Arkisto
- marraskuu 2023
- lokakuu 2023
- syyskuu 2023
- elokuu 2023
- kesäkuu 2023
- toukokuu 2023
- huhtikuu 2023
- helmikuu 2023
- tammikuu 2023
- joulukuu 2022
- marraskuu 2022
- lokakuu 2022
- syyskuu 2022
- elokuu 2022
- kesäkuu 2022
- toukokuu 2022
- huhtikuu 2022
- maaliskuu 2022
- helmikuu 2022
- tammikuu 2022
- joulukuu 2021
- marraskuu 2021
- lokakuu 2021
- syyskuu 2021
- elokuu 2021
- kesäkuu 2021
- toukokuu 2021
- huhtikuu 2021
- maaliskuu 2021
- helmikuu 2021
- tammikuu 2021
- joulukuu 2020
- marraskuu 2020
- lokakuu 2020
- syyskuu 2020
- elokuu 2020
- kesäkuu 2020
- toukokuu 2020
- huhtikuu 2020
Pieni alaston eksoplaneetta
Katson ulos ikkunasta, jossa lumihiutaleet viilettävät vinhaa vauhtia viistosti kohti maata. Niitä on kertynyt valkoiseksi peitteeksi jo yli kolmenkymmenen sentin paksuudelta, enkä voi välttyä siltä ajatukselta, että pian on lähdettävä lapioimaan niitä pois ovien edestä ja kulkuväyliltä. En kuitenkaan malta ihan vielä, koska ajatukseni ovat kirjaimellisesti muissa maailmoissa lukiessani uusimpia tutkimustuloksia lähitähtien eksoplaneetoista. En myöskään malta olla ajattelematta mitä ikkunasta tekemäni havainto kertoo planeetasta nimeltään Maa. Ainakin sen lämpötila ja kaasukehän paine mahdollistavat vesihöyryn kertymisen kaasukehään sekä sen tiivistymisen alas sataviksi jääkiteiksi, joita kutsumme lumihiutaleiksi. Selvästi planeetan pintalämpötila on ainakin paikallisesti niin alhainen, että vesi jäätyy. Kaasukehä on myös liikkeessä, mikä näkyy hiutaleiden sivuttaisena liikkeenä. Ilmeisesti planeetalla on lämpötilaeroja, jotka pyrkivät tasautumaan ja tuntuvat tuulena. Niitä voi aiheuttaa vaikkapa yön ja päivän vaihtelu planeetan pyörähtäessä oman akselinsa ympäri.
Eksoplaneetoista on ollut toistaiseksi mahdotonta saada näin yksityiskohtaista tietoa, koska emme pääse paikan päälle tekemään tarkkoja havaintoja. James Webb -avaruusteleskoopin myötä tilanne on kuitenkin muuttumassa nopeasti.
Tuorein JWST:n havainto koskee pientä planeettaa TRAPPIST-1 b, joka on noin 10% Maata suurempi ja 40% massiivisempi kiviplaneetta kiertämässä punaista kääpiötähteä vain noin 40 valovuoden päässä Aurinkokunnasta. Se on yksi seitsemästä tunnetusta kappaleesta järjestelmässään, ja niistä sisin, jonka kiertoaika tähtensä ympäri on vain puolitoista Maan vuorokautta. Planeetan on arvioitu olevan liian kuuma elinkelpoiseksi planeetaksi, mutta sen pintalämpötilaa on voitu arvioida vain tekemällä oletuksia sen kaasukehästä. Vuorovesilukkiutunut kiviplaneetta olisi viileämpi valoisalta puoliskoltaan ja lämpimämpi pimeältä puoleltaa, jos sillä olisi kaasukehä tasaamassa yön ja päivän puoliskojen lämpötilaeroa. Vaihtoehtoisesti planeetalla saattaisi olla paksu hiilidioksidipitoinen kaasukehä kuten Venuksella, ja sen voimakas kasvihuoneilmiö voisi tehdä kappaleesta kauttaaltaan helvetilisen pätsin, jonka kuumuudessa lyijykin sulaisi. Mutta miten JWST voisi saada tietoa kaukaista tähteä kiertävän pienen planeetan kaasukehästä?
Yksi mahdollisuus on transmissiospektroskopia, eli tähden valon tarkkailu eri aallonpituuksilla, kun se suodattuu planeetan kaasukehän läpi ylikulun aikana. Menetelmällä on tehty tarkkoja havaintoja useiden jättiläisplaneettojen kaasukehien koostumuksista. Havaintoa koetettiin aikaisemmin mutta merkkejä kaasukehän läpi suodattuneesta säteilystä ei saatu. Tutkijat onnistuivat sulkemaan pois sen mahdollisuuden, että planeetalla TRAPPIST-1 b olisi paksu vetypitoinen kaasukehä mutta muitakaan merkkejä kaasukehästä ei raportoitu ja asiasta ei vuoden 2022 joulukuussa julkaistu tutkimusraporttia. Tutkijoilla on kuitenkin muitakin valtteja hihassaan.
Jos eksoplaneetta kulkee radallaan tähtensä editse aiheuttaen ylikulun, jolloin sen olemassaolo voidaan todeta yksinkertaisella tavalla tarkkailemalla tähden kirkkautta, on selvää, että planeetan ja tähden liike toistensa ympäri tapahtuu täsmälleen kohtisuorassa taivaankannen määrittämää tasoa vastaan. Kiertoradan geometria tarkoittaa silloin sitä, että planeetta liikkuu radallaan myös täsmälleen tähden takaa. Kulkiessaan tähden takaa planeetan meitä kohti näkyvä puolisko on tähden kirkkaasti valaisema ja kuumentama. Kuumentunut puoli taas lähettää lämpösäteilyä, eli infrapuna-alueen säteilyä, jolla JWST tekee havaintojaan. On siis mahdollista havaita tähden ja planeetan muodostaman järjestelmän näennäinen himmeneminen infrapuna-alueella planeetan kulkiessa tähden takaa. Kyse on hyvin heikosta efektistä, mutta JWST:n valtaisa herkkyys juuri infrapuna-alueella tekee havainnon mahdolliseksi (Kuva 1.).

Sekundäärisen ylikulun havainnossa on kyse suorasta planeetan säteilemän valon havainnoinnista. Jos tähden ja planeetan muodostama järjestelmä näyttää himmenevän havaittavasti planeetan kulkiessa tähden takaa, voimme määrittää tähden tarkan kirkkauden ja planeetan siihen tuottaman lisäyksen sen valaistun puoliskon näkyessä eri tavalla radan eri vaiheissa. Planeetta tietenkin säteilee tähdestään saamaansa energiaa, mutta säteilystä voidaan määrittää sen pintalämpötila. Pintalämpötilaa taas voidaan verrata laskennalliseen lämpötilaan tehden erilaisia oletuksia kaasukehän koostumuksesta ja paksuudesta — tai olettaen koko kaasukehän puuttumisen. On siten mahdollista selvittää minkälainen kaasukehä planeetalla on perustuen pelkkään hiuksenhienoon himmenemiseen havaitussa infrapuna-alueen mittaussarjassa.
TRAPPIST-1 b:n tapauksessa havaittu lämpötila selittyy mainiosti sillä, että planeetan kaasukehä on vain hyvin harva tai puuttuu kokonaan kuten Merkuriuksella, jolloin lämmönsiirtoa planeetan valoisan ja pimeän puoliskon välillä ei tapahdu lainkaan. Siten TRAPPIST-1 b on kuin jättiläismäinen versio Merkuriuksesta — kuuma ja karu kiviplaneetta, jonka mahdollisuuksien ylläpitää elämää voidaan katsoa nyt menneen. Sen valoisan puolen pintalämpötila on noin 230 celsiusastetta, mikä tekee pinnasta Merkuriusta kuumemman ja kaasukehän puute takaa sen, että planeetalla ei voi virrata elämän olemassaolon mahdollistavaa nestemäistä vettä.

JWST on vihdoinkin mahdollistanut TRAPPIST-1 tähden planeettojen ominaisuuksien tarkastelun. Vaikka on tavallaan hienoinen pettymys, että ensimmäiset havainnot paljastavat järjestelmän sisimmän planeetan olevan kuuma ja karu, kaasukehätön kappale, se on kuitenkin ensimmäisiä konkreettisia havaintoja planeettakunnan jäsenten todellisista ominaisuuksista. Toistaiseksi olemme onnistuneet määrittämään vain planeettojen koot ja massat, mikä antaa ainoastaan epäsuoraa tietoa niiden koostumuksesta keskitiheyden avulla. Mahdollisuus havaita yhdenkin planeetan pintalämpötila suoraan on aiempaan verrattuna valtava harppaus eteenpäin.
Uudet havainnot ovat kiinnostavia myös siksi, että kiertäessään tähtiään hyvin lähellä, pienten punaisten kääpiötähtien kiviset planeetat ovat alttiina tähtiensä voimakkaalle hiukkastuulelle ja purkauksille. Planeetan TRAPPIST-1 tapauksessa purkaukset ja suurienerginen säteily ovat saattaneet hävittää planeetan kaasukehän vuosimiljardien saatossa, mikä ei lupaa hyvää myöskään muiden järjestelmän planeettojen elinkelpoisuudelle. Ne ovat kuitenkin nyt JWST:n tarkan silmän alla, ja saamme mitä todennäköisimmin tietoa myös niiden kaasukehistä vielä kuluvan vuoden aikana. Järjestelmän kiviplaneettojen tutkimus auttaa joka tapauksessa arvioimaan minkälaisia mahdollisuuksia elämällä on syntyä ja kehittyä pienten punaisten tähtien järjestelmissä, joissa valtaosa universumimme planeetoista sijaitsee. Maapallolta tuttujen yhteyttämään kykenevien elämänmuotojen mahdollisuus esiintyä niiden pinnoilla näyttää joka tapauksessa kapealta.
6 kommenttia “Pieni alaston eksoplaneetta”
Vastaa
Eksoplaneettojen yhteyttävän elämän vyöhyke
Punaiset kääpiötähdet ovat lukumäärältään galaksimme ja koko maailmankaikkeuden yleisimpiä tähtiä. Lähes kolme neljästä tähdestä on punaisia kääpiötähtiä jo Auringon lähinaapurustossa, joten myös meitä lähinnä sijaitsevat eksoplaneettakunnat ovat tyypillisesti punaisten kääpiötähtien järjestelmissä. Kyseessä on kuitenkin himmeiden, likimain täysin punertavaa valoa säteilevien tähtien joukko, jonka ominaisuuksien tutkiminen on muita tähtityyppejä vaikeampaa siitä yksinkertaisesta syystä, että himmeys vaikeuttaa havaitsemista. Punaiset kääpiöt eivät loista taivaalla kirkkaina, paljain silmin havaittavina kohteina, vaan niiden tarkkailuun vaaditaan aina teleskooppeja. Kolme Aurinkoa lähinnä sijaitsevaa punaista kääpiötä — Proxima Centauri, Barnardin tähti ja Wolf 359 löydettiinkin vasta 1900-luvun alkupuolella, kun havaittiin niiden ominaisliikkeen taivaalla olevan niin suurta, että tähtien täytyi olla hyvin lähellä.
Viimeisen vuosikymmenen aikana, tehokkaiden eksoplaneettojen etsintään erikoistuneiden avaruusteleskooppien myötä, on tullut selväksi, että punaisia kääpiöitä kiertää myös hyvin usein joukko monella tapaa maankaltaisia kiviplaneettoja. Ne esiintyvät tyypillisesti tiukkaan pakatuissa järjestelmissä, joissa planeetat kiertävät tähtiään hierarkisilla radoilla hyvin lähellä toisiaan ja tähteään. Punaisten kääpiöiden heikko, punaisille aallonpituuksille keskittynyt säteily ei kuitenkaan kuumenna sellaisia planeettoja elinkelvottomiksi, vaan niistä moni — keskimäärin jopa yksi planeetta kahta tähteä kohti — on sopivassa lämpötilassa, jotta vesi voi pysyä niiden pinnoilla nestemäisessä olomuodossaan. On mahdollista, että jopa valtaosa maailmankaikkeuden elämästä esiintyy punaisten kääpiötähtien kiertoradoilla ja oma kuumemman, keltaisen tähden järjestelmämme on poikkeus. Ne ovat joka tapauksessa mielenkiintoisia kandidaatteja elinkelpoisiksi planeetoiksi mutta vaikka voimme spekuloida miltä niiden pinnoilla näyttää, emme oikeastaan tiedä paljoakaan voisiko esimeriksi maankaltainen yhteyttämiseen perustuva elämä edes kukoistaa niin kovin erilaisissa valaistusolosuhteissa. Jo elämän esiintyminen on epävarmaa, koska lähellä tähteään, punaisten kääpiöiden planeetat saattavat kärsiä tähden voimakkaista purkauksista ja hiukkastuulesta.
Elämän mahdollisuuksia selviytyä ja kukoistaa punaisten kääpiötähtien kiertoradoilla ei tietenkään voida tutkia paikan päällä, vaan on tyydyttävä laboratoriossa tapahtuvaan tutkimukseen. Voimme testata vaikkapa minkälaisia säteilyolosuhteita oman planeettamme mikrobit pystyvät sietämään niiden elintoimintojen vaarantumatta. Tiedämme esimerkiksi sen, että monet mikrobit voivat sietää säteilyolosuhteita, jotka olisivat ihmiselle tappavia — mikrobit selviävät avaruuden olosuhteissa alttiina tyhjiölle ja kosmiselle säteilylle ja kukoistavat jopa maanpäällisissä ydinreaktoreissamme, joissa säteilyannos ylittää kaikki turvallisuusstandardit sekunneissa. Näistä ekstremofiileistä Deinococcus radiodurans on niin kestävä, että se löytyikin sattumalta, kun säilykeruokaa koetettiin steriloida gammasäteilyllä ja havaittiin ruoan kaikista yrityksistä huolimatta pilaantuvan mikrobitoiminnan ansiosta. Bakteerit siis kykenevät selviämään haastavissa olosuhteissa mutta kykenevätkö ne myös yhteyttämään eksoplaneettojen eksoottisissa säteilyolosuhteissa ja muodostamaan siten perustan punaisten kääpiötähtien biosfääreille?
Omalla planeetallamme sinilevät eli syanobakteerit ovat yhteyttämisen pioneereja. Ne keksivät kauan sitten evoluutionsa saatossa tavan sitoa Auringon säteilyenergiaa kemialliseksi sidosenergiaksi, ja oppivat siten tuottamaan niin energiaa kuin kasvun ylläpitämiseen vaadittavia monimutkaisia orgaanisia molekyylejä. Kun bakteerien symbioosi suurempien solujen kanssa sai sitten alkunsa ja syntyi monisoluisia organismeja, jotka käyttivät soluihinsa vangittuja sinileviä yhteyttämiseen, luotiin edellytykset koko planeettamme pinnan vihertymiselle yhteyttämiseen kykenevien organismien vallatessa merten lisäksi kuivan maan. Kasvienkin yhteyttäminen perustuu kuitenkin sinileviin, joiden kasvisolujen sisällä kasvavia jälkeläisiä kutsutaan viherhiukkasiksi. Siksi juuri sinilevien ominaisuuksien tutkiminen on oleellisessa roolissa yhteyttämisen mahdollisuuksien astrobiologisessa tutkimuksessa.
Samanlaiset olosuhteet tuottavat konvergentin evoluution myötä samankaltaisia ratkaisuja, ja siksi voidaan mainiosti olettaa elävien organismien keksivän evoluution saatossa tehokkaita mekanismeja muuttaa säteilyenergiaa käyttökelpoisempaan muotoon. Silloin voisi muodostua kasvillisuutta, ja biosfäärejä, jotka muistuttaisivat oman planeettamme vihreitä metsiä ja meriä, joissa yhteyttävä elämä luon pohjan pitkille, monisäikeisille ravintoketjuille ja -verkostoille. Ei kuitenkaan ole selvää, että yhteyttävä elämä voisi kukoistaa kaikkien tähtien planeettakunnissa. Juuri punaisten kääpiötähtien planeetat voivat kärsiä siitä, että niiden pinnoilla ei ole riittävästi sopivan energeettistä säteilyä yhteyttämiseen.
Kirkaskin valo voi näyttää himmeältä vain, koska havaitsijan silmät eivät ole erikoistuneet sen sisältämien aallonpituuksien havaitsemiseen. Kyse on molekyylitason mekanismista, jossa kompleksiset orgaaniset molekyylit virittyvät kemiallisesti, kun niihin osuu sopivan energian, eli aallonpituuden, omaava fotoni. Sinilevien klorofyllimolekyylit toimivat samaan tapaan kasvimaailman tuotantoyksikköinä varastoiden valosta saamansa energian orgaanisten molekyylien rakenne-energiaksi. Yhteyttämiseksi kutsuttua reaktiota kykenevät kuitenkin ylläpitämään monet erilaiset klorofyllimolekyylien versiot, ja niiden pienet erot herkkyydessä säteilyn energialle on valjastettu käyttöön erilaisissa planeettamme säteilyolosuhteissa. Jo molekyylien moninaisuus kertoo, että yhteyttävä elämä tulee varsin hyvin toimeen monenlaisessa valossa. Tutkijat päättivät silti varmistaa asian laboratoriossa.
Koska tiedämme minkälaista valoa punaiset kääpiötähdet loistavat, voimme luoda laboratorio-olosuhteisiin samanlaisen valomaailman ja kokeilla miten maanpäälliset sinilevät sopeutuvat olosuhteisiin. Tehtyään kokeen tutkijat saivat tuloksen, joka ei yllättänyt ketään: sinilevät voivat mainiosti punaisen valon laboratorio-olosuhteissa, ja käyttivät hyväkseen klorofyllimolekyyliensä herkkyyttä punaisen valon aallonputuuksilla ja -energioilla. Ne kukoistivat mainiosti aivan kuin olisivat kotonaan punaisen tähden tuottamassa valossa. Tulos ei ole yllättävä, koska tiedämme sinilevien elävän merenpinnan alapuolella, niin syvällä, että vain punaista valoa on enää jäljellä sinisten aallonpituuksien sirottua pois. Tulos siis kertoo vain oman planeettamme elävien organismien sopeutumiskyvystä, mutta evoluution lahjomattomat lainalaisuudet takaavat sen, että jos kyky yhteyttää syntyy jollakin punaisen kääpiötähden planeetalla, on sillä täydet mahdollisuudet kukoistaa aivan kuten Maassakin.
Pelkkä yhteyttämiseen soveltuva tähden säteily ei kuitenkaan riitä varmistamaan elämän edellytyksiä, vaan on oltava myös nestemäistä vettä. Kaiken tietämämme mukaan, vesi on elämän edellytys, universaali liuotin, jonka märässä mediassa elämäksi kutsutut biokemialliset reaktiot voivat tapahtua. Mutta valo ei ole yhteyttämiselle otollista yhtä yhtä laajalti kuin nestemäisen veden olemassaolo on mahdollista. Lukemattomat vetiset planeetat saattavat olla paksun kaasukehän peitossa, joka estää tehokkaasti valon pääsyn planeettojen pinnoille tehden fotosynteesistä mahdotonta. Toisaalta, kaasukehän ollessa harva, valo kyllä läpäisee sen mainiosti, mutta sen paine ei välttämättä riitä pitämään vettä nesteenä ja elämän esiintymiselle ei ole edellytyksiä. Siksi on tarkoituksenmukaista tarkastella planeettojen olosuhteita molempien mittareiden suhteen. Yhteyttävän elämän vyöhyke on siihen soveltuva työkalu (Kuva 1.).

Arviot yhteyttävän elämän vyöhykkeestä ovat suorastaan musertavia punaisten kääpiötähtien elämälle. Vyöhyke on arvioiden mukaan likimain yhtä laaja kuin itse nestemäisen veden elinkelpoinen vyöhyke mutta vain, jos planeetan kaasukehä on erittäin harva ja päästää kaiken tähden valon lävitseen. Maapallonkaltaisille ilmakehän omaaville planeetoille vyöhyke on hyvin kapea, ja se häviää olemattomiin kun tähti on massaltaan alle puolet Auringon massasta. Silloin likimain jokainen punainen kääpiötähti rajautuu pois niiden tähtien joukosta, joiden planeetoilla yhteyttävää elämää voisi esiintyä. Se taas tarkoittaa, että maailmankaikkeudessa voi olla kymmeniä tai jopa satoja kertoja enemmän sellaisia planeettoja, joiden pinnalla nestemäinen vesi kyllä pääsee virtaamaan mutta joilla elämä ei voi käyttää yhteyttämistä energiantuotantoon.
Jos arviot osuvat oikeaan, on mahdollista, että kosmisessa lähinaapurustossamme on kyllä runsaasti eläviä planeettoja, joiden perustuottajat tyytyvät energeettisesti tehottomampiin mekanismeihin aineenvaihdunnassaan. Niissä ei silloin synny yhtä pitkiä ravintoketjuja, eikä ehkä edes monisoluista elämää, joka voisi lopulta kehittää teknologisia sivilisaatioita. On kuitenkin liian aikaista sanoa millään varmuudella mikä on totuus ja kuinka yleisiä yhteyttävän elämän täyttämät planeetat todellisuudessa ovat. Toistaiseksi voimme vetää johtopäätöksiä perustuen vain yhteen ainoaan tunnettuun esimerkkiin elävien orgamismien monimuotoisuudesta ja toimintakyvyistä.
2 kommenttia “Eksoplaneettojen yhteyttävän elämän vyöhyke”
-
Todella kiinnostavia ja hyvin kirjoitettuja juttuja.
Kiitos!
Kerroit TRAPPIST-1 b eksoplaneetasta, joka kiertää
”punaista kääpiötähteä vain noin 40 valovuoden päässä Aurinkokunnasta.”
Uusin Tieteen Kuvalehti 6/2023 sivulla 17:
”Kaksi Maan kaltaista planeettaa löytyi elämän vyöhykkeeltä” —
”Vain 16 valovuoden päästä Aurinkokunnastamme”: —
”Ne kiertävät — punaista kääpiötähteä GJ 1002:ta.” (J-kirjain hieman epäselvänä).
— ”Eksoplaneetat ovat saaneet nimet GJ 1002b ja GJ 2001c.
Ne kiertävät punaista kääpiötähteä, jonka massa vastaa kahdeksasosaa Auringosta.”
— Em. ym. ”tunnemme nyt seitsemän planeettajärjestelmää lähellä Aurinkoa.”
Itselleni epäselvää: ovatko em. eksoplaneettojen merkinnät oikein.
Niissä on oudosti numerot 1002 ja tähdestä poikkeava 2001,
eksoplaneetat oikein b lähinnä ja c etäämpänä,
mutta onko myös em. numerot oikein tai olisiko kenties kyse kaksoistähdistä 1 ja 2
tai numero 2001 väärin lehteen merkittynä (yleensä vain kirjaimilla eksoplaneetat).
Kyse on ilmeisestä kirjoitusvirheestä. Tähti on Gliese 1002, mikä lyhennetään usein muotoon GJ 1002. Planeetat ovat nimeltään GJ 1002 b ja GJ 1002 c.
Kun planeetta on noinkin iso, ehkä vesi, hiilidioksidi ja ammoniakki löytyvät jäätyneinä planeetan yöpuolelta, ja vety ja helium ovat karanneet. Vapaata typpeä ei ole välttämättä ollutkaan jos typpi on ollut sitoutuneena ammoniakkiin, tai sitten typpeä on ollut ylipäätään vähän noin lähellä keskustähteä.
Tuollainen skenaario vaikuttaa ihan mahdolliselta. Se on kuitenkin pelkkää valistunutta spekulointia huomioiden, ettemme ole saaneet kunnollisia havaintoja, ja koostumukset sekä syntyhistoriat ovat lähes täysin hämärän peitossa.
Onko niin että joku Marsin-ohuinen ilmakehä olisi konsistentti havainnon kanssa kuitenkin?
Marsin CO2-ilmakehä on käsittääkseni sellaisessa dynaamisessa tasapainossa että kaasua härmistyy navoille talven aikana yhtä paljon kuin kesä jaksaa sitä haihduttaa. Jos jokin ilmiö nostaisi ilmakehän painetta, sublimaatiolämpötila myös nousisi, jolloin navalle härmistyisi talven aikana paksumpi kerros hiilidioksidia (koska säteilyjäähtymisteho on verrannollinen lämpötilan neljänteen potenssiin), kun taas kesän aikana haihtuisi sama kerros kuin ennenkin. Eli hiilidioksidivaippa navoilla paksunisi, jolloin kaasukehän paine palautuisi nykyiselleen.
Mutta tuon eksoplaneetan tapauksessa geoterminen lämpövuo viimeistään asettaa minimin kuinka kylmäksi yöpuoli voi mennä. Ehkä myös järjestelmän muista planeetoista heijastuvalla valolla voi olla merkitystä. Varsin kylmä siellä kuitenkin saattaa olla, joten ilmakehä voisi mennä ohuemmaksikin kuin Marsissa.
Ilmeisesti on dikotomia että ilmakehä on joko niin paksu että se pystyy tasaamaan lämpötilaerot jotta mikään sen kaasuista ei ala härmistyä, tai sitten varsin ohut kuten tässä näyttäisi käyneen. Tai näin ainakin jos ilmakehä on lähinnä hiilidioksidia. Eli joko ”Venus” tai ”Mars”/”Merkurius”. Ehkä välimuotojakin on, mutta ei välttämättä.
Ehkä tuon ”Venus” -tapauksen pystyisi vastaavasti tunnistamaan siitä että päiväpuolen pilvet paistavat kirkkaan valkoisena optisessa?
Julkaisusta käy ilmi, että kaasukehän paine 0.1 bar olisi vielä sopusoinnussa havaintojen kanssa mutta Maan ilmanpainetta vastaava kaasukehä voidaan sulkea pois. Kaasukehä voisi siis mainiosti olla jopa kymmenen kertaa Marsin kaasukehää paksumpi ja se ei olisi havaittavissa. Venusta muistuttava kaasukehä taas on voitu sulkea pois.