Viisareiden värähtelyä

30.10.2020 klo 21.34, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Yhdysvaltalaisen NANOGrav-tutkimusryhmän jäsen Neil Cornish piti eilen etänä Helsingin yliopiston fysiikan osaston kosmologiaseminaarin NANOGravin tuoreista tuloksista, jotka saattavat vihjata gravitaatioaaltojen löytymiseen päin.

Kokeet LIGO ja Virgo näkevät nykyään gravitaatioaaltoja harva se viikko silloin kun ovat päällä, mutta NANOGravin tapauksessa on uutta sekä menetelmä että –jos on tosiaan löydetty gravitaatioaaltoja– aaltojen lähde.

NANOGrav tarkkailee pulsareita Linnunradassa. Pulsarit ovat neutronitähtiä (tai valkoisiksi kääpiöiksi kutsuttuja tiheitä tähtiä), jotka pyörivät hyvin nopeasti ja lähettävät sähkömagneettista säteilyä. NANOGravin seuraamat pulsarit viuhkivat akselinsa ympäri lähes tuhat kertaa sekunnissa: niiden pinta liikkuu lähellä valonnopeutta. Pulsari pursuttaa radioaaltoja kahteen suuntaan, jotka määräytyvät sen magneettikentästä. Niinpä pulsarin pyöriessä sen meille näkyvä signaali vilkkuu tiuhaan päälle ja pois (paitsi jos se ei koskaan osoita meihin päin).

Pulsarit ovat hyvin vakaita. Niinpä niitä voi käyttää tarkkoina kelloina: vajaa tuhat viisariniskua sekunnissa tekee vuodessa yli 10 miljardia lyöntiä. Olen jopa kuullut ehdotuksesta, että ajan yksikkö määriteltäisiin pulsarien avulla, mutta atomikellot taitavat kuitenkin olla luotettavampia.

Gravitaatioaallot havaittiin alun perin juuri pulsareiden avulla. Vuonna 1974 löydettiin ensimmäinen toisiaan kiertävän pulsarin pari. Yleinen suhteellisuusteoria ennustaa, että pulsaripari ajautuu lähemmäs toisiaan, koska se menettää energiaa lähettämällä gravitaatioaaltoja. Signaalien muutoksesta saatiin tarkasti mitattua pulsarien liikkeet ja todettua, että ennuste pitää kutinsa. Tästä myönnettiin Nobelin palkinto vuonna 1993.

NANOGrav sen sijaan perustuu siihen, että meidän ja pulsarin välissä kulkevat gravitaatioaallot muuttavat pulsarin etäisyyttä meistä ja siksi sen radiosignaalien saapumisaikaa.

NANOGravin uudet tulokset perustuvat 12.5 vuoden havaintoihin 47 pulsarista väliltä 2004-2017. Havainnot osoittavat, että pulsarien kellonlyönnit muuttuvat välillä hitaammiksi ja sitten nopeammiksi jokusen vuoden jaksolla. Pulsarien signaali muuttuu yhteisellä tavalla, eli kyse ei voi olla muutoksista pulsareissa. Vaikutuksen koko on miljardisosan miljoonasosa, mikä tuntuu tavattoman pieneltä, mutta on silti miljoona kertaa isompi kuin LIGOn havaitsemien gravitaatioaaltojen korkeus.

Todennäköisyys sille, että kyseessä on sattuma, on noin 1:30 000. Hiukkasfysiikassa tämä ei riitä löytöön, vahvaan kiinnostukseen kylläkin. Mutta vaikka sattuman todennäköisyys olisi kuinka pieni, löytöä ei sovi julistaa ennen kuin kaksi ehtoa täyttyvät: systemaattiset virheet ymmärretään ja signaalilla on teoreettinen selitys.

Suunnilleen vuoden pituinen jakso on epäilyttävä, koska se on lähellä Maan kiertoaikaa Auringon ympäri, ja muutkin asiat Aurinkokunnassa kehittyvät suunnilleen samalla aikaskaalalla. Maapallon yläilmakehä ja Aurinkokunnan avaruussää (jota Helsingin yliopistossakin tutkitaan) muuttuvat ja vaikuttavat radioaaltojen kulkuun.

Analyysissä pitää myös tuntea Maapallon rata erittäin tarkasti, koska muutos signaalissa on hyvin pieni. On tärkeää, että epätarkkuus Jupiterin radassa on viime vuosina laskenut 50 kilometristä 10 kilometriin, ja Aurinkokunnan massakeskipisteen tunnetaan nyt 10 metrin tarkkuudella. Tähän on 1600-luvulta alkanut tarkka taivaan mallintaminen päässyt.

Tämä on esimerkki fysiikan eri alueiden yhteyksistä: kehitys yhdessä aiheessa voi mahdollistaa etenemisen aivan eri suunnassa. Avaruussäällä ja planeettojen radoilla ei ole gravitaatioaaltojen kanssa sinällään mitään tekemistä, mutta niiden ymmärtäminen on tärkeää niiden analysoimisessa.

Jos signaalin muutos liittyisi Maapallon liikkeisiin, niin havainnoissa näkyisi vaihtelu ei vain ajassa vaan myös paikassa: signaali olisi yhdessä suunnassa isompi ja toisessa pienempi sen mukaan, miten Maa kulkee. Havaintojen perusteella tämä vaihtoehto voidaan sulkea pois.

Myös gravitaatioaaltojen aiheuttama signaali riippuu suunnasta. Vesiaalto värähtelee ylös ja alas kohtisuoraan kulkusuuntaansa nähden. Samoin gravitaatioaalto värähtelee kohtisuoraan kulkusuuntaansa nähden. Mutta gravitaatioaalto ei värähtele vain yhdessä suunnassa, vaan tasossa, joka on kulkusuuntaan kohtisuorassa. Niinpä aallon kulkiessa Aurinkokunnan läpi pulsarien signaaleissa pitäisi näkyä teorian ennustama vaihtelu tasossa, joka riippuu aallon kulkusuunnasta.

Kuten NANOGrav-ryhmä korostaa, ennen tällaisen vaihtelun mittaamista ei voi väittää nähneensä gravitaatioaaltoja. Tästä on havainnoissa korkeintaan heikkoja merkkejä. Teoreettisesti odotettu vaihtelu on kuitenkin niin pieni, että sitä ei olisi voitukaan näistä havainnoista erottaa.

Kiinnostavin kysymys on se, että jos signaali on todellinen, niin mistä se on peräisin? Mikä tuottaa näin heikkoja aaltoja noin vuoden jaksolla?

Kärkiehdokas on kaksi jonkun galaksin keskustassa toistensa ympärillä pyörivää jättiläismäistä mustan aukkoa – sellaista, jonka Event Horizon Telescope kuvasi viime vuonna ja jollaisen löytämisestä Linnunradassa juuri myönnettiin Nobelin palkinto. Selityksen etuna on se, että tällaisia mustia aukkoja on todella olemassa, vaikka ei tiedetäkään kuinka usein ne pariutuvat.

Sopivia gravitaatioaaltoja voi syntyä myös kosmisessa inflaatiossa ensimmäisen sekunnin perukoilla, kvarkkien sitoutuessa hadroneiksi muutaman ensimmäisen mikrosekunnin aikana tai kosmisten säikeiden taitoksissa myöhäisempinä aikoina. Kaikki kolme jälkimmäistä vaihtoehtoa vaatisivat jotain uusia hiukkasfysiikan teorioita. Teoreetikoilla on niitä hyllyllä valmiina, ja kymmeniä uusia onkin jo esitetty.

Eri lähteiden synnyttämien gravitaatioaaltojen korkeus riippuu aallonpituudesta hieman eri tavalla, joten vaihtoehdot voidaan erottaa tarkemmilla havainnoilla – jos kyseessä on gravitaatioaallot.

Kun LIGOn herkkyys vuonna 2015 ylitti gravitaatioaaltojen havaitsemisen rajan, se keräsi sekunnissa tarpeeksi dataa löytöön. NANOGravin tapaus muistuttaa enemmän hiukkaskiihdyttimiä, missä näkyy ensin heikko signaali, joka tarkentuu, kun kerätään lisää dataa, ja lopulta joko osoittautuu olemattomaksi tai varmistuu.

Samanlaisia mittauksia ovat tehneet myös eurooppalainen ryhmä EPTA ja australialainen PPTA, ja kaikkien kolmen yhdistettyä dataa on jo alettu käydä läpi. Lisäksi NANOGrav parantaa analyysiään muun muassa tarkemmalla avaruussään mallintamisella, ja kerää lisää dataa.

Suurin merkitys on kuitenkin NANOGravin jo haavissa olevilla havainnoilla, joita ei ole vielä ehditty perata. Ryhmä analysoi par’aikaa vuoteen 2019 ulottuvaa 15 vuoden havaintoaineistoa, ja tuloksia sopii odottaa julki vuoden kuluttua. Tarkkuus kasvaa nopeasti lisädatan myötä, ja jos NANOGrav on nähnyt gravitaatioaaltoja, sillä on niistä tilastollisesti kiistaton todiste ensi vuonna.

11 kommenttia “Viisareiden värähtelyä”

  1. Lentotaidoton sanoo:

    Räsänen: Todennäköisyys sille, että kyseessä on sattuma, on noin 1:30 000. Hiukkasfysiikassa tämä ei riitä löytöön, vahvaan kiinnostukseen kylläkin. Mutta vaikka sattuman todennäköisyys olisi kuinka pieni, löytöä ei sovi julistaa ennen kuin kaksi ehtoa täyttyvät: systemaattiset virheet ymmärretään ja signaalilla on teoreettinen selitys.

    Niin tosiaan ”löytöön” eli 5 sigmaan tarvitaan noin 1/3,5 miljoonan todennäköisyys olla vain kvanttikohinaa. Nyt ollaan tietysti kaukana siitä. Vallankaan kun ottaa huomioon nuo Räsäsen muut ehdot. Aika (eli lisädata) näyttää.

    Higgshän löydettiin 2012 5 sigmassa ja myöhemmin muistelen sigman nousseen jo 7:ään.

    1. Syksy Räsänen sanoo:

      Yleensä kyse ei ole kvanttikohinasta, vaan yleisesti tilastollisesta virheestä.

      Tuon hiukkasfysiikassa vuosikymmeniä sitten käyttöön otetun 5 sigman kriteerin soveltaminen nykyisiin kokeisiin on tosin jokseenkin mielivaltaista. Se on alun perin laskettu erilaisessa tilanteessa.

      1. Lentotaidoton sanoo:

        Räsänen: Se on alun perin laskettu erilaisessa tilanteessa.

        Juu tietysti, mutta näyttipä olleen hyvinkin tärkeässä roolissa ainakin Higgsin tapauksessa (niinkin myöhään kuin 2012). Pidettiin tiukasti vaarin, että tuo saavutettiin – sekä CMS että ATLAS kumpikin pääsivät 5 sigmaan, mutta lisäkanava (tau) pudotti CMS:n 4,9:ään.

        No historiallisesti tuo oli ymmärrettävää, olihan kyseessä Standarditeorian viimeinen löytymätön ja erittäin tärkeä hiukkanen (ja oltiin varovaisia, muistissa oli OPERA-kokeen nolo moka). Ensi alkuunhan puhuttiin vain Higgsin kaltaisesta hiukkasesta, mutta sitten ajan kanssa alettiin puhua varmasta hiukkasesta (kun parillinen pariteetti ja 0-spin saatiin varmistettua).

        1. Syksy Räsänen sanoo:

          Joo, tuo Higgsinkaltainen hiukkanen oli ehkä jopa turhan varovainen muotoilu.

  2. Martti V sanoo:

    Hienoa, että on uusia menetelmiä gravitaatioaaltojen mittaamiseen. Toivottavasti systemaattiset virheet saadaan suljettua pois. Mielenkiintoisinta olisi, jos aallot paljastavat inflaatiosta uutta dataa.

  3. Eusa sanoo:

    Vaikka onkin kvadrupolista, eikö gravitaatioaallot taivu gravitaatiolinsseissä kuten valokin?

    Tuntuisi, että gravitaatioaalloilla on vähäisemmät vaatimukset linssin muodostaman reitin sileän loivasta lineaarisuhteiden säilyttämisestä eikä muutenkaan pölysumut häiritse.

    Voisiko jo todennettujen tapausten toistoja olla odotettavissa kuten supernovilla?

    1. Syksy Räsänen sanoo:

      Gravitaatiolinssit vaikuttavat gravitaatioaaltojen kulkuun samalla tavalla kuten valon.

      En ole varma ymmärränkö kysymystä. Tarkoitat ilmeisesti vahvan gravitaatiolinssi-ilmiön aiheuttamaa aikaviivettä? Se on harvinainen ilmiö, eikä ole luultavaa, että tarpeeksi vahva linssi olisi sattunut meidän ja gravitaatioaaltojen lähteen väliin. Mahdollisuutta on kyllä tarkasteltu. (NANOGravin havaintoihinhan tämä ei liity, niissähän havaitaan radioaaltoja, ei suoraan gravitaatioaaltoja.)

  4. Lentotaidoton sanoo:

    Räsänen: NANOGrav sen sijaan perustuu siihen, että meidän ja pulsarin välissä kulkevat gravitaatioaallot muuttavat pulsarin etäisyyttä meistä ja siksi sen radiosignaalien saapumisaikaa.

    Meinasi itsellä mennä jossain lukuvaiheessa aina sekaisin gravitaatioaallot ja radiosignaalit. Mutta jos olen mieltänyt oikein niin meidän ja pulsarin välimatka olisi/vastaisi ikäänkuin h***vetin pitkää tyhjiöputkea LIGOssa, jossa laser interferenssiä mitataan; kun taas NANOGravissa mitataan gravitaatioaaltojen muuttamaa etäisyyttä (radiosignaalien saapumisaikaa) meidän ja pulsarin välillä (ja näistä saapumisajoista vedetään johtopäätöksiä). Osuiko sinne päinkään?

    1. Syksy Räsänen sanoo:

      Juurikin. Tämän olisin voinut kyllä selittää selvemminkin.

      LIGO mittaa valon kulkua tunnelissa. Läpi menevä gravitaatioaalto muuttaa valosignaalien saapumisaikaa, koska se muuttaa putken pituutta.

      NANOGrav mittaa radioaaltojen kulkua avaruudessa. Läpi menevä gravitaatioaalto muuttaa radioaaltojen saapumisaikaa, koska se muuttaa välissä olevan avaruuden osuuden pituutta.

  5. Teppo Mattsson sanoo:

    Kirjoitat, että ”Todennäköisyys sille, että kyseessä on sattuma, on noin 1:30 000”.

    Miten sattuman todennäköisyys on tässä laskettu?

    Yleensä pystytään laskemaan vain todennäköisyys saada vähintään havaitun vahvuinen signaali *olettaen*, että se on sattumaa (eli kohinaa), eli ehdollinen todennäköisyys P(signaali | sattuma), joka ei ole ”todennäköisyys sille, että kyseessä on sattuma” eli P(sattuma | signaali), koska ehdollinen todennäköisyys ei ole vaihdannainen: P(signaali | sattuma) ≠ P(sattuma | signaali).

    1. Syksy Räsänen sanoo:

      Jos oletetaan, että signaalia ei ole, voi laskea kuinka usein sattumalta tulee samanlainen signaali.

      En ole varma, mikä menettely on tuon luvun 1:30 000 taustalla (Neil Cornish mainitse sen puheessaan), julkaisussa on luku 1:65 000 menettelylle, missä verrataan bayesiläistä ehdollista todennäköisyyttä tapauksessa A, missä on signaali ja tapauksessa B, missä on vain kohinaa. Signaalin todennäköisyys on 65 000 kertaa isompi.

      Tarkemmin artikkelissa: https://arxiv.org/abs/2009.04496

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *