Totalitaristinen periaate ja vanhan ajan romantiikka

20.12.2016 klo 11.09, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

Olin viime viikolla Kiotossa konferenssissa Hidden Sector Physics and Cosmophysics, joka käsitteli aksioneja. Aksionit ovat spekulatiivisia erittäin kevyitä ja erittäin heikosti vuorovaikuttavia hiukkasia, ja ne ovat eräs ehdokas pimeäksi aineeksi. Olen aiemmin kirjoittanut siitä, miten kolmen steriilin neutriinon lisääminen on luonteva tapa laajentaa Standardimallia. Aksionit ovat toinen suoraviivainen Standardimallin täydennys.

Aksionien taustalla on Murray Gell-Manin totalitaristinen periaate: ”kaikki mikä ei ole kiellettyä, on pakollista”. Tämä tarkoittaa sitä, että hiukkasfysiikan teorioita muotoillaan siten, että ensin päätetään, millaisia hiukkasia ja symmetrioita niissä on, ja sitten otetaan mukaan kaikki symmetrioiden sallimat vuorovaikutukset hiukkasten välillä. Kvanttikenttäteorian rakenne on hyvin rajoittava (eli hyvin ennustusvoimainen), eikä mahdollisia vuorovaikutuksia yleensä ole kuin kourallinen.

Standardimalli melkein toteuttaa totalitaristisen periaatteen, poikkeuksena on vain yksi värivoimaa välittävien gluonien vuorovaikutus. Teorian symmetriat sallivat tämän vuorovaikutuksen, mutta havaintojen mukaan sitä ei ole, tai ainakin se on erittäin pieni. Aksioni on esitetty vuonna 1977 selittämään, miksi näin on. Idea on samankaltainen kuin Higgsin mekanismissa, missä Higgsin kenttä vuorovaikuttaa hiukkasten kanssa siten, että ne käyttäytyvät kuin niillä olisi massa. Aksionien tapauksessa aksionikenttä vuorovaikuttaa gluonien kanssa siten, että ne käyttäytyvät kuin niillä ei olisikaan tuota yhtä vuorovaikutusta. Kun Standardimalliin lisää aksionin, se toteuttaa totalitaristisen periaatteen.

Sittemmin on kehitetty myös muita ideoita samantapaisista hiukkasista, esimerkiksi säieteoriassa on useita kenttiä, jotka käyttäytyvät aksionin tavoin. Kutsun tässä näitä kaikkia samaan ideaperheeseen kuuluvia hiukkasia nimellä aksioni – tarkempaa olisi sanoa Standardimallin ongelman ratkaisevaa hiukkasta aksioniksi ja muita aksioninkaltaisiksi hiukkasiksi.

Kuten supersymmetria, tekniväri ja jokseenkin kaikki muutkin merkittävät ideat Standardimallin laajentamisesta, aksioni on 70-luvun lapsi, ensi vuonna se täyttää neljäkymmentä. Mitään havaintoja aksioneista ei vielä ole, mutta mielenkiinto niihin on viime aikoina kasvanut, koska sen enempää korkeita energioita luotaava LHC kuin raskasta pimeää ainetta suoraan etsivät kokeet eivät ole löytäneet uusia hiukkasia. Tämän takia huomio kääntyy enemmän siihen mahdollisuuteen, että Standardimallin tuonpuoleinen fysiikka ei ole piilossa siksi, että uudet hiukkaset olisivat raskaita, vaan siksi, että ne vuorovaikuttavat heikosti.

Steriilit neutriinot ovat yksi esimerkki, niistä kevyimmän massa saattaisi olla noin sadasosa elektronin massasta. Aksionit ovat äärimmäisempiä: sellaisen massa saattaa olla vain 10^(-28) elektronin massa. Tämä on suunnilleen sama kuin hiekanjyvän ja Maapallon massojen suhde. Aksionit voivat olla myös vähemmän kevyitä, 10^(-12) kertaa elektronin massaisia. Se, että aksionien mahdollinen massa (ja niiden vuorovaikutusten voimakkuus) kattaa niin ison alueen, tekee niistä vaikeasti löydettäviä, mutta siihen on keksitty erilaisia konsteja, joissa mainitsen tästä jokusen.

Magneettikentissä aksionit sekoittuvat fotonien kanssa. Niinpä aksioneja etsitään katsomalla, hohtaako valo seinän läpi. Kokeessa osoitetaan laserilla seinää magneettikentän ollessa päällä ja katsotaan näkyykö toisella puolella valoa. Jos aksioneja on olemassa, jotkut fotonit muuttuvat magneettikentässä aksioneiksi, matkaavat seinän läpi ja muuttuvat siellä takaisin fotoneiksi. Muuttumisen todennäköisyys riippuu herkästi aksionin massasta, joten kokeissa täytyy käydä erilaisia massavaihtoehtoja läpi yksi kerrallaan, mikä on hidasta puuhaa, ja eri massoille tarvitaan erilaisia koelaitteita.

Jos aksionit ovat pimeää ainetta, niitä on kaikkialla valtavia määriä. Pimeän aineen massatiheys Aurinkokunnassa tiedetään, joten mitä kevyempi aksioni on, sitä enemmän niitä on. Pienimmän mahdollisen massan tapauksessa meidän jokaisen kehon sisällä on noin 10^(38) aksionia. Niinpä vaikka yksittäisen aksionin vuorovaikutus on heikko, sitä paikkaa valtava lukumäärä.

Eräs lempipuheistani Kioton konferenssissa oli Yoshizumi Inouen esitys hänen ja kolmen kollegan etsinnöistä, joissa he käyttivät vanhaa antennia ja muita uusiokäytettyjä (osin roskalavalta löydettyjä) komponentteja pimeän aineen etsimiseen. Idea on se, että jos pimeä aine sekoittuu fotonien kanssa vähän, niin tavallinen antenni tai peili heijastaa pimeää ainetta vähän, joten sitä voi suunnata antennin avulla valon tai muun sähkömagneettisen säteilyn havaitsemiseen tarkoitettuun halpaan laitteeseen. Laitteisto kokonaisuudessaan maksoi kuulemma parituhatta euroa, mutta sulki silti pois tietynmassaiset ja tietyllä voimakkuudella vaikuttavat aksionit, mihin mikään muu koe ei ollut aiemmin pystynyt. Minulle tuli mieleen romanttiset ajat, jolloin hiukkasfysiikan kokeita saattoi tehdä muutama ihminen parissa kuukaudessa. Olisi jotenkin runollista, jos Inouen ja kumppanien nyrkkipajakoe olisi löytänyt pimeän aineen hiukkasen miljoonia tai miljardeja maksaneiden, tuhansien tutkijoiden huolella koordinoitujen hankkeiden sijaan.

Pieni massa johtaa myös kiinnostaviin kosmologian ja astrofysiikan ilmiöihin. Mitä pienempi hiukkasen massa on (kunhan se ei ole nolla), sitä isompi on siihen liittyvä aallonpituus. Aksionien massa voi olla niin pieni, että aallonpituus on tähtitieteen mittaluokkaa. Aksionit eivät voi muodostaa aallonpituuttaan pienempiä klimppejä, koska niiden paikka ei kvanttimekaniikan mukaan voi olla aallonpituutta tarkemmin määrätty. Jossain mielessä voi sanoa, että hyvin kevyet aksionit eivät ole pieniä hiukkasia, vaan tuhansien valovuosien kokoisia. Tämän on ehdotettu selittävän sitä, että galakseissa näkyy odotettua vähemmän pienen mittakaavan rakennetta, kuten pieniä satelliitteja Linnunradan ympärillä. (Näyttää tosin siltä, että asia selittyy ilmankin aksioneja.)

Vielä eksoottisempi mahdollisuus on se, että mustien aukkojen ympärillä olisi aksioneista muodostunut kehä. Aksionikehä saattaisi imeä aukosta energiaa ja loistaa kirkkaana. Voisi jopa olla mahdollista, että jotkut mustiksi aukoiksi tulkitut havainnot voisi selittää kokonaan tällaisten aksionitähtien avulla, ilman mustia aukkoja. Yksi tapa testata näitä ideoita on laskea millaisia ovat mustien aukkojen, tai aksionitähtien, törmäyksistä syntyvät gravitaatioaallot ja verrata niistä tehtäviin havaintoihin, joita on tulossa paljon lisää.

Kekseliäiden koejärjestelyjen avulla vaikeasti tavoitettavat aksionit lähitulevaisuudessa joko löytyvät tai ne osoitetaan olemattomiksi: viimeistään 15 vuoden kuluttua asiasta pitäisi olla varmuus. On myös hauskaa, miten vanhaan ideaan on saatu tuoreita näkökulmia mustien aukkojen kautta, kun yleisen suhteellisuusteorian yhtälöiden ratkaisemisessa tietokoneilla on edistytty ja gravitaatioaaltojen yksityiskohtiin on päästy käsiksi.

11 kommenttia “Totalitaristinen periaate ja vanhan ajan romantiikka”

  1. Eusa sanoo:

    Mitäpä sanoisit neutriinojen aallonpituuksista, aaltomuodosta ja sen myötä koosta? Mitä tiedetään, mitä perustellusti arvaillaan?

    ”Pienimmän mahdollisen massan tapauksessa meidän jokaisen kehon sisällä on noin 10^(38) aksionia.”

    Voiko ajatella olevan jokin määrä keskimäärin paikallaan pysyviä aksioneja? Pitäisikö puhua läpäisytiheydestä?

    1. Syksy Räsänen sanoo:

      Neutriinot tunnetaan hyvin, mutta ne liittyvät aiheeseen sen verta heikosti, että en kommentoi niitä tässä.

      Muotoiluni lukumäärästä oli vähän epäselvä, liikumme pimeän aineen suhteen noin 200-300 km/s, eli kehomme kohdalla olevat hiukkaset vaihtuvat melkoista tahtia, mutta niitä on suunnilleen tuo lukumäärä koko ajan.

      1. Eusa sanoo:

        Eikös tuollainen muusta gravitaatiokentästä piittaamaton ”aine” muistuta pikkuisen liikaa eetteriteorioita ollakseen uskottava vaihtoehto? Sitä paitsi, eikö juuri ole julkaistu useita tutkimuksia, joiden tulos on, että pimeän massan ja baryonisen aineen jakauman välillä on vahva korrelaatio? Joten mistä aiheutuisi moinen 200..300 km/s axionien nopeus?

        1. Syksy Räsänen sanoo:

          Pimeä aine vaikuttaa gravitaation kautta,s sen suhteesta eetteriin, ks. https://www.ursa.fi/blogi/kosmokseen-kirjoitettua/valon-vihjeita/

          Pimeän aineen ja baryonisen aineen tiheyden korrelaatio ei liity tähän, tässä on kyse nopeudesta. Pimeä aine liikkuu Linnunradassa keskimäärin yhtä paljon joka suuntaan, kun taas me kierrämme Linnunradan ympäri noin 220 km/s.

  2. Juhani Harjunharja sanoo:

    Mielenkiintoinen artikkeli – ja odotuksiakin luova. Oliko näin, että suhteellisuusteoria loi näkymiä kosmisesta ”demokratiasta” ja Standardimalli täydennyksineen ”totalitarismista”?

    1. Syksy Räsänen sanoo:

      En ymmärrä, mitä tarkoitat kosmisella demokratialla. Yleisessä suhteellisuusteoriassakin on mukana kaikki symmetrian sallimat termit. (Yleisen suhteellisuusteorian symmetria on paljon rajoittavampi kuin Standardimallin.)

      1. Juhani Harjunharja sanoo:

        Tuon sanan ”demokratia” olen kuullut mainittavan suhteellisuusteorian yhteydessä siinä, että sanotaan massojen määrittävän avaruuden geometriaa, joka taasen määrittäisi näiden massojen liikettä kosmoksessamme. No mene ja tiedä, onko ilmaisu paikallaan tai ei, ”poliittistahan” tässä on vain tuo sana. Ei siis mitään sen vakavampaa… 🙂

  3. Lentotaidoton sanoo:

    Syksy: ”poikkeuksena on vain yksi värivoimaa välittävien gluonien vuorovaikutus”…. ”mutta havaintojen mukaan sitä ei ole, tai ainakin se on erittäin pieni”… ”että ne käyttäytyvät kuin niillä ei olisikaan tuota yhtä vuorovaikutusta”.

    Puhut vähän arvoituksellisen epäselvästi. Onko kysymys ns. Strong CP-problemista? Jos on, olisit sen voinut mainita heti kättelyssä.

    1. Syksy Räsänen sanoo:

      On. Yritän välttää erikoistermejä, jos ne eivät ole välttämättömiä, ehkäpä tuon olisi voinut tässä mainita.

  4. Lentotaidoton sanoo:

    18.12. oli Aurinko taas samalla vuotuisella akselilla galaksimme keskustaan nähden. Allaolevalla CERNin Axion Solar Telescopilla yrittävät tutkijat saada näkyviin gravitaatiolinssillä sekä axioneja että Chameleon-hiukkasia (ehdotuksia pimeäksi energiaksi) galaksimme mustasta aukosta. Vielä ei kuitenkaan tärpännyt.

    https://home.cern/about/updates/2016/12/black-hole-aligns-sun-and-cern-telescope

    https://en.wikipedia.org/wiki/Chameleon_particle

Vastaa käyttäjälle Lentotaidoton Peruuta vastaus

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *