Massojen mekanismista

8.10.2013 klo 23.26, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Vuoden 2013 Nobelin fysiikan palkinto on tänään myönnetty François Englertille ja Peter Higgsille. Nobel-komitean yhden virkkeen perustelu on huolellisen kimurainen: palkinto on myönnetty ”atomia pienempien hiukkasten massan alkuperän ymmärrystä lisäävän mekanismin teoreettisesta löytämisestä, joka hiljattain varmistettiin sen ennustaman alkeishiukkasen löytämisellä ATLAS- ja CMS-kokeiden toimesta CERNin Large Hadron Collider -kiihdyttimessä”.

Vaikka perustelussa mainitaan Higgsin hiukkanen, keskeiseksi on asetettu mekanismi jolla alkeishiukkaset saavat massansa, vuorovaikuttamalla avaruuden täyttävän Higgsin kentän kanssa. Higgsin kenttä ja siihen liittyvä hiukkanen ovat kiinteä osa hiukkasfysiikan Standardimallia. LHC:n käynnistyessä voitiin taata, että löytyy joko Higgsin hiukkanen tai poikkeamia Standardimallista tai molempia, ja Higgsin löytymistä pidettiin erittäin luultavana. Niinpä jo ennen kuin ATLAS ja CMS ilmoittivat uudesta hiukkasesta heinäkuussa 2012 (joka maaliskuussa 2013 julistettiin virallisesti Higgsin hiukkaseksi), käytiin painokkaita keskusteluita siitä, kenen pitäisi saada Nobelin palkinto. Palkinnonsaajien julkistamista seurattiinkin CERNissä innolla (kollegani Tommaso Dorigo livebloggasi seremonian katsomista CERNistä).

Nobel-komitean sääntöjen mukaan palkinto voidaan myöntää korkeintaan kolmelle henkilölle, mutta Higgsin mekanismin teoreettiseen löytämiseen on merkittävissä määrin osallistunut ainakin seitsemän ihmistä. Englertin kanssa yhteistyötä tehnyt Robert Brout kuoli vuonna 2011: jos Brout olisi elänyt kaksi ja puoli vuotta pidempään, hänkin olisi ollut palkittujen joukossa. Lisäksi Gerald Guralnik, Tom Kibble and Carl Hagen kirjoittivat yhden merkittävän julkaisun nykyään Higgsin mukaan nimetystä mekanismista ja Philip Anderson oli ensimmäisenä kehittänyt samanlaisen mekanismin, eri olosuhteisiin sovellettuna.

Matt Strasslerilla on selkeä katsaus Higgsin mekanismin löytämisen käänteisiin, ja yksityiskohdista kiinnostuneille suosittelen Frank Closen mainiota kirjaa ”The Infinity Puzzle”. Strasslerin kirjoituksessa on hyviä oivalluksia, esimerkiksi hän korostaa sitä, että kaikki seitsemän tutkijaa pyrkivät ratkaisemaan muita ongelmia kuin sitä, mihin Higgsin mekanismia Standardimallissa lopulta käytettiin. Lisäksi Higgsin hiukkasta pidettiin niin epäoleellisena, että ainoastaan Peter Higgs mainitsi asiasta, ja hänkin vain jälkikäteen täydentääkseen artikkeliaan, jotta se kelpaisi julkaistavaksi. Nyt Higgsin hiukkasta pidetään tärkeänä erityisesti siksi, että muut osat Higgsin mekanismista oikeastaan tulivat todistetuksi jo 1983, kun heikkoa vuorovaikutusta välittävät massiiviset W– ja Z-bosonit löydettiin, mistä myönnettiinkin Nobelin palkinto seuraavana vuonna. Higgsin hiukkanen oli pitkään ainoa kateissa oleva osa.

Mielivaltaisesta kolmen henkilön rajasta johtuva keskustelu siitä, kuka Nobelin palkinnon ansaitsisi, vie kenties ajatuksia väärille raiteille. Kaikkien osallistuneiden tutkimus on arvostettua, eivätkä heidän ansionsa riipu Tukholmassa istuvan komitean päätöksistä. On myös tärkeää huomata, kuten Peter Woit ja Jon Butterworth korostavat, että tieteessä ei ole kyse vain yksittäisten tieteilijöiden tekemistä läpimurroista. Usein ideoita kehittelevät monet tutkimusyhteisön jäsenet, joista kukin saa palasen oikein. Nyt palkittujen sen enempää kuin palkintoa vaille jääneiden tavoitteena ei ollut alkeishiukkasten massojen selittäminen, ja Higgsin kentän ottaminen osaksi Standardimallia on muiden käsialaa. Higgsin mekanismin tapauksessa teoreetikkojen joukosta on vielä mahdollista nostaa esiin kymmenenkunta henkilöä, mutta jos esimerkiksi supersymmetria löydetään, muutaman teoreetikon poimiminen satojen tai tuhansien asiaa tutkineiden joukosta olisi keinotekoista ja antaisi virheellisen kuvan teorian kehittämisestä.

Lisäksi, kuten Woit ja Butterworth kirjoittavat, Higgsin löytäminen on ennen kaikkea kokeellisen fysiikan menestystarina. LHC on ihmiskunnan mittavin tieteellinen koe, ja Higgsin löysivät yhdessä koordinoidusti ja huolella toimineet tuhannet ihmiset, jotka selvittivät tarkkaan aineen käyttäytymistä arkielämää miljardi miljardia kertaa pienemmässä mittakaavassa. Englert ja Higgs ovat palkinnon ansainneet, mutta ilman ATLAS- ja CMS-ryhmiä sekä LHC:n toiminnasta vastaavaa ryhmää ei Standardimallin viimeinen pala olisi paikallaan. Toivottavasti Nobelin palkinto voidaankin jatkossa myöntää kokonaisille tutkimusryhmille.

Hiukkasfysiikan Standardimalli on kerännyt vuosien varrella runsaasti Nobeleita. Nyt kaikki Standardimalliin liittyvä on löydetty, ja nämä lienevät viimeiset Tukholman kutsut jotka sen tiimoilta lähetetään. Yksi aikakausi hiukkasfysiikan historiassa päättyy kun mitalit myönnetään joulukuun 10. päivä. Jatkossa hiukkasfysiikassa on päästävä tuntemattomalle mantereelle, Standardimallin tuolle puolen.

23 kommenttia “Massojen mekanismista”

  1. Juhani Harjunharja sanoo:

    Selkeyttävä selostus!

  2. Lasse Reunanen sanoo:

    Suomennoslainasi perustelu selkeä ja täydennyksesi linkkeineen myös (”selkeyttävää”). Perustelussa vältetty selkeiden aikamääreiden antamista, mutta täydennyksesi niistäkin kertoo…
    Lopun ”tuolle puolen” antanee käsitystä ”tyhjän” tilan olemukseen – siis hiukkasten välitilan kenttiin vuorovaikutuksessa – ja siitä laajemminkin atomitasoon sekä niiden ulkopuoliseen ”tyhjän” kenttien vuorovaikutuksiin (kenttä aineen vaikutuspiirissä olevaa)…

  3. Ihmettelijä sanoo:

    Millaisia ominaisuusksia Higgsin hiukkasella on?

    Miten on todistettu että Cernissä löydetyllä hiukkasella on kyseiset ominaisuudet?

  4. Ihmettelijä sanoo:

    Millaisia ominaisuuksia Higgsin hiukkasella on?

    Miten on todistettu että Cernissä löydetyllä hiukkasella on kyseiset ominaisuudet?

  5. Ihmettelijä sanoo:

    ” Mutta Higgsin hiukkasta ei ole suoraan havaittu, vaikka sitä on kauan etsitty, niin CERNissä kuin muuallakin.”

    http://www.tiede.fi/blog/2009/10/30/viimeinen-pala/

    Havaittiinko Higgs suoraan vai pääteltiinkö sen olemassa olo epäsuoran havainnon avulla?

    ”Higgsin hiukkasen ominaispiirre on se, että se vuorovaikuttaa muiden hiukkasten kanssa sitä voimakkaammin, mitä isompi niiden massa on.”

    http://www.tiede.fi/blog/2013/03/28/niin-maan-paalla-kuin-taivaassa/

    Selittääkö standarimalli miksi Giggs vuorovaikuttaa voimakkaammin sellaisen hiukkasten kanssa joiden massa on isompi?

    ”Page Not Found

    Nobelprize.org launched a new web site in June 2013. This can make your bookmarks disappear.”

    http://www.nobelprize.org/nobel_prizes/physics/laureate

    Löytyisiköhän kyseinen selitys suomeksi?

  6. Syksy Räsänen sanoo:

    Ihmettelijä:

    ”Havaittiinko Higgs suoraan vai pääteltiinkö sen olemassa olo epäsuoran havainnon avulla?”

    Havaittiin suoraan. Siteeraamasi merkinnän päiväys on ajalta ennen Higgsin löytämistä.

    ”Selittääkö standarimalli miksi Giggs vuorovaikuttaa voimakkaammin sellaisen hiukkasten kanssa joiden massa on isompi?”

    Kyllä, merkinnässä Viimeinen pala tätä on hiukan hahmoteltu. Asia menee niin, että niiden hiukkasten massat ovat isompia, jotka vuorovaikuttavat Higgsin kanssa voimakkaammin.

    Korjasin linkin, kiitos huomiosta. Tietääkseni kyseistä selitystä ei ole suomeksi.

  7. Ihmettelijä sanoo:

    Muodostuuko Higgsin kenttä ja Higgsin hiukkaset jostakin eri asiasta kuin aine? Juu, aine koostuu protoneista / neutroneista ja ne kvarkeista, mutta onko kvarkeissa oleva asia jotakin eri asiaa kuin se mitä Higgsin hiukkasessa on?

    Vai onko Higgsin kenttä alunperin peräisin aineesta?

    Missä vaiheessa Higgsin kenttä muodostui ja mistä se alunperin muodostui?

    ”Varhaisten havaintojen mukaan Higgs tuntui hajoavan fotoneiksi hieman tavallista useammin. Poikkeama ei ollut tilastollisesti merkittävä, joten ei ollut selvää onko kysymys siitä, että on sattumalta nähty paljon hajoamisia fotoneiksi vai onko Higgs erilainen kuin mitä odotetaan. Uuden datan myötä on paljastunut, että kyseessä oli vain hyvä tuuri – jos ei olisi sattumalta nähty enemmän fotoneiksi hajoamisia, ei hiukkasta olisi voitu julistaa löydetyksi vielä heinäkuussa. Nyt hajoamisten määrässä ei enää ole mitään poikkeavaa.”

    Higgs siis hajoaa fotoneiksi ja aine säteilee fotoneita.

    Vaikuttaisi siis siltä että Higgsin hiukkasessa on sitä yhtä ja samaa asiaa josta kaikki pohjimmiltaan koostuu?

  8. Syksy Räsänen sanoo:

    Ihmettelijä:

    Higgsin hiukkanen, kvarkit ja fotonit ovat kaikki tämänhetkisen käsityksen mukaan alkeishiukkasia, ts. niillä ei ole mitään alirakennetta.

    Jokaiseen hiukkaslajiin liittyy oma kenttänsä, selitin asiaa hieman merkinnässä http://www.tiede.fi/blog/2010/02/07/naennainen-todellisuus/

  9. Ihmettelijä sanoo:

    Miten alkeishiukkanen kuten Higgsin hiukkanen voi hajota fotoneiksi, jos sillä ei ole mitään alirakennetta?

    Jos Higgs hajoaa fotoneiksi, niin kuinka moneksi fotoniksi se hajoaa?

    Ja todellakin, miten alkeishiukkanen kuten Higgsin hiukkanen voi hajota useaksi toiseksi alkeishiukkaseksi eli useaksi fotoniksi?

    Onko kukaan ylipäätään yrittänyt selittää mekanismia millä Higgs muuttuu / hajoaa fotoneiksi?

  10. M Hiltunen sanoo:

    Sikäli kun standardimallin tuolle puolen kurkottavista teorioista monet, tai ainakin jotkin, olisivat olettaneet jo kerätyssä datassa olleen eroja standardimallin ennusteista, mutta niitä ei näy, ohjaako hiljaisuus fyysikoiden epäilyjä jonkin tietyn teoriaperheen suuntaan, vai tiukemmin takaisin sorvin ääreen?

    Ehkä yhtä olennainen kysymys on, missä määrin tuolla puolen on oltava jotain? Käsittäkseni standardimalli ei ole millään muotoa kaunis esitys hiukkasmaailmasta, ja ainakin kosmologian puolella on ilmiöitä vailla selitystä, mutta kuinka varmasti voidaan sanoa että tässä ei olisi enemmän tai vähemmän kaikki?

  11. Syksy Räsänen sanoo:

    Ihmettelijä:

    Hiukkaset voivat muuttua toisiksi hiukkasiksi, tämä ei edellytä alirakennetta. Higgsin hiukkanen voi hajota kuinka moneksi fotoniksi tahansa, mutta tavallisimmin tuloksena on kaksi fotonia. Hiukkasten hajoaminen on hyvin ymmärretty ilmiö. Tämä riittäköön tästä.

    M Hiltunen:

    Kosmologian puolelta Standardimalli ei selitä pimeää ainetta, kosmista inflaatiota eikä sitä miksi on enemmän ainetta kuin antiainetta. Standardimalli ei myöskään selitä neutriino-oskillaatioita, mutta se korjaantuu helposti lisäämällä massat neutriinoille (minkä olisi voinut tehdä jo alun perinkin, mielestäni ei ollut hyvää syytä jättää niitä pois). Ilmeisin puute on se, että Standardimalli ei sisällä gravitaatiota.

    On olemassa malleja, joissa LHC:ssä ei olisi odottanut näkyvän mitään, ja tulokset toki epäsuorasti tukevat niitä. En tosin tiedä voiko sanoa, että niiden suosio olisi kasvanut. Suuri osa tutkijoista ei ole vielä valmis luopumaan pitkään vaalituista malleista, joiden mukaan LHC:ssä olisi jo odottanut näkyvän jotain. Siirtymä on vasta tapahtumassa.

    Standardimallin rakenne itse asiassa mielestäni on aika kaunis.

  12. Lentotaidoton sanoo:

    Ihmettelijä: ” Onko kukaan ylipäätään yrittänyt selittää mekanismia millä Higgs muuttuu / hajoaa fotoneiksi?”
    Syksy: ” Hiukkasten hajoaminen on hyvin ymmärretty ilmiö. Tämä riittäköön tästä.”

    Jos ihmettelijä osaat englantia niin panepa lukaisten esim. nämä:

    http://profmattstrassler.com/articles-and-posts/the-higgs-particle/the-standard-model-higgs/decays-of-the-standard-model-higgs/
    http://profmattstrassler.com/articles-and-posts/the-higgs-particle/the-discovery-of-the-higgs/higgs-discovery-is-it-a-higgs/
    http://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-known-apparently-elementary-particles/the-known-particles-if-the-higgs-field-were-zero/

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *