainto sai nopeasti planetaarisen tulkinnan — kirkkaan kohteen ajateltiin olevan tähteä kiertävä jättiläisplaneetta Fomalhaut b, jolle annettiin nimeksi Dagon kansainvälisen tähtitieteen unionin toimesta. Vaikka kävi nopeasti ilmi, että planeettakandidaatin rata oli hyvin soikea ja sen etäisyys tähdestään vaihtelisi noin 30 ja 300 AU:n välillä, mikä häiritsisi vakavalla tavalla tähteä ympäröivää pölyrengasta, havainnon planetaarinen tulkinta pysyi suosituimpana selityksenä.

Tuoreemmat havainnot kuitenkin osoittivat, että Dagon oli kadonnut — se oli himmentynyt ja laajentunut tasaisesti ja muuttunut lopulta niin himmeäksi, ettei sitä enää näkynyt Hubble avaruusteleskoopin tarkoissa kuvissa. Planeetat eivät voi kadota tällä tavalla. Mitä oikein oli tapahtunut?
Osa tähtitieteilijöistä oli alusta lähtien kiinnittänyt huomiota siihen, että planeetaksi tulkittu kirkas kohde ei näkynyt lainkaan infrapuna-alueen havainnoissa — se ei siis lähettänyt lämpösäteilyä planeettojen tavoin. Kyse oli siten todennäköisemmin jostakin muusta. Se jokin muu näyttää olleen kirkas pölypilvi, joka laajeni ja himmeni hajotessaan avaruuteen. Havainnoissa näkyi jättiläisplaneetan sijaan kirkas välähdys, joka aiheutui tähteä kiertävien pienempien kappaleiden törmäyksestä, ja josta jäljelle jääneen pölyn Fomalhaut puhalsi tähtituulen mukana kauemmaksi avaruuteen.
Eksoplaneetta hukassa
Tähtitieteilijät hukkaavat planeettoja. Tarkemmin sanoen, heidän tulkintansa havainnoista saattavat olla vääriä, jolloin planeettalöytönä pidetty havainto haihtuu ilmaan uuden paremmin perustellun tulkinnan tieltä, kuten kävi Fomalhaut b:n tapauksessa. Planeettakandidaatti voi kadota, kun sen olemassaolon paljastaneet havainnot onnistutaan mallintamaan aiempaa tarkemmin. Koska ensimmäinen askel uusien matemaattisten ja tilastollisten mallien ja työkalujen sekä mallinnusmenetelmien käyttöönotossa on aina niiden soveltaminen vanhoihin havaintoihin, planeettalöydöt joutuvat armotta uuteen testiin aina menetelmien kehittyessä — ei vain silloin, kun saadaan kerättyä uusia havaintoja.
Pohjimmiltaan on kyse siitä, minkälaiset selitysmallit sopivat havaintoihin parhaiten. Jos mittaukset voi selittää ilman planeettaa yhtä hyvin kuin planeetan kanssa, oletukselle planeetan olemassaolosta ei voida katsoa olevan todistusaineistoa. Se ei kuitenkaan tarkoita, että planeettaa ei ole. Todistusaineiston olemattomuus ei ole sama asia kuin olemattomuuden todiste.
Omakohtaisesti tutuin esimerkki hukatusta eksoplaneetasta liittyy lähitähteen nimeltään Gliese 581. Sitä kiertävien planeettojen määrän laskeminen on osoittautunut vuosien saatossa eritäin hankalaksi toimenpiteeksi. Vaikka järjestelmässä väitettiin olevan jopa kuusi planeettaa, en saanut laskettua kuin neljään tarkastellessani niiden määrää vuonna 2011. Sittemmin järjestelmän kaksi planeettaa — toisen niistä arveltiin olevan maankaltainen, potentiaalisesti elinkelpoinen supermaapallo — ovat pysyneet hukassa. Kukaan ei ole myöskään kyennyt osoittamaan, että niiden olemassaolon voisi poissulkea havaintojen perusteella.
Tilanne on tieteessä yleinen. On todettu, että aiemmin esitetylle hypoteesille, tai selitysmallille, ei ole todistusaineistoa. Vaikka se ei tarkoita, että hypoteesi olisi väärä, tilanteessa tehdään aina se yksinkertaistus, että ylimääräiset oletukset jätetään huomiotta.
Todistustaakka on sillä, joka esittää väitteen. Bertrand Russellin kuuluisan analogian mukaisesti, kukaan ei voi aukottomasti todistaa, että Jupiterin radan tuolla puolen ei ole pikkuruista teekannua kiertämässä radallaan Aurinkoa. Todistustaakka on sillä, joka esittää teekannun olevan olemassa.
Eksoplaneetta kiertämässä jotakin kaukaista tähteä on filosofisessa mielessä kuin Russellin teekannu. Joitakin poikkeuksia lukuunottamatta, kukaan ei voi osoittaa, että sitä ei ole olemassa. Sen olemassaolon taas voi osoittaa tekemällä siitä havaintoja, joita ei voida selittää ilman planeettaa. Siksi Fomalhaut b:n ei voida katsoa olevan olemassa. Aivan samoin planeetta Gliese 581 g ei ole olemassa, eikä ole kuvainnollinen Russellin teekannukaan — ennen kuin joku havaitsee sen.
2 kommenttia “Katoavat planeetat”
-
Tähti Fomalhaut kuvasta voinee tulkita myös, että sellaista tähteä ympäröivän pölykiekon kirkkaita pölypilviä olisi symmetrisesti kuten usein niiden muodostelmissa ollut – kuvista havaittavissa. Siis ulkokaarteeseen kiertyvinä vasemmassa yläkulmassa ja oikeassa alakulmassa ja sitten himmeämpiä kertomasi havainto ylhäällä oikeassa sisäkulmassa ja mahdollisesti sille vastinsuunnassa – vasemmassa alakulmassa olisi tai ollut samaa (ei kuvasta havaittavissa, olettamalle).
Sanonta, että Maa kiertää Aurinkoa planeettojen tavoin selvästi havaittuna ja tiedossamme. Avaruudessa kappaleet kiertänevät jotain yhteistä painopisteen keskiötä (Maakaan ei siten aivan täsmälleen kiertäne Auringon keskiötä).
Esimerkkisi ns. teekannun kokoisen kohteen kiertämisestä havaintoja vaikea olisikin tehdä mikäli ei kohteen näköetäisyyteen pääsisi (ihmisten lähettäminä avaruuteen sellaisia teekannuja ei vielä lienekään tiedossa), vaihtamalla nimikkeitä tietysti epätosia väittämiä muodostuisi.
Sikäli kun kappaleet kiertää yhteisen painopisteen ympäri ja mikäli kohteet suhteellisen samaa kokoa eikä muita vetokohteita lähellä niin voinee olettaa kummankin kiertävän toisiaan. Sitten kun kokoero vähitellen kasvaa niin kierto kohdistunee enempikin vain toisen ympäri, mutta kenties kuitenkin toinenkin jossain hitaammassa tahdissa kiertyy pienemmänkin ympäri.
Aurinkokunnassa muitakin kiertoja ja Auringon kiertymistä (esim. Maahan nähden) vaikeampaa hahmottaa kun useita pienempiä ja suurempia kiertolaisia tasaamassa Aurinkoon kohdistuvia siirtymiä, mutta vain Maan kokoinen ja samalla etäisyydellä kohde kiertämässä Auringon kokoista tähteä kenties jossain aikasuhteessa saisi myös tähtensä kierähtämään painopisteidensä ympäri ja siirtymä siten osaltaan isomman kohteen kierto myös pienemmän kohteen ns. ympäri (vaikka ei täyttä kierrosta tekisikään). -
Piti lukea blogi ihan kahteen kertaan ennen kuin uskoin, että kerrankin joku oppinut kertoo rehellisesti, mitä tieteen tekeminen raadollisuudessaan on. Kiitos siitä!
Minua on jo pitkään kummeksuttanut erityisesti kosmologien hapuilu, kun yrittävät selittää uusien, toinen toistaan parempien havaintovälineiden paljastamia universumin saloja. Kun uudet havainnot eivät vastaa omaa käsitystä, havainnoille haetaan selitystä kehittämällä uusia, omaa vanhaa käsitystä tukevia teorioita. Eikä kukaan ole oikeasti lähtenyt kyseenalaistamaan vanhojen oppi-isien työn tuloksia, vaan omat teoriat rakennetaan niiden pohjalta ja jatkoksi. Siinä piilee suuri harhautumisen riski. Ratkaisemattomien asioiden ja uusien teorioiden pino vain kasvaa, kun ei uskalleta edetä puhtaalta pöydältä.
Olen verrannut kosmologian nykytilaa mielessäni ristisanatehtävään, joka ei koskaan ratkea, koska siinä on varmana pidettyjä, mutta vääriä sanoja.
Vastaa
Proxima b — kauan odotettu riippumaton varmistus
Tieteessä mikään ei ole varmaa. Huomisen tulokset voivat aina kyseenalaistaa tai kumota sen, minkä tiedämme tänään. Uudet havainnot, selitysmallit ja teknologia tarjoavat keinoja ymmärtää maailmankaikkeutta aina vain tarkemmin, paremmin ja luotettavammin. Usein se tarkoittaa sen tiedon hylkäämistä, mitä pidimme totena vielä eilen. Vanha tieteellinen totuus väistyy uuden tieltä oltuaan epätarkka, riittämätön tai puhtaasti virheellinen. Silloin olemme oppineet jotakin uutta.
Proxima Kentaurin eksoplaneettahavainnon julkistamisesta on kulunut jo lähes neljä vuotta. Toistaiseksi kukaan ei ole raportoinut tuloksen olevan virheellinen tai riittämätön — epätarkka se on luultavasti ollut, ainakin jossakin määrin. Hyväksytyn tieteellisen näkemyksen mukaan Proxima b on olemassa, eikä kukaan ole onnistunut raportoimaan tulosta, joka olisi asian kanssa ristiriidassa.
Havainto Proxima Kentauria kiertävästä eksoplaneetasta on kestänyt mittausten uudelleenanalysoinnin. Kymmenet tutkimusryhmät ovat käyneet läpi havaintomateriaalin ja analysoineet sen koettaen osoittaa, että Proxima b ei olekaan olemassa. Kukaan ei ole raportoinut voivansa selittää havaintoja ilman planeetan aiheuttamaa efektiä. Kukaan ei ole osoittanut, että planeetan aiheuttamaksi tulkittu signaali voisikin aiheutua aktiivisesta tähden pinnasta tai jostakin muusta häiriöstä.
Viimeinenkin mahdollinen virhelähde, instrumentin aiheuttama häiriö, on saatu eliminoitua mahdollisena vaihtoehtoisena selitysmallina planeetan aiheuttamalle signaalille. Uudet havainnot maailman tarkimmalla spektrometrillä, ESPRESSO:lla, ovat tuottaneet Proxima b:n havainnon riippumattomasti (3). Se tarkoittaa sitä, että planeetan olemassaolo on käytännössä varmistunut.

Proxima b on olemassa mutta järjestelmässä on luultavasti kaksi muutakin planeettaa. Vaikka emme tiedä planeetoista kovinkaan paljon, tiedämme nyt erittäin suurella varmuudella, että Proxima Kentaurin järjestelmä on lähimmän eksoplaneetan koti. Sen ominaisuuksista ei vielä ole olemassa paljoakaan yksityiskohtaista tietoa mutta voimme nyt levollisin mielin siirtyä odottamaan mitä seuraavan sukupolven teleskoopit ja niillä tehtävät suorat havainnot Proxima Kentaurin planeetasta tai planeetoista paljastavat. Lähin eksoplaneettamme ei ole menossa enää minnekään.
2 kommenttia “Proxima b — kauan odotettu riippumaton varmistus”
-
Hyvä tieto sinulle ja muille asiaa tutkineille, asia jää vakiintuneeksi tähtitieteen historian kirjauksiin.
Eksoplaneetta Proxima b mahdollisine muine kiertolaisineen lähitähtemme ympärillä jatkanevat kuitenkin likimain samaa kiertoa Linnunradan ympäri kuin oma Aurinkomme planeettoineen (etäisyytemmekin säilynee pienin vaihteluin vuosimiljoonia samoin).
Muista lähitähdistä etsittänee eksoplaneettoja edelleen, mutta useimmissa tapauksissa löytöjä läheltämme ei vielä ollut.Otit viimeksi kirjoituksessasi esiin Linnunradan liftarit kirjasta luvun 42 tarkemmat numerot – ns. maailmankaikkeuden tarkoituksen kysymykselle (kommenttini hieman myöhässä tähän yhteyteen).
Maailmankaikkeudella tietysti on joitakin täsmällisyyksiä, jotka toistuu havaitussa ympäristössämme (kenties useiden lukusarjojen yhteismerkityksiä).
Kiinalaisilla ollut vuosituhansia käytössä 64 luvun merkityksiä selittämään maailmaamme (8×8 ruudukolla), josta sumennettuna kirja; Muutosten kirja – joka usein antaa ns. sumealla logiikalla likimääräistä vinkkiä näihin maailmamme kysymyksiin (ei tietenkään tieteellisen tarkkoja vastauksia, mutta kenties niissäkin jokin totuuden ydin löytyy).
Eksoplaneettatutkimuksesta hyvä kooste.
Viimeiset sanat: – ”jättiläisten harteilla” / kommentoin:
Sanonta ollut käytössä monen aikaisemman tiedemiehen kertomana myös.
Sitä käsitettä voinee hieman laajentaakin. Jättiläinen tietysti kookasta tarkoittaen,
jolla eläneiden tieteentekijöiden runsasta tietomäärää osoitettu. Sanasta toinen merkitys: Jättää myös sopii kun jälkeensä jättäneet tietonsa ovat…
Tieteentekijät yleensä olleet myös toisten aikalaistensa tuen saaneita
(rahoitukseen, asumiseen, ravintoon vaatetukseen, tieteen avustajiinsa jne.),
joka mahdollistanut saavutuksiaan. Kirjoitus- ja lukutaito sekä opiskelu edistäneet.
Nyttemmin voisi kenties jo ymmärtää asiaa ns. jättiläisen harteilla olemista,
joka kaikkea kertynyttä maailmanlaajuista tietomäärää ja se monipuolistunutta jakautumista kaikille ihmisille ollut – siis maapallon laajuista tietokapasiteettiamme.
Meemeiksi näitä ajatuskertymien perimää kutsuttanee geeniperimämme lisänä.
Terve Mikko,
Hiljattain julkaistiin kuva tähdestä, missä myös näkyi 2 eksoplaneettaa. Plateettojen etäisyydet oli muistaakseni 160 ja 320 au:ta keskustähdestä. Onko muissakin järjestelmissä tyypillistä planeettojen etäisyyksien tuplaantuminen niinkuin omassamme? Käytetäänkö tuon tyyppisiä ominaisuuksia vaikka tähtien huojuntaan perustuvissa mallinnuksissa, sijoittamaan planeettoja todennäköisiin oikeisiin paikkoihin?
Planeettojen ratojen koot ja etäisyydet toisistaan eivät noudata minkäänlaista yksinkertaista ”tuplaantumislakia”, kuten Titius-Boden laki, joita on aina joskus ehdotettu. Järjestelmät syntyvät kaoottisen prosessin lopputuloksena, ja ratoihin vaikuttavat muodostumisvaiheessa tähden ympärillä olevan kaasukiekon kitka sekä planeettojen keskinäiset vuorovaikutukset niiden vetovoimien välityksellä. Minkäänlaista standardilopputulosta planeettakuntien hierarkialle ei ole tiedossa. Jättiläisplaneetat kuitenkin saattavat syntyä tietyin etäisyyksin, jotka riippuvat niiden synnyttäneen kertymäkiekon tiheydestä ja massasta. Niiden etäisyydet kuitenkin muuttuvat, joskus runsaastikin, syntymän jälkeen, kun kaasukiekon kitka muuttaa niiden ratoja.
Planeettojen keskinäiset vetovoimat asettavat rajan sille, kuinka lähellä toisiaan planeetat voivat olla pakkautuneena stabiiliksi järjestelmäksi. Maksimaalisella tavalla pakattuja planeettakuntia tunnetaankin useita, ja niille vastaava geometrinen planeettojen keskinäisiä etäisyyksiä kuvaava yksinkertainen ”laki” voi olla olemassa. Esimerkkinä vaikkapa TRAPPIST-1 järjestelmä.