Mikä menee pieleen

28.2.2023 klo 11.54, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua

Edellisessä merkinnässä kirjoitin siitä, että fyysikot eivät usein viitsi ruveta julkisesti arvostelemaan väärinä pitämiään ideoita. Poikkeuksiakin on. Kommenteissa minulta kysyttiin teoreetikko Sabine Hossenfelderin videosta What’s Going Wrong in Particle Physics? (This is why I lost faith in science.). Koska Hossenfelderista on tullut näkyvä hiukkasfysiikan kriitikko, voi olla aiheellista kommentoida missä hänen arvostelunsa osuu oikeaan ja miten se menee harhaan.

Hossenfelderin mukaan hiukkasfysiikka ei enää ole tiedettä, ja hän vertaa hiukkasfyysikoita nigerialaisten huijauskirjeiden lähettäjiin. Hossenfelder on vuosia arvostellut hiukkasfysiikkaa, ja hän on kirjoittanut aiheesta kirjan Lost in Math: How Beauty Leads Physics Astray.

Hossenfelderin mukaan hiukkasfysiikka alkoi mennä raiteilta 1970-luvulla, kun Standardimalli oli saatu kasaan. Sen jälkeen hiukkasfyysikot ehdottivat Standardimallin laajentamista supersymmetrialla, suurella yhtenäisteorialla, aksioneilla ja muilla teoreettisilla ideoilla, kuten oikeakätisillä neutriinoilla ja toisilla pimeän aineen ehdokkailla.

Sittemmin Standardimalli on 50 vuoden ajan kuvannut oikein kaikkia hiukkaskiihdyttimissä tehtyjä kokeita. Koska laajennusten ennustamia uusia hiukkasia ei ole löytynyt, Hossenfelder vertaa niitä isojalkaan, pohjoisamerikkalaisen kansanperinteen kuvitteelliseen eläimeen, jonka olemassaoloa on yritetty todistaa erilaisilla huijauksilla.

Hossenfelder sanoo, että hiukkasfyysikot eivät opi virheistään: kun kokeet osoittavat jonkun hiukkasfysiikan mallin ennusteet vääriksi, he vain muuttavat mallia siten, että sen ennusteet ovat juuri nykyisten kokeiden ulottumattomissa, mutta seuraavien tavoitettavissa.

Hänen mukaansa syy hiukkasfysiikan surkeaan tilaan on se, että hiukkasfyysikot yrittävät ratkaista ongelmia, jotka eivät oikeasti ole ongelmia. Hossenfelder listaa videossa ja blogissaan, mitkä ongelmat ovat hänen mielestään oikeita ja mitkä keksittyjä. Hossenfelderin mukaan fysiikassa tapahtuu edistystä ainoastaan kahta reittiä: joko teoria ja havainnot ovat ristiriidassa, tai teoriassa on sisäinen ristiriita. Vain ristiriitojen tutkiminen vie tiedettä eteenpäin.

Hossenfelder on oikeassa, että hiukkasfyysikot tuottavat paljon malleja, joiden ainoa motivaatio on se, että niitä voidaan testata lähitulevaisuuden kokeissa. Samoja malleja käytetään sitten osoituksena siitä, että noilla kokeilla on kiinnostavaa tutkittavaa, mikä on harhaanjohtavaa mainontaa. On myös totta, että hiukkasfysiikka on kriisissä koska CERNin Large Hadron Collider (LHC) ei ole nähnyt merkkiäkään Standardimallin tuonpuoleisesta fysiikasta, eivätkä fyysikot ole aina reagoineet tähän rehellisesti. Olen esimerkiksi kuullut erään hyvin tunnetun tutkijan puolustautuvan väittämällä, että LHC:n ei odotettukaan näkevän mitään uutta, mikä on räikeää historian vääristelyä.

Hossenfelder kuitenkin pistää ideoita kasaan liian suurella lapiolla, eivätkä hänen sääntönsä siitä, miten tiedettä pitäisi tehdä vastaa sitä, miten tiede on todellisuudessa edistynyt. (Ennen LHC:n käynnistymistä Hossenfelder esitti, että LHC ei löydä edes Higgsin hiukkasta.)

Kun Standardimalli 1970-luvulla kehitettiin, oli erilaisia ideoita siitä, millaisia hiukkasia ja vuorovaikutuksia on olemassa. Etukäteen ei tiedetty, että juuri sittemmin Standardimallina tunnetuksi tullut teoria olisi oikea, tai että sen pätevyysalue on niin laaja. Ei siis ollut syytä olla esittämättä vaihtoehtoja ja laajennuksia.

Hossenfelder niputtaa yhteen eri laajennukset, mutta esimerkiksi pimeän aineen ja supersymmetrian tilanne on hyvin erilainen. Supersymmetria on teoreettinen idea, jolle ei ole löytynyt tukea havainnoista. Pimeä aine on havaintoihin perustuva idea, joka on 90 vuotta selittänyt ja ennustanut lukuisia havaintoja.

Hossenfelder on monissa yhteyksissä arvostellut pimeää ainetta, ja hänen mukaansa havainnot voisi yhtä hyvin selittää muuttamalla gravitaatiolakia. Kukaan ei kuitenkaan ole pystynyt esittämään tällaista teoriaa, joka selittäisi kaikki havainnot, jotka pimeä aine selittää, saati ennustaisi oikein uusia havaintoja. Hänen mukaansa on myös turha tutkia teoreettisia pimeän aineen malleja, koska havaintojen selittämiseksi ei tarvitse tietää millainen hiukkanen on kyseessä.

Fysiikan tavoitteena ei kuitenkaan ole vain selittää havaintoja, vaan käyttää havaintoja apuna maailman ymmärtämiseen. On aiheellista arvostella (kuten olen itsekin tehnyt) sitä, että vaikka pimeän aineen hiukkasiksi ehdotettuja nynnyjä ei ole nähty kokeissa kuten olisi pitänyt, ei ole silti todettu, että idea oli väärin. Mutta on muita kelpoisia pimeän aineen ehdokkaita, esimerkiksi oikeakätiset neutriinot. Kun havainnot osoittavat, että on olemassa uusia hiukkasia (tai mustia aukkoja), on mielekästä tutkia, mitä ne voivat olla ja miten niitä voisi havaita.

Hossenfelder arvostelee kokeiden perustelemista sillä, että ne saattavat löytää jotain odottamatonta, koska hänen mukaansa niin ei tapahdu. Tämä ei ole totta. Fysiikan historiassa on lukuisia esimerkkejä siitä, miten kokeet ovat tuottaneet tärkeää tietoa asioista, mitä niitä ei ole suunniteltu tutkimaan.

Hyvä esimerkki on Hossenfelderin arvostelemien suurten yhtenäisteorioiden etsiminen. Niiden ennustaman protonin hajoamisen havaitsemiseksi rakennettiin kokeet Kamiokande ja Super-Kamiokande. Kokeet eivät nähneet protonin hajoamista, mutta niiden havainnot neutriinoista olivat keskeisiä sen osoittamisessa, että neutriinoilla on massa. Neutriinoiden massat olivat ensimmäinen Maan päällä havaittu todiste fysiikasta Standardimallin tuolta puolen, ja niistä on myönnetty kaksi Nobelin palkintoa.

Kokeen lisäksi myös neutriinoiden massojen teoreettinen pohdinta olisi Hossenfelderin kriteereillä ollut turhaa, koska niitä ei ennen Kamiokanden ja Super-Kamiokanden havaintoja tarvittu ratkaisemaan mitään selvää ristiriitaa. Todellisuudessa neutriinojen massojen teorian tunteminen etukäteen oli avain kokeen tulosten ymmärtämiseen.

Myös teoreettisella puolella edistystä on saatu myös keskittymällä asioihin, jotka eivät ole ristiriitoja. Yksi esimerkki on yleisen suhteellisuusteorian löytäminen 1900-luvun alkupuolella. Tutkimuksen ongelmana oli kyllä se, että Newtonin gravitaatioteoria ja suppea suhteellisuusteoria ovat ristiriidassa keskenään. Ratkaisu kuitenkin löytyi keskittymällä asioihin, jotka eivät ole ristiriitoja.

Yksinkertaisin tapa rakentaa suhteellisuusteorian kanssa sopusoinnussa oleva gravitaatioteoria on ottaa mukaan gravitaatiota kuvaava kenttä, samaan tapaan kuin sähkömagnetismia kuvaa sähkömagneettinen kenttä. Suomalainen fyysikko Gunnar Nordström ensimmäisenä ehdottikin tällaista teoriaa, joka kuitenkin osoittautui vääräksi. Sen sijaan Albert Einstein pääsi oikealle reitille yrittämällä ratkaista sen, miksi kaikki kappaleet putoavat samaa tahtia. Hossenfelderin kriteereillä tätä ei olisi pitänyt miettiä, koska siihen ei liity ristiriitaa.

Hossenfelder on tietoinen siitä, että tiede on edistynyt muutenkin kuin ristiriitojen kautta. Hän mainitsee esimerkkinä sen, että charm-kvarkin olemassaolo ennustettiin symmetrian ja kauneuden perusteella. Hän kuitenkin toteaa, että koska myöhemmin ymmärrettiin, että teorian matemaattinen rakenne vaatii charmin olemassaoloa, kyse oli ristiriidan ratkaisemisesta.

Tällainen argumentointi on ristiriidassa sen kanssa, että tarkoituksena on arvioida, millainen työ johtaa edistykseen. On mahdollista, että lopulta osoittautuu, että kaiken teorian mukaan oikeiden fysiikan teorioiden kaikki piirteet ovat välttämättömiä. Tämä ei kuitenkaan kerro mitään siitä, millä tavalla noita piirteitä kannattaa etsiä ennen kuin teoria on kädessä.

Olen aiemmin maininnut kosmisen inflaation esimerkkinä siitä, miten empiirisyydessä on kyse laajemmasta asiasta kuin ennustusten vertaamisesta havaintoihin. Hossenfelder listaa blogimerkinnässään kaksi kosmisen inflaation löytämiseen johtanutta ongelmaa esimerkkeinä asioista, joita ei kannata miettiä. Tämä havainnollistaa hänen lähestymistapansa puutteita.

Inflaatio on ollut hiukkasfysiikan hedelmällisin alue 1980-luvulta alkaen, ja tuonut sen yhteen kosmologian kanssa. Inflaatio on ennustanut havaintoja erinomaisesti ja johtanut teoreettiseen kehitykseen. Sen kautta on ensimmäistä kertaa onnistuneesti kokeellisesti testattu yleisen suhteellisuusteorian ja kvanttifysiikan yhteisiä ennusteita eli kvanttigravitaatiota. On muitakin hiukkasfysiikan alueita, kuten neutronitähtien rakenteen tutkiminen, joissa teoria ja havainnot ovat edistyneet yhdessä.

On tervettä että hiukkasfysiikan, kuten minkä tahansa tieteenalan, käytäntöjä arvostellaan yksittäistä artikkelia tai tutkimussuuntaa laajemmasta näkökulmasta, ja Hossenfelderin jotkut huomiot hiukkasfyysikoiden yhteisön ongelmista pitävät paikkansa. Hiukkasfysiikan ongelmat näkyvät siinäkin, että viiden vuoden kuluttua käynnistyvän LHC:n päivityksen HL-LHC jälkeisistä kiihdyttimistä ei ole tehty vielä päätöksiä. Muotivirtauksilla on myös hiukkasfysiikassa turhan iso merkitys, ja alan kauneuskäsityksiä on syytä arvioida uudelleen, kuten tapahtuukin.

Ei kuitenkaan ole taattua reseptiä siitä, mikä on hedelmällisin tapa tehdä tutkimusta. Tieteenfilosofit ovat tutkineet asiaa, ja Imre Lakatoksen jako edistyviin ja degeneroituviin tutkimusohjelmiin on hyödyllinen hiukkasfysiikankin osalta. Se ei kuitenkaan anna yksiselitteisiä vastauksia, ja edistys tulee usein yllättävistä suunnista.

44 kommenttia “Mikä menee pieleen”

  1. Eusa sanoo:

    Mitä mieltä olet sumeasta pimeästä aineesta? Selitysmallina se vaikuttaisi asettuvan ainehiukkasten ja muunnellun gravitaatiomallinnuksen ”puoliväliin”.

    Pohjimmiltaan sumea ainekenttä on kuin kuin kylmät itsevuorovaikuttamattomat hiukkaset, mutta niiden merkityksellinen identiteetti gravitaation kannalta ei ole pistemäinen vaan on levinnyt esim. fraktaalisesti muutamista valovuosista tuhansiin valovuosiin sumeina 4-eksitaatioina, (tensori-)skalaarikenttänä. Vaikutusta olisi pimeän aineen inervallien kokonaismäärällä aika-avaruusotoksessa – ei perinteisellä paikallistuvuudella.

    1. Syksy Räsänen sanoo:

      Kuvauksesi sumeasta pimeästä aineesta (fuzzy dark matter) ei ole oikein, eikä se vaihtoehtona asetu hiukkasten ja muokatun gravitaation puoliväliin. Kyse on hiukkasista siinä missä muussakin pimeässä aineessa, niiden energia vain on hyvin pieni ja siksi aallonpituus hyvin iso.

      Ei ole mitään erityistä syytä sille, että pimeän aineen hiukkasten massa olisi niin vähäinen kuin mitä sumea pimeä aine edellyttää, mutta se on yksi mahdollisuus. Olen kirjoittanut siitä hieman täällä: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/totalitaristinen-periaate-ja-vanhan-ajan-romantiikka/

      Kun tämä liittyy vain heikosti blogimerkinnän aiheeseen, niin ei siitä tässä sen enempää.

  2. Jari Toivanen sanoo:

    ” On mahdollista, että lopulta osoittautuu, että kaiken teorian mukaan oikeiden fysiikan teorioiden kaikki piirteet ovat välttämättömiä.”
    Mitä näyttöä/vihjettä on siitä, että kaiken teoria on oikeasti olemassa? Kauneuden tavoittelu ei kelvanne vihjeeksi? Onko yhtä lailla mahdollista, että tarvitaankin kaksi tai useampi teorioita? Mitä vaikuituksia sillä olisi, jos osoittautuisi, että kaiken teoriaa ei ole olemassa?

    1. Syksy Räsänen sanoo:

      Joko on olemassa kaikkein perustavanlaatuisin fysiikan teoria, joka ei palaudu mihinkään muuhun ja josta kaikki muut teoriat ovat periaatteessa johdettavissa – eli kaiken teoria.

      Toinen mahdollisuus on se, että on äärettömästi aina vain tarkempia teorioita, eikä ole mitään lopullista teoriaa. Suurin osa fyysikoista (jotka asiaa edes pohtivat, mikä lienee pieni osa fyysikoista) ei pidä tätä luultavana, vaan ajattelee, että on olemassa kaiken teoria. Mitään todisteita kummankaan vaihtoehdon puolesta ei ole.

      Lisää kaiken teorioista:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/miksi-kaiken-teorialla-on-merkitysta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/aika-avaruuden-atomit/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikenlaisia-selityksia/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kaikki-tai-ei-mitaan/

  3. Kari Ojala sanoo:

    Melkoisen analyysin teitkin!
    Itselleni jäi Sabinen videosta mieleen kuva, joka yksinkertaisella tavalla havainnollistaa sen miten voidaan tuottaa jokseenkin ääretön määrä erilaisia teorioita, jotka ovat täysin yhteensopivia tähänastisten havaintojen kanssa, mutta tähänastisen havaintoalueen ulkopuolella teorioiden ennusteet voivat sitten divergoida kaikkiin mahdollisiin suuntiin.
    (Muistaakseni jossain Ursan lehdessä tai kirjassa mainittiin kerran eräs (kosmologiaan liittyvä?) teoreetikon ennuste, joka meni pieleen suunnilleen kertoimella 10 potenssiin 120. Liekö maailmanennätys ekstrapolointivirheessä?)

    Mahdollisista faasimuutosista puhumattakaan.

    Tarvitaan ehkä jotain enemmän kuin pelkkiä uusia matemaattinen teorioita, joita voidaan tosiaan muodostaa ääretön määrä.
    Teoreettiset fyysikot ovat tunnetusti erittäin taitavia matematiikassa ja alan koulutus myös edellyttää sitä.
    Einstein ei tiettävästi ollut kovin hyvä matematiikassa, mutta hän oli taitava tekemään ajatuskokeita, jotka olivat melkoinen yhdistelmä lennokasta mielikuvitusta ja rationaalista ajattelua. Esimerkkinä Einsteinin ajatusleikki siitä, millaista olisi ”ratsastaa” valonsäteellä. (Lukija on vapaa kokeilemaan. Mites se aikadilataatio toimikaan? Pysähtyykö aika? Tapahtuuko koko maailmankaikkeuden historia yhdessä silmänräpäyksessä (tai silmänräpäys ainakin siihen hetkeen asti kunnes fotonihevonen absorboituu johonkin)?)

    Hiukkaskiihdyttimet tuovat joskus mieleen tunnetun amerikkalaisen sananlaskun: ”if all you have is a hammer, everything looks like a nail”. Vastaavasti voidaan kysyä, tuleeko se mahdollinen ’Kaiken teoria’ sittenkään aivan kaikkea selittämään ja ennustamaan.

    1. Syksy Räsänen sanoo:

      Einsteinin oli taitava matematiikassa siten kuin fyysikot sitä käyttävät. Hänen asenteensa matematiikkaa kohtaan oli väheksyvä ennen kuin hän lähti kehittämään yleistä suhteellisuusteoriaa, joka on matemaattisesti hienostunut.

      Tuo mainitsemasi ”ennuste” viitannee tyhjön energiatiheyteen. Usein sanotaan, että hiukkasfysiikan teorioiden mukaan sen pitäisi olla 10^120 kertaa isompi kuin se arvo, mikä selittää havaitun maailmankaikkeuden kiihtyvän laajenemisen. Mitään tällaista ennustusta ei kuitenkaan ole. Nykyiset realistiset kvanttikenttäteoriat eivät pysty ennustamaan tyhjön energian arvoa ollenkaan.

      Kyseessä on retorinen liioittelu, jonka tarkoituksena on havainnollistaa sitä, miten yllättävältä laajenemisen kiihtymisen selittävä pieni tyhjän energian arvo tuntuu.

  4. Kari Ojala sanoo:

    Kiitokset vastauksista ja täsmennyksestä koskien tuota tyhjön energiatiheyttä.
    Ymmärrän pointin ”matematiikka siten kuin fyysikot sitä käyttävät”. 😀

  5. Miguel sanoo:

    Olitpa perusteellisesti perustellut! Tätä on varmaan kysytty jo monesti, mutta mikä on se fundamentaali asia, joka ”pakottaisi” gravitaation ja kvanttifysiikan yhteen. Esim. gravitaatio taitaa olla hyvin deterministinen yhtälö, se ei (kai) sisällä kvanttifluktuaatioita ja muuta.

    Toisaalta atomiytimen massasta suurin osa lienee vahvavuorovaikutusvoimia, mutta vaikka sillä ei ole mitään käytännön vaikutusta, niin se vaikutus ei ole nolla. Energia liittäisi gravitaation siihen?

    Ja kolmas kysymys, kun gravitaatioaaltoja on löydetty, ja puhutaan kentästä, niin mikä siellä oikein aaltoilee. Jos on aaltoja, niin kai pitäisi olla jotain, joka aaltoilee?

    1. Syksy Räsänen sanoo:

      Koska kvanttifysiikka ja gravitaatio ovat ristiriidassa keskenään (mm. mainitsemastasi syystä: yleinen suhteellisuusteoria on deterministinen, kvanttifysiikka ei). Niinpä jompikumpi tai molemmat ovat väärin – tai tarkemmin sanottuna niiden pätevyysalue ei ole rajaton. On siis olemassa teoria, josta ne molemmat ovat rajatapauksia.

      Gravitaatio ja kvanttifysiikka on jo onnistuneesti yhdistetty kosmisessa inflaatiossa, mutta vain hyvin rajoittuneessa tapauksessa.

      En ymmärrä kysymystä atomiytimestä.

      Gravitaatioaallot ovat aika-avaruuden värähtelyä. Ks. https://web.archive.org/web/20190505041031/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/nakymattomia_kuvia_vakivallasta

      1. Miguel sanoo:

        Tarkoitin, että jos energia ja massa ovat ekvivalentteja suhteellisuusteoriassa, niillä pitäisi olla joku yhteys tavalla tai toisella.

        1. Syksy Räsänen sanoo:

          Massa ja energia eivät ole sama asia, tilanne on hieman monimutkaisempi, tässä aiheesta ja gravitaatiosta hieman: https://web.archive.org/web/20170626090103/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/sidottujen_kimppujen_vetovoima

      2. Miguel sanoo:

        Ja tuo aika-avaruuden värähtely on kieltämättä vaikea ymmärtää. Helpompi ymmärtää jotain sähkömagneettisen kentän värähtelyä ja tunnettuja hiukkasia. Jos vesi väreilee, se palautuu vesimolekyyleihin jne. Mutta jos sanotaan, että aika-avaruus väreilee ilman ”hiukkasia” tai muuta ”värähtelijää”, niin onko se lopulta ”ajan väreilyä”, josta –
        siis ajan kulusta – on kosolti näyttöä. Joku kaksoisrakokoe gravitaatiosta lienee 100 000 vuoden päässä.

        1. Syksy Räsänen sanoo:

          Aika-avaruuden värähtelyssä on kyse ajan ja avaruuden värähtelystä. Toistaiseksi gravitaation mahdollisesta kvanttiluonteesta on tosiaan todisteena vain kosminen inflaatio, ja se on hyvin epäsuora todiste.

          Täällä hieman mietteitä aiheen tiimoilta: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kissan-kanssa-laatikossa/

          1. Miguel sanoo:

            Kiitos kärsivällisistä vastauksista ja tästä blogista!. En halua mitään omia teorioita, vaan kysyn asioita. Lapsena musta piti tulla tähtitieteilijä. Mutta ajattelin, ettei sillä elä. Tämän päivän huippuhetki, jos sää sallii, on Jupiter+Venus. Jotenkin kaunista, että juuri noi kaksi kohtaa. 🙌

          2. Syksy Räsänen sanoo:

            Kiitos kiitoksista.

  6. Lentotaidoton sanoo:

    Räsänen: ”Gravitaatio ja kvanttifysiikka on jo onnistuneesti yhdistetty kosmisessa inflaatiossa, mutta vain hyvin rajoittuneessa tapauksessa.”

    Tämän lausahduksen olemme kuulleet monasti aiemminkin vastauksissasi. En epäile asiaa ollenkaan (olen samaa referoinut itsekin). Mutta mikä on tämä ”vain hyvin rajoittunut tapaus”? Onko esim kysymys siitä, että inflaation aikuiset kvanttifluktuaatiot näkyvät kosmoksen tulevassa kehityksessä (esim taustasätelyn ominaisuudet)? Jos tämä vaatii pidemmän selityksen (oman osionsa) niin please.

    1. Syksy Räsänen sanoo:

      Inflaatiossa on kvantitettu vain aika-avaruuden pienet poikkeamat (joista tulee kosmisen taustasäteilyn siemeniä ja gravitaatioaaltoja), ei aika-avaruutta kokonaisuutena. Tämä vastaa vähän sitä miten kiinteän olomuodon fysiikassa kvantitetaan pieniä värähtelyjä aineessa ja saadaan fononeita.

      1. Lentotaidoton sanoo:

        Sen verran asia kiinnostaa, että tein haun seuraavalla: phonons in quantum inflation
        https://scholar.google.fi/scholar?q=phonons+in+quantum+inflation&hl=en&as_sdt=0&as_vis=1&oi=scholart

        Siellä on liuta tutkimuksia. Diketanttina ei aio käydä kaikkia läpi, mutta voitko suositella jotan määrättyä tutkimusta? Tai löytyykö mitään muuta ”vähemmän akateemista” eli helpommin nieltävää esitystä?

        1. Syksy Räsänen sanoo:

          En osaa suositella tutkimusta inflaation ja fononien täsmällisestä analogiasta. Yleisen suhteellisuusteorian analogiamallit (mallit jotka kuvaavat esim. helium-3:a ja joiden rakenne on joissain suhteessa samanlainen kuin yleisen suhteellisuusteorian) ovat kyllä kiinnostavia, mutta ne eivät ole paras tapa ymmärtää inflaatiota. Viittasin vain siihen, että sekä inflaation aikaisissa perturbaatioissa että fononeissa kyseessä on vain pienten värähtelyjen kvantittamisesta.

  7. Jernau Gurgeh sanoo:

    Jotenkuten aiheeseen liittyen kysyisin Syksyltä ja muiltakin blogin lukijoilta, kumpaa veikkaatte intuition pohjalta oikeaksi: pimeää ainetta on olemassa, vai gravitaatioteoria on väärin?

    En tiedä kumpi olisi fysiikan kehityksen kannalta ja ihmiskunnan tulevaisuuden kannalta parempi. Eli kumpi voisi tarjota jotain mullistavaa avaruusmatkailun, viestintätekniikan ym. teknologioiden suhteen (tai sitten kumpikaan ei toisi mitään uutta).

    Minulla ei ole mitään suosikkia tämän suhteen. Se kumpi on oikein on oikein ja sillä siisti. Mutta tämä tietämättömyys ja kysymyksen avoimuus saa maallikon pääni pyörälle. Populaaria kirjallisuutta olen toki lukenut paljonkin ja jonkin verran tutkimuspapereita (niistä juuri mitään ymmärtäen), mutta silti minulla ei ole mielenrauhaa asian suhteen. Vaikka kaikki viittaa enemmän pimeään aineeseen, niin jostain sisältäni kumpuaa aina uudelleen vahva tunne, että sitä ei ole olemassa. Gravitaatioteoria on vain virheellinen. Olen kuitenkin kovan luokan Einstein-fani, joten en tällaista sano vain provosoidakseni. Yleinen suhteellisuusteoria ja kaikki muut Einsteinin saavutukset ovat vertaansa vailla, riippumatta siitä mikä osoittautuu lopulta oikeaksi.

    Eli onko sinulla, Syksy, jotain tällaista sisäistä tunnetta (fyysikon ymmärryksesi ja loogisen ajattelun ulkopuolella) ja haluatko kertoa siitä tässä, jos on?

    Loppuun Sabine Hossenfelderistä, että olen varmaan hyvin paljon samaa mieltä hänen kritiikistään kuin Syksykin. Tykkään siitä, että hän haastaa valtavirtaa ja jaksaa niitä asioita maallikoillekin selittää. Mutta jopa minun (”ihan miten vaan mutta mieluummin päinvastoin” -tyypin) on vaikea sietää kaikkea hänen sanomaansa, juurikin Syksyn kuvailemista syistä. Mutta suotakoon se Sabinelle, koska sensaatiohakuisuus (tai miksi sitä sanoisikaan) myy paremmin kuin laimeat nönnönnöö -videot (ja blogit ym.). Hän kuitenkin yrittänee tehdä osittaista elantoa tubettamisella, tosin en tiedä minkälaisista summista hänen katsojamäärillään puhutaan (mutta niitä katsojiahan hän yrittää näillä raflaavilla väitteillään saada).

    1. Syksy Räsänen sanoo:

      Pimeä aine on onnistunut ja yksinkertainen hypoteesi, joka on selittänyt ja ennustanut havaintoja oikein. Ehdotukset muokatuksi gravitaatiolaiksi eivät ole pystyneet selittämään kaikkia samoja havaintoja kuin pimeä aine, eivätkä ne ole myöskään ennustaneet asioita yhtä oikein. Ei ole myöskään mitään teoreettista syytä sille, että kyseessä olisi muokattu gravitaatiolaki eikä pimeä aine. Pimeä aine on siis luultavammin oikea selitys.

      1. Erkki Kolehmainen sanoo:

        ”Pimeä aine on onnistunut ja yksinkertainen hypoteesi, joka on selittänyt ja ennustanut havaintoja oikein.”

        Pimeästä aineen hiukkasista ei ole yhtään suoraa havaintoa. Vain sen vaikutuksesta on. Näin ollen täysin tuntematon pimeä aine on räätälöity selittämään koetulosta eikä päinvastoin kuten tulisi olla.

        1. Syksy Räsänen sanoo:

          Pimeä aine on onnistuneesti ennustanut muun muassa aineen liikkeitä galakseissa, galaksiryppäissä ja isommassa mittakaavassa, sekä galaksien synnyn, galaksien rakenteen, kosmisen mikroaaltotaustan epätasaisuudet (jos olisi vain tavallista ainetta, ne olisivat täysin erilaiset) ja gravitaatiolinssejä.

          Yksi esimerkki: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/luodin-jaljet/

          1. Eusa sanoo:

            http://backreaction.blogspot.com/2017/01/the-bullet-cluster-as-evidence-against.html?m=1

            Meneekö siis Hossenfelderillä pieleen Bullet Cluster -tulkinnassaan?

          2. Syksy Räsänen sanoo:

            Hänen siteeraamansa tulokset Bullet Clusterin todennäköisyydestä ovat väärin, koska niissä on laskettu ehdollisia todennäköisyyksiä tavalla, jota ei voi suoraan verrata havaintojen todennäköisyyteen.

            Kun laskun tekee oikein, Bullet Cluster ei ole kovin epätodennäköinen. Artikkeli aiheesta: https://arxiv.org/abs/1412.7719

    2. Minusta kiinnostavia ovat kolmannet selitysyritykset, kuten J.S. Farnesin ajatus galaksien väliin repulsion ajamista negatiivisen massan hiukkasista, jotka selittäisivät galaksien rotaatiokäyrät ja bonuksena myös kiihtyvän laajenemisen, https://www.aanda.org/articles/aa/pdf/2018/12/aa32898-18.pdf . Negatiivisen massan hiukkaset voisivat mahdollistaa lähes valon nopeudella tapahtuvat tähtienväliset matkat ilman energiaa, koska jos sama määrä positiivista ja negatiivista massaa liikkuu yhdessä, kokonaiskineettinen energia ja liikemäärä ovat nollia. Avaruuslaivan varustaminen matkaan päinvastoin tuottaisi energiaa, kun sen ruumassa oleva negatiivinen massa luodaan. Robert Forward aikoinaan mietiskeli tällaisiakin.

  8. Martti V sanoo:

    Voi olla turhaa yrittää yhdistää hiukkasfysiikkaa gravtaation kanssa. Aika-avaruuden kuvaamiseen ei tarvita gravitonia eikä muutakaan hiukkasta. Sen sijaan vahva ja sähköheikko voivat olla paremminkin yhdistettävissä kosmoksen syntyajan lämpötilassa, mutta oikeaa teoriaa ei ole vielä keksitty. Toki uteliaisuus ja kokeileminen vie tiedettä eteenpäin.

  9. Eusa sanoo:

    Selvitin Hossenfelderin väitettä Bullet Cluster -havainnosta Syksyn linkkaaman tutkimuksen (Kraljic & Sarkar) valossa.

    Tutkimuksessa kuvataan avoimesti kuinka menetelmää vaihdetaan, kylläkin perustellusti (ääriarvoteorian toisen lauseen sovelma), sovittumaan lähemmäs yhteen ΛCDM-kaikkeuden pimeän aineen halodynamiikkaa. Lopuksi annetaan aika vahva disclaimer omaan tutkimukseen simulaation törmäysnopeuden herkkyystarkastelusta sekä myöntö sille odottamalle, että vastaavan uuden löydön kohdalla standardikosmologia on todellisissa vaikeuksissa.

    Saatu todennäköisyys luodatun punasiirtymän syvyydessä saadaan 10% luokkaan. Tämä yltää riittävään luotettavuuteen siitä, että todennettu Bullet Cluster mahtuisi kosmologiaparadigman sisään.

    En löytänyt artikkelista mainintaa, että olisi huomioitu Bullet Cluster -löydön tulleen havaituksi luotauksessa, joka kattoi alle 6% taivaasta. Kun tämä huomioidaan, ääriarvotarkastelulta putoaa pohja pois – ei ole olemassa läpikotaisia tarkasteluotoksien jaksoja, joita vaaditaan ääriarvojen hyödyntämiseen silloin, kun varsinainen jakauma on saavuttamattomissa.

    Tulosta voisi selitellä kaikkeuden isotropialla ja homogeenisuudella niin, että sellaisia otosjaksoja mahtuisi havainto-otokseen muutama ja että ääriarvojen käyttö olisi sallittua.

    Kuitenkin, vaikka laskentamenetelmä hyväksyttäisiin, todennäköisyys moiselle nopealle halotörmäykselle massamittaluokassa putoaa promilleluokkaan ja ei ole luotettavasti sovitettavissa ΛCDM-kaikkeuteen.

    Nähdäkseni Hossenfelderillä on pointtinsa ja samoin kuin satelliittigalaksien puute bulletclusterien esiintymä langettaa järkevän epäilyn pimeän hiukkasaineen mahdollisuudelle. Mainittu sumea pimeä massa levittynein pitkäaaltoisin eksitaatioin voisi paremmin soveltua ainekentän skalaariosioksi TAI muunnetun gravitaation kentän skalaariosioksi (scalar-vector-tensor).

    1. Syksy Räsänen sanoo:

      Kommentti siitä, että pitäisi ottaa huomioon myös se, kuinka suuri osa taivasta on mitattu siten, että vastaava systeemi voisi löytyä pitää paikkansa.

      Toisaalta pitää ottaa huomioon, että todennäköisyys sille, että satunnaisen prosessin tuloksena syntynyt asia X on sitä pienempi, mitä tarkemmin asia X määritellään. Jos heittää kasan kolikoita ympäri huonetta ja näkee osan niistä asettuvan suunnilleen kaareen ja kysyy mikä on todennäköisyys näin pitkälle, näin ohuelle ja näin kaartuneelle kaarelle, se voi olla hyvin pieni. Ongelmana on se, että määrittelee sen mitä etsitään vasta sen jälkeen kun on nähnyt tuloksen, eikä ota huomioon, että olisi ollut yhtä hämmästyneitä jostain aivan toisenlaisesta tuloksesta (vaikka suorasta kaaren sijaan).

      Tämä tunnetaan nimellä ”look elsewhere effect”.

      Käsittääkseni kaikkiaan Bullet Cluster ei ole kovin epätyypillinen. Satelliittigalaksien lukumäärä on kiinnostava kysymys (en ole varma mihin satelliitteihin viittaat), mutta se ei ole todiste pimeää ainetta vastaan.

      Vaikka Bullet Cluster olisi hyvin epätodennäköinen yksinkertaisimmassa mallissa pimeälle aineelle ja rakenteiden siementen synnylle, tämä ei olisi todiste muokatun gravitaatioteorian puolesta, koska ei ole ainuttakaan muokattua gravitaatioteoriaa, joka pystyisi selittämään kaikki edes galaksien ja galaksiryppäiden liikkeisiin liittyvät havainnot (saati kaikkia havaintoja).

      1. Eusa sanoo:

        ”Käsittääkseni kaikkiaan Bullet Cluster ei ole kovin epätyypillinen.”

        Noin ollen concordance-ΛCDM-kosmologian mallinnuksessa on oltava jotain pielessä tai vähintään puutteita, jos kuitenkin pimeän aineen halot voisivat saavuttaa paikalliseen joukkoon noin suuria galaksijoukkojen kohtaamisnopeuksia. Sitäkö tarkoitat?

        Look elsewhere effect ei mielestäni suoraan sovi tapaukseen. Kohtaamisen vastakkainen vauhtikomponentti on hahmoton suure.

        1. Syksy Räsänen sanoo:

          Todennäköisyys nopeudelle on otettu huomioon artikkelissa, johon linkkasin yllä.

      2. Lentotaidoton sanoo:

        Räsänen: Tämä tunnetaan nimellä ”look elsewhere effect”. Käsittääkseni kaikkiaan Bullet Cluster ei ole kovin epätyypillinen

        Kirjoitin 23.8.2018: Räsäsen mukaan tapaus on harvinainen, mutta näin tuleekin olla. Tämän Räsäsen antaman linkin (https://arxiv.org/abs/1412.7719) mukaan Bullet Cluster on vain marginaalisesti sovitettavissa ΛCDM-kosmologiaan . Itseasiassa niin että jos (juuri) tällaisia systeemejä löytyisi lisää, niin se haastaisi standardin kosmologisen mallin.

        “We find that only about 0.1 systems like the Bullet Cluster 1E 0657-56 (where the collision has occurred already) can be expected up to z = 0.3. Increasing the relative velocity to 4500 km/s — the shock front velocity deduced from X-ray observations of 1E 0657-56 — no candidate systems are found in the simulation. Thus the existence of 1E 0657-56 is only marginally compatible with the ΛCDM cosmology, provided the relative velocity of the two colliding clusters is indeed as low as suggested by hydrodynamical simulations. Hence if more such systems are found this would challenge the standard cosmological model.”

        1. Eusa sanoo:

          Niinpä. Syksyn sanailussa on ristiriitaa tai ymmärrän jotenkin väärin…

          1. Syksy Räsänen sanoo:

            On tyypillistä, että taivaalla on Bullet Clusterin kaltaisia galaksiryppäiden törmäyksiä. Se ei siis ole epätyypillinen piirre maailmankaikkeudessa. Niitä ei kuitenkaan ole tyypillisesti monta, eli ne ovat harvinaisia taivaalla.

          2. Lentotaidoton sanoo:

            Eusa; ”Niinpä. Syksyn sanailussa on ristiriitaa tai ymmärrän jotenkin väärin…”

            Jos tämä Eusan ”niinpä” on lausahdusvastaus kirjoittamaani, niin tosiaan olet hyvä Eusa käsittänyt väärin. Siis miten niin niinpä??? En minä (eikä Räsäsen ilmoittama linkki) arvostellut/poikennut Syksyn kirjoittamaa, päinvastoin. Syksyn sanailussa ei ole ristiriitaa.

            Kirjoitin aiemmin: Räsäsen mukaan tapaus on harvinainen, MUTTA NÄIN TULEEKIN OLLA. Ja kuitenkin se on vielä ΛCDM kosmologian raameissa, eli jos niitä näkyisi monia, niin SITTEN olisi vaara hypätä standardikosmologian kyydistä.

          3. Eusa sanoo:

            Tiede on epäonnistumisella leikkimisen rakastamista.

  10. Mika Kovin sanoo:

    Inflaatioteoria on fysiikan surkein adhoc satu,, jota ei voi yhdistää mihinkään fysiikan ns alkuhypoteesehin.
    Pimeä energia on toinen vastaava. Olen ko. Hossenfeldetin kannalla myös siinä, että on teorian heikkoutta, ettei tapahdu edistystä, ei puuttuvien jättilaitteiden.

    1. Syksy Räsänen sanoo:

      En tiedä mitä tarkoitat ”alkuhypoteeseilla”. Inflaatio on suoraviivainen osa yleistä suhteellisuusteoriaa ja hiukkasfysiikkaa. Mikä tärkeämpää, se on onnistuneesti selittänyt jo tehtyjä havaintoja ja ennustanut oikein uusia.

      Lisätietoja siitä, miten fysiikan teoriat etenevät: https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/edistys-ja-rappio/

      Lisätietoja inflaatiosta:

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/vastavuoroinen-suhde/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/muistinmenetykset-ennustusten-takana/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/potkut-ylospain/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/ylos-pohjalta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/seitseman-ennustusta-menneisyydesta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/kuin-putoava-kivi/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/eilispaivan-rohkeutta/

      https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/jokin-sanoo-poks/

      http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/taivaallinen_ilmoitus

      https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/littean_maailman_selitys

      https://web.archive.org/web/20200807084406/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kosmoksen_ja_laboratorion_avioliitto

      https://web.archive.org/web/20220812062847/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/syntymiskipuja

      Jos pimeä energia on kosmologinen vakio tai tyhjön energiaa, se on myös osa yleisen suhteellisuusteorian ja hiukkasfysiikan tunnettua perustavanlaatuista rakennetta. Albert Einstein otti kosmologisen vakion mukaan yleiseen suhteellisuusteoriaan jo 105 vuotta sitten. Ennen kuin kiihtyvää laajenemista oli havaittu, ongelmana oli se, miksi kosmologista vakiota ei ole nähty, vaikka sen sen odottaisi olevan olemassa.

      On kyllä outoa, miksi kosmologisen vakion arvo on niin pieni kuin mitä tarvitaan selittämään havainnot, ja voi hyvin olla, että oikea selitys on jokin toinen.

      Lisätietoa pimeästä energiasta:

      https://web.archive.org/web/20221204061453/https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kirkkaudesta_pimeyteen

      https://web.archive.org/web/20160415122117/http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kolmen_vaihtoehdon_mysteeri

      https://web.archive.org/web/20220812055009/http://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/valoa_kaukaa

  11. Käsittääkseni, jos olen ymmärtänyt oikein ja jos oletetaan yksinkertaisuuden vuoksi Higgs-inflaatio, niin reheatingissä Higgsin kenttä muutti arvoaan, ja tästä vapautunut energia ilmeni tyhjästä syntyneinä Higgsin hiukkasina (eli inflatonikentän värähtelymoodeina), jotka pian hajosivat lähinnä hiukkas-antihiukkaspareiksi.

    Mietin että jos samanlainen tapahtumasarja olisi käynnissä tälläkin hetkellä mutta paljon pienemmässä energiaskaalassa, niin miltä se näyttäisi. Tyhjästä syntyisi jotain skalaarihiukkasia, jotka sitten joko hajoaisivat tai eivät, riippuen niiden vuorovaikutuksista? Siinä tapauksessa että ne eivät hajoaisi nopeasti, niin esimerkiksi pimeä aine saattaisi olla tällaisia pimeän energian reheating-tuotteena syntyneitä hiukkasia(?)

    1. Syksy Räsänen sanoo:

      Tyypillisesti inflaatiota ajanut kenttä tosiaan hajoaa hiukkasiksi. (Muitakin vaihtoehtoja on.)

      Pimeää ainetta on ollut ainakin kosmisen mikroaaltotaustan synnyn aikaan 14 miljardia vuotta sitten, eli jos se olisi syntynyt pimeän energian kentästä, tämän olisi pitänyt tapahtua varhaisina aikoina. Sitä ei voisi enää sen jälkeen tapahtua merkittävässä määrin, koska sellainen olisi havaittu. Pimeän energian ja pimeän aineen toisiinsa kytkeviä malleja on tutkittu, mutta ei tiedetä mitään syytä, miksi näillä erilaisilla ilmiöillä olisi mitään tekemistä keskenään. Pimeän aineen tuottaminen pimeän energian kentästä (jos sellainen on) on varmaan mahdollista, mutta ei erityisen luontevaa.

      1. Kumpaan suuntaan ns. Hubblen tensio vaikuttaa? Tahtoisiko tensio että pimeää ainetta olisi tullut lisää vai hävinnyt mikroaaltotaustan syntymisen jälkeen?

        1. Syksy Räsänen sanoo:

          Eroilla Hubblen parametrissa eri havaintojen välillä ei ole selvää yhteyttä pimeän aineen tiheyteen.

  12. Kimmo Lappalainen sanoo:

    Onko kvanttigravitaation ymmärtämisessä kyse vain siitä, että sitä mittaava koeasetelma ei ole (lähellekään) toteutettavissa tai liittyykö kokeelliseen mittaamiseen myös teoreettisia ongelmia?

    Esim gravitaatioaaltojen osalta teoria oli jo vuosikymmeniä tiedossa, mutta vasta mittalaitteiden tarkkuuden parantuminen mahdollisti asian tutkimisen.

    Jos teoreettista estettä ei ole, niin kuinka kaukana ollaan ollaan ensimmäisestä kokeellisesta mittauksesta? Ja mikä koeasetelma tämä olisi?

    1. Syksy Räsänen sanoo:

      Meillä ei ole kvanttigravitaatioteoriaa, eivätkä ehdokkaat (kuten säieteoria) ole niin hyvässä kunnossa, että ne niistä voisi laskea ennusteita.

      Ensimmäinen kvanttigravitaatiomittaus oli jossain mielessä COBE-satelliitin vuonna 1992 julkaistu mittaus kosmisen mikroaaltotaustan epätasaisuuksista. Paras selitys niille on kosminen inflaatio, josta oli ennustettu mitattu signaali käsittelemällä aika-avaruuden ja aineen epätasaisuuksia kvanttifysiikan keinoin.

Vastaa käyttäjälle Eusa Peruuta vastaus

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *