Eläviä planeettoja, demoneita ja termodynamiikkaa

8.1.2024 klo 10.00, kirjoittaja
Kategoriat: Astrobiologia , Eksoplaneetat , Elinkelpoisuus

Termodynamiikan toinen pääsääntö on ehkäpä yksi kiinnostavimmista mutta väärinymmärretyimmistä fysikaalista maailmaamme kuvaavista lainalaisuuksista. Kaikessa yksinkertaisuudessaan se kertoo, että suljetussa järjestelmässä epäjärjestys kasvaa aina, tai ainakin pysyy samana, jos mitään ei tapahdu. Kyse on fyysikkojen muotoilemasta säännöstä sille tosiasialle, että on huikean paljon enemmän tapoja saada vaikkapa lastenhuone epäjärjestykseen kuin järjestykseen. Jos sitten siirtelemme sen sisältöä satunnaisella tavalla, on huikean paljon todennäköisempää päätyä tilaan, jossa huone on sotkuinen kuin sellaiseen, että huone on siisti. Myös pudottaessamme mummin antiikkiposliinin lattialle se menee epäjärjestelmälliseksi sotkuksi pirstaleita mutta voimme viettää vaikka koko loppuikämme pudottamassa pirstaleita lattialle ja ne eivät koskaan muodosta ehjää posliinikuppia. Tällä epäjärjestystä kuvaavalla tilastollisella lailla onkin tärkeitä seurauksia.

Fyysikot käyttävät epäjärjestykselle nimeä entropia. Entropian ollessa minimissään, ollaan täydellisessä järjestyksessä ja sen kasvaessa maksimiinsa, ollaan niin täydellisessä epäjärjestyksessä kuin olla saattaa. Lastenhuoneen tapauksessa se tarkoittaisi kaikkien huoneen tavaroiden levittäytymisen satunnaiseen kohtaan huonetta. Näin ajateltaessa on samalla selvää, että jo painovoima tuo huoneeseen järjestystä. Vain satunnaiset ilmaa kevyemmällä kaasulla täytetyt vappupallot tuovat poikkeuksen siihen sääntöön, että kaikki huoneen tavarat ovat tyypillisesti lattialla tai toistensa päällä. Aivan samoin on selvää, että huoneen saattaminen järjestykseen vaatii työtä, ja kuluttaa energiaa. Sen tietää mainiosti jokainen lastenhuonetta siivonut lapsi ja vanhempi. Voimme kuitenkin käyttää energiaa, siivota huoneen, ja palauttaa sen jonkinlaiseen parhaaksi katsomaamme entropiaminimiinsä ja siten järjestykseen.

Vaikka termodynamiikan toinen pääsääntö ei ole kuin vain tilastollinen laki, se on silti aivan perustavanlaatuinen fysikaalista maailmaamme määrittävä tekijä. Lain ja maailmasta tehtyjen havaintojen avulla voidaan päätellä, että entropiaa voidaan tosiaan paikallisesti pienentää. Koko sivilisaatiomme ja planeettamme biologinen elämä perustuu siihen, että asetellaan aine järjestykseen, jotta se toimii halutulla tavalla. Asettelemme mineraalit, raudan ja veden teräsbetonina taivaalle kohoaviksi rakennelmiksi aivan kuten puut asettavat sokerimolekyylinsä selluloosaksi ja siitä tehdyiksi pitkiksi rungoiksi kohottaessaan lehtensä kohti korkeuksia. Samoin, rakennamme sähkövirtaa tuottavia paneeleitamme tarkalla kemiallis-fysikaalisella prosessilla sellaisiksi, että voimme sitoa niillä Auringon energiaa sähköiseksi potentiaaliksi, jolla voidaan tehdä työtä. Vastaavasti, puut valmistavat klorofyllimolekyylinsä sitoakseen Auringon energian kemialliseksi energiaksi.

Taustalla toimii kuitenkin aina sama prosessi: energiaa käytetään paikallisen entropiaminimin rakentamiseen. Mutta koska entropia ei voi vähetä suljetussa järjestelmässä, kuten maailmankaikkeudessa, on käyttämämme energian tuottamisen täytynyt kasvattaa entropiaa jossakin muualla enemmän kuin mitä olemme sitä onnistuneet paikallisesti pienentämään. Fyysikot ovat laskelmillaan ja Maxwellin demonina tunnetuilla ajatuskokeillaan varmistaneet, että juuri niin käykin. Esimerkiksi Auringon fuusioreaktiossa entropia kasvaa koko ajan enemmän kuin sitä voisi edes teoriassa aurinkopaneeleilla kaapatun säteilyenergian avulla vähentää.

Termodynamiikan toisen pääsäännön avulla voidaan todeta, että koko maailmankaikkeus pyrkii kohti maksimientropiaansa, jossa kaikki aine ja energia on jakautunut maailmankaikkeuden alueelle maksimaalisessa epäjärjestyksessä, vailla rakenteita tai mitään huomattavaa sisältöä. Kun tähdet ovat palaneet loppuun, galaksit hajaantuneet, mustat aukot kiehuneet kuoliaiksi Hawkingin säteilyn avulla, ja viimeinenkin protoni ja neutroni on hajonnut, on jäljellä enää alati viilenevä taustasäteilyjakauma, joka muistuttaa siitä, mitä maailmankaikkeudessamme joskus oli. Ei kuitenkaan ole syytä pelätä tätä universumin lämpökuolemaa, koska prosessissa kestää paljon kauemmin kuin mikään ihmisen millään tavalla hahmotettavissa oleva ajan mitta kykenee luotettavasti mittaamaan.

Termodynamiikka pätee kuitenkin aivan kaikkeen jo nykyisellään ja asialla on seurauksia planeettojen elinkelpoisuudelle.

Elämä kylvää entropiaa

Elävät solut tarvitsevat ylläpitoonsa monenlaisia virtoja. Virtaavat vedet toki auttavat, vaikkeivät välttämättömiä olekaan, mutta moni muukin asia ikään kuin virtaa biologisten organismien läpi. Aineenvaihdunta muodostaa yhden virtauksen, kun molekyylit otetaan osaksi organismin rakennetta, niitä muokataan monenlaisilla tavoilla osana biokemiallisen koneen toimintaa, ja loputa tarpeettomat ainekset hylätään organismin ulkopuolelle. Samoin tarvitaan energian virta, jonka vaikutuksesta organismin biokemia toimii evoluution jatkuvasti testaaman ja huippuunsa hioman mallin mukaisesti. Energia kuluu reaktioiden ylläpitämiseen ja aineenvaihdunnan ylläpitoon, sekä rakenteelliseen energiaan, joka mahdollistaa monimutkaiset rakenteet kuten mäntyjen rungot, riikinkukkojen pyrstösulat tai vaikkapa haiden selkäevät, joita tyypillisesti ihailemme erityisesti monisoluisissa organismeissa.

Mutta tarvitaan vielä yksi virtaus. Elämä toimii vain entropiavirran avulla, kun elävien solujen on omaa entropiaminimiään ylläpitääkseen kylvettävä entropiaa ympärilleen. Ravintona saadun kemiallisen energian avulla tehdään kemiallista työtä, joka vähentää entropiaa organismin sisällä, koska organismien biokemiallisen koneiston on oltava hyvinkin tarkasti järjesteltynä. Ja koska kokonaisuutena entropia ei saa vähentyä, on sen lisäännyttävä organismin ulkopuolella enemmän kuin se organismin sisällä pienenee.

Jos kerran elävät organismit tuottavat entropiaa levittäen sitä ympärilleen, on selvää, että elävät planeetat tuottavat samoin enemmän entropiaa kuin elottomat. Mutta entropiantuotanto riippuu fysikaalisista olosuhteista, joihin vaikuttaa esimerkiksi saatavilla olevan energian määrä. Mitä enemmän energiaa on saatavilla, sitä korkeampaan entropiantuotantoon voidaan päästä — kyse ei kuitenkaan ole vain planeetan kiertämän tähden säteilyenergiasta, koska liiallinen kuumuus tekee planeetoista elinkelvottomia haihduttamalla kaiken universaalina liuottimena pidetyn veden, jonka puitteissa tuntemamme elämä esiintyy.

Kaikki riippuu siitä suhteesta, jolla planeetta saa tähtensä säteilyenergiaa ja säteilee sitä itse pois. Se taas riippuu niin tähden kuin planeetan lämpötiloista, planeetan rataetäisyydestä ja tähden koosta, sekä planeetan heijastavuudesta, eli kertoimesta, jolla planeetta heijastaa tähden säteilyä pois sen sijaan, että säteily vaikuttaisi planeettaan. Maalla kerroin on noin 0.3, mikä tarkoittaa, että 30% kaikesta Auringosta saapuvasta säteilystä heijastuu pois ja vain 70% sitoutuu planeettamme ilmakehään, meriin, maaperään ja kasvillisuuteen. Kaasukehän tarkempi koostumus ei kuitenkaan vaikuta suoraan siihen maksimiin, jolla entropiaa on mahdollista tuottaa, joten määritettäessä millä planeetoilla entropiantuotanto voi olla korkeinta ja siten biosfäärit kompleksisimpia ei ole tarpeen ottaa kantaa planeetan kaasukehän kemiaan. Se taas on mainio käytännön etu, koska erityisesti pienten kiviplaneettojen kaasukehien kemiasta on niin kovin vaikeaa saada tietoa.

Maksimaalisen entropiantuotannon tarkastelu erilaisille tähdille paljastaa, että parhaat mahdollisuuden entropiantuotantoon on kirkkaammilla, G ja F spektriluokkien tähdillä, joiden pintalämpötilat ovat korkeimmat (Kuva 1.). Jos käytämme Aurinkoa vertailukohtana, vain Aurinkoa kirkkaammat tähdet ovat parempia tarjoamaan entropiantuotantoa maksimoivia ympäristöjä ja siten parempia paikkoja elämän esiintymiselle. Entropia siis suosii kirkkaampia tähtiä elävien planeettakuntien keskuksina, vaikka onkin mahdotonta sulkea pois edes himmeämpien punaisten kääpiötähtien kelpoisuutta elävien planeettojen koteina.

Kuva 1. Planeetan maksimaalinen entropiatuotanto (vasemmalla) ja sitä vastaava vapaan energian määrä (oikealla) erilaisille tähdille. IHZ ja OHZ tarkoittavat elinkelpoisen vyöhykkeen sisä- ja ulkoreunoja ja vihreä katkoviiva kuvaa oman planeettamme entropiantuotantoa ja energiaa. Kuva: L. Petraccone.

Tähtitieteilijöiden on kuitenkin tehtävä valintoja etsiessään planeettoja, joiden pinnoilla elämä kukoistaa ja joiden elämästä olisi siis edes periaatteessa mahdollista tehdä havaintoja. Ensimmäinen valinta on tehtävä silloin, kun päätetään mihin planeettoihin kannattaa kohdistaa rajalliset havaintoresurssit koettaessamme saada esiin elämän merkkejä. Tarkasteltaessa tunnettujen elinkelpoisen vyöhykkeen eksoplaneettojen maksimaalista entropiantuotantoa, voidaan arvioida mitä planeettoja kannattaa havaita tarkemmin entropiakriteetin valossa, jos halutaan löytää tehokkaimmin merkkejä elämästä (Kuva 2.).

Kuva 2. Tunnetujen Aurinkokuntaa lähellä sijaitsevien maankaltaisten eksoplaneettojen planetaarisia entropiantuotantoja (vasemmalla) ja vapaita energioita (oikealla). Kuva: L. Petraccone.

Tyypilliset elinkelpoisten eksoplaneettojen tilastojen kärjessä olevat kohteet, kuten TRAPPIST-1 järjestelmän planeetat tai lähin kandidaatti elinkelpoiseksi planeetaksi, Proxima b, eivät pärjää kovinkaan hyvin maksimaalisen entropiantuotannon mittarilla. Itse asiassa, oikein mikään tunnettu maankaltaiseksi määritetty eksoplaneetta ei pärjää omalle kotiplaneetallemme entropiamittarilla. Se ei ole yllättävää, koska niistä jokainen kiertää Aurinkoa himmeämpää tähteä. Tilanne kuitenkin muuttuu, kun tarkastellaan tunnettuja hyseaanisia planeettoja (Kuva 3.). Likimain jokainen niistä kykenee entropiakriteerin mukaisesti korkeampaan maksimaaliseen entropiantuotantoon, ja siten potentiaalisesti ylläpitämään suurempaa biosfääriä. Niiden olosuhteissa maksimaalinen entropiantuotanto on suorastaan huomattavan paljon korkeampaa, ja siksi kysymys hyseaanisten planeettojen elinkelpoisuudesta saa uutta mielenkiintoa. Jos tosiaan on niin, että hyseaanisten planeettojen paksujen vetypitoisten kaasukehien alla velloo massiivisia valtameriä, niin kyseisen planeettatyypin edustajia kannattaa havaita koettaessamme havaita merkkejä biologisesta aktiivisuudesta.

Kuva 3. Tunnetujen hyseaanisten eksoplaneettojen planetaarisia entropiantuotantoja (vasemmalla) ja vapaita energioita (oikealla). Kuva: L. Petraccone.

Asiassa on vain monta tuntematonta muuttujaa. On mahdotonta sanoa onko melkoisiin yksinkertaistuksiin perustuva entropiakriteeri mistään kotoisin — aivan samoin kuin on mahdotonta sanoa onko hyseaanisten planeettojen valtamerten elinkelpoisuus tosiasia. Samalla on tietenkin muistettava, että koko elinkelpoisen vyöhykkeen käsitteemme perustuu melkoisille yksinkertaistuksille, joita maailmankaikkeuden ei missään tapauksessa tarvitse noudattaa. Vasta uudet havainnot voivat paljastaa miten asia on mutta voimme joka tapauksessa sanoa, että entropiakriteetri ei varsinaisesti auta sulkemaan pois minkään elinkelpoisiksi ajateltujen planeettatyyppien potentiaalia ylläpitää elämää. Se kuitenkin tarjoaa yhden tieteellisen näkemyksen, jonka perusteella huomio kannattaisi kiinnittää massiivisempiin supermaapalloihin, jotka kykenevät suojaamaan valtamerensä kirkkaiden tähtiensä kuumuudelta peittämällä ne paksuun vetypitoiseen vaippaan.


Kirjoituksen otsikossa lupasin kertoa demoneista, joten muutama sana Maxwellin demonista lienee paikallaan. Kyse on ajatuskokeesta, jossa kuvitellaan pikkuruinen demoni istumaan kahta astiaa yhdistävälle portille. Astioissa on kaasua ja sen eri molekyylit liikkuvat eri nopeuksilla lämpötilan edellyttämän jakautuman mukaisesti. Mutta demoni tuleekin sotkemaan järjestelyä, ja päästää portista valikoiden kaikkein nopeimmin liikkuvat molekyylit toiselle puolelle. Valinnan seurauksena toisen astian molekyylit liikkuvat pian keskimäärin nopeammin, mikä tarkoittaa astian aineksen kasvanutta lämpötilaa. Toisen astian lämpötila taas on laskenut vastaavissa määrin. On siksi selvää, että kokonaisuutena järjestys on kasvanut ja siten entropia on vähentynyt tavalla, jonka on ajateltu paradoksaalisesti rikkovan termodynamiikan toista pääsääntöä.

Asiassa ei kuitenkaan ole minkäänlaista todellista paradoksia, koska demoni itse on tuonut mukaan energiaa ja informaatiota avaamalla ja sulkemalla porttia tiettyinä aikoina sopivalla tavalla. Kokonaisuutena entropia ei siis ole vähentynyt, vaan demoni on ollut työssään luomassa järjestystä, käyttänyt energiaa, ja kasvattanut omaa entropiaansa paljon enemmän. Mukaan on kuitenkin tullut informaation käsite, koska demonin täytyy käsitellä informaatiota siitä, mikä on kyllin nopeasti liikkuva molekyyli ja mikä ei. Se taas on oma mielenkiintoinen sivupolkunsa tieteen ihmeellisessä maailmassa ja jätän sen suosiolla tarkasteltavaiksi jossakin sopivammassa ajankohdassa lähitulevaisuudessa.

4 kommenttia “Eläviä planeettoja, demoneita ja termodynamiikkaa”

  1. Heikki Väisänen sanoo:

    Entropia ei synnytä eläviä soluja.
    Elämän syytä ja syntyä pitää etsiä kemiasta ja biologiasta eikä fysiikan lämpöopista.

  2. Onko seuraava oikein ymmärretty: Planeetan tuottama entropia ilmenee sen säteilemien infrapunafotonien määränä. Planeetta muuntaa tähden valon fotoneja pitkäaaltoisemmiksi. Fotonien määrä moninkertaistuu, koska energia fotonia kohti pienenee murto-osaan. Entropia kasvaa, koska se on verrannollinen fotonien määrään. Jos oletetaan että elinkelpoisen planeetan lämpötila on aina sama, sen entropiantuotantokyky on yksinkertaisesti verrannollinen planeetan pinta-alaan.

    1. Lukuunottamatta lähellä ykköstä olevaan korjaustekijään (1-Tplanet/Tsta)r tai jotain sinnepäin.

    2. Mikko Tuomi sanoo:

      Koko säteilyspektri vaikuttaa, ja eniten vaikuttaa suurienergisempi säteily. Laskelmat ovat melko yksinkertaistettuja, kuten alkuperäisjulkaisusta näkee:

      https://academic.oup.com/mnras/article/527/3/5547/7425639

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *