Taivasta täyttämässä

16.2.2022 klo 23.27, kirjoittaja
Kategoriat: Kosmokseen kirjoitettua , Kosmologia

1600-luvulla eläneen tähtitieteilijä Johannes Keplerin havainnoilla oli keskeinen rooli sen osoittamisessa, että Maa kiertää Aurinkoa. Kepler oli myös vakuuttunut siitä, että maailmankaikkeus on äärellinen. Hän esitti todisteeksi sen, että jos maailmankaikkeus olisi ääretön, niin tähdet täyttäisivät taivaan.

Mitä kauempana tähdet ovat, sitä himmeämmiltä ne näyttävät. Mutta mitä kauemmas menee, sitä enemmän tähtiä on, ja jos tähdet ovat jakautuneet tasaisesti, niiden lukumäärä kasvaa samaa tahtia kuin mitä kirkkaus laskee. Se johtopäätös, että äärettömässä maailmankaikkeudessa yötaivaan pitäisi olla yhtä kirkas kuin Auringon pinta, tunnetaan nimellä Olbersin paradoksi asiasta 200 vuotta Keplerin jälkeen kirjoittaneen Heinrich Olbersin mukaan. (On tavallista, että asioita ei nimetä niitä ensimmäiseksi pohtineiden mukaan.)

Emme tiedä onko maailmankaikkeus ääretön. Mutta koska maailmankaikkeuden ikä on äärellinen ja valo matkaa äärellisellä nopeudella, näemme vain äärellisen etäisyyden päähän, ja lisäksi tähtiä on ollut olemassa vain äärellisen ajan.

Toinen syy yötaivaan mustaan on se, että näemme vain pienen osan valon (eli sähkömagneettisen säteilyn) aallonpituuksista. Näkyvää valoa lähettäviä tähtiä on harvassa, mutta esimerkiksi mikroaaltotaivas on kauttaaltaan kirkas. Kosmiset mikroaallot näyttävät millainen maailmankaikkeus oli 380 000 vuoden iässä. Jos haluaa nähdä myöhempiä aikoja, pitää tarkastella muita aallonpituuksia.

Vetykaasu on erityisen kiinnostava radiolähetin. Vetyatomi koostuu protonista ja elektronista. Kummallakin on ominaisuus nimeltä spin, eli ne käyttäytyvät kuin pyörisivät jonkin akselin ympäri. Vetyatomin toiseksi yksinkertaisimmassa tilassa protoni ja elektroni pyörivät samaan suuntaan, ja yksinkertaisimmassa tilassa ne pyörivät vastakkaiseen suuntaan. Kun vetyatomiatomi siirtyy samansuuntaisesta tilasta yksinkertaisimpaan tilaan, se lähettää valoa, jonka aallonpituus on 21 cm, eli radioaallon.

Maailmankaikkeuden atomeista 90% on vetyä, ja vetykaasua on kaikkialla, sielläkin missä ei ole tähtiä. Niinpä 21 cm säteily on erinomainen tapa saada selville mitä maailmankaikkeudessa tapahtuu. Tämä säteily on (gravitaatioaaltoja ehkä lukuun ottamatta) ainoa viestintuoja ajalta kosmisen mikroaaltotaustan syntymisen ja tähtien syttymisen välillä – eli maailmankaikkeuden ensimmäisen noin 100 miljoonan vuoden aikana.

Tänään Phil Bull Queen Mary University of Londonista puhui 21 cm säteilystä Helsingin yliopiston fysiikan osaston kosmologiaseminaarien sarjassa. Radiotähtitiedettä on tehty 1930-luvulta asti, mutta se on näkyvän valon tai mikroaaltojen havaitsemista jäljessä. Asian voi ilmaista myös niin, että kyseessä on nouseva ala.

Ennen viime vuosia taivasta on tarkkailtu radioaallonpituuksilla joko pieneltä alueelta tarkkaan (niin että näkee kaukana olevia ja siksi himmeitä kohteita), tai sitten laajalta alueelta niin että näkee vain lähellä olevia tai poikkeuksellisen kirkkaita kohteita.

Nykykosmologiassa halutaan kattava kuva tapahtumista, mikä edellyttää sitä, että katsoo yhtä aikaa laajasti ja syvälle. 2000-luvulla tämä on tullut teknologisesti mahdolliseksi. Nykyiset 21 cm teleskoopit näkevät noin maailmankaikkeuden ensimmäisen miljardin vuoden ikään asti.

Koska kaukaiset radiolähteet ovat heikkoja, kuvista eivät erotu esimerkiksi yksittäiset kaukaiset galaksit tai vetypilvet, vaan isompien kokonaisuuksien säteily. Mutta vaikka radioaaltokartat ovat epätarkkoja, niistä näkee ison mittakaavan rakenteen ja sen kehityksen siinä mielessä selvemmin kuin näkyvästä valosta, että vetykaasu on tasaisemmin jakautunut. Havaintoja ei tehdä vain niistä poikkeuksellisista paikoista, missä sattuu olemaan galakseja, vaan kaikkialta. Lisäksi vetykaasu noudattaa pimeän aineen jakaumaa tarkemmin kuin galaksit, ja suurin osa maailmankaikkeuden aineesta on pimeää ainetta.

Iso ongelma on se, että kosminen 21 cm säteily on noin tuhat kertaa heikompaa kuin Linnunradan ja muiden galaksien lukuisten tähtitieteellisten kohteiden lähettämät radioaallot. Vielä isompi ongelma on ihmisten laitteiden tuottama säteily; erityisesti kännykät tukiasemineen ovat iso häiriön lähde.

Jos kosminen signaali tulisi kaikkialta samalla 21 cm aallonpituudella, roskat olisi helppo suodattaa: heitettäisiin vain pois kaikki signaalit, missä on mukana muita aallonpituuksia. Mutta koska maailmankaikkeus laajenee, säteily venyy. Miljardin vuoden iässä 21 cm pituisena lähteneen säteilyn aallonpituus on nykyään noin puolitoista metriä, ja myöhemmin syntyneen jotain tältä väliltä, lähtöhetkestä riippuen.

Bull on mukana MeerKAT-koeryhmässä, joka mittaa 21 cm säteilyä Etelä-Afrikassa. MeerKATin antennit tulevat osaksi parhaillaan rakennettavaa kansainvälistä SKA-teleskooppia. MeerKAT ja muut kokeet ovat jo setvineet maailmankaikkeuden historiaa yhdistämällä 21 cm säteilyn kartat mittauksiin galakseista. Koska galaksidata on parempaa, on helpompaa lisätä siihen 21 cm havainnot kuin käyttää niitä yksin.

Bull arvioi, että kestää ainakin 3-5 vuotta ennen kuin pelkistä 21 cm havainnoista saadaan luotettavia kosmologisia tuloksia. Hänen mukaansa juuri se, että ala on kosmista mikroaaltotaustaa ja gravitaatiolinssejä jäljessä tekee siitä mielenkiintoisen, koska saa olla mukana kehittämässä jotain uutta

21 cm kokeet eivät vielä näe niin kauas kuin infrapunavaloon painottunut teleskooppi JWST. Radioteleskooppeja kuitenkin rakennetaan koko ajan lisää, teknologia kehittyy ja tutkijat ymmärtävät paremmin millaiset teleskoopit ovat sopivimpia. Kun 21 cm teleskoopit pääsevät vauhtiin, ne näkevät asioita, mitä mitkään muut kokeet eivät voi havaita.

Kaukaisemman tulevaisuuden mahdollisuutena Bull mainitsi Cosmic Visions -projektissa pohditun mahdollisuuden rakentaa kraatteriin Kuussa ritilä, jota käytettäisiin radioteleskooppina. Näin pääsisi eroon sekä ihmisten tuottamasta radiosaasteesta että Maan ilmakehästä, joka imee osan radioaalloista.

Koska kosmiset rakenteet kuten galaksit kasvavat ajan myötä, varhaisina aikoina ne olivat yksinkertaisempia. Niinpä kauas katsoessa saa selvemmän kuvan siitä, millaisia olivat kosmisen inflaation aikana ensimmäisen sekunnin perukoilta syntyneet rakenteen siemenet, ennen kuin gravitaatio sotki ainetta galakseiksi ja muuksi puuroksi.

Yksi kosmologian isoimpia kysymyksiä on, miksi maailmankaikkeuden laajeneminen on viimeisen muutaman miljardin vuoden aikana kiihtynyt. Asian selvittämisessä on tärkeää saada tarkkoja havaintoja maailmankaikkeuden laajenemisnopeudesta myös varhaisilta ajoilta. Voi olla, että käsissämme on nyt vain osa palapeliä.

Päivitys (17/02/22): Korjattu typo: neutronista -> elektronista.

4 kommenttia “Taivasta täyttämässä”

  1. Cargo sanoo:

    ”Mutta koska maailmankaikkeus laajenee, säteily venyy.”

    Kaverini puolesta kyselen, että jos valoa tarkastellaan hiukkasmuodossa, niin miten avaruuden laajeneminen voi vaikuttaa siihen millään tavalla? Ja voiko pelkkä avaruuden laajeneminen vaikuttaa 0,999c nopeudella liikkuvan massahiukkasen olemukseen?

    1. Syksy Räsänen sanoo:

      Avaruuden laajenemisen takia kaikkien hiukkasten liikemäärä laskee samaa tahtia kuin mitä avaruus venyy. Koska fotonien massa on nolla, niiden kaikki energia on liikemäärää, eli niiden energia laskee ja siksi aallonpituus venyy.

      Jos hiukkasen massa on paljon isompi kuin liikemäärä, niin liikemäärän vähenemisellä ei juuri ole vaikutusta hiukkasen energiaan ja aallonpituuteen. Jos massa on paljon pienempi, liikemäärän laskeminen laskee kokonaisenergiaa melkein samalla tavalla kuin massattomien hiukkasten tapauksessa.

      1. JaniK sanoo:

        Mitä tapahtuu hiukkaselle, jonka liikemäärä laskee nollaan?

        1. Syksy Räsänen sanoo:

          Hiukkasten liikemäärä laskee kääntäen verrannollisesti siihen, miten pituudet venyvät. Se ei siis koskaan laske nollaan.

Vastaa käyttäjälle Syksy Räsänen Peruuta vastaus

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *