Kaaoksesta syntyneet

19.5.2022 klo 10.00, kirjoittaja
Kategoriat: Eksoplaneetat , Synty ja kehitys

Tähdet eivät ole olleet olemassa aina, vaan ne ovat muodostuneet kauan sitten, monet useita miljardeja vuosia sitten, galaksimme kaasusta ja pölystä. Kuten planeettamme jokaisella elävällä organismilla, tähdillä on syntymä, elämä ja kuolema. Kuten elävät solut, tähdet ovat paikallisia entropiaminimeitä, rakenteita, jotka pysyvät maailmankaikkeuden aikajanalla hetken verran kasassa hyödyntämällä sopivaa energiavirtaa. Monet Maapallon elävät organismit hyödyntävät oman suunnilleen viisi miljardia vuotta vanhan tähtemme energiavirtaa ja tuottavat moninaisia muotoja, joiden tarkoituksena on vain lisääntymiskykyisten jälkeläisten tuotanto ja siten geenien selviäminen. Auringolla sellaista tarkoitusta ei ole. Se vain on, muodostaen yhden galaksimme miljardeista saarekkeista, jonka ympärillä voi esiintyä planeettoja, asteroideja ja omituisia evoluutiota kokevia biokemiallisia koneita. Ja kuten Aurinkokin, planeettakuntammekaan ei ole ollut olemassa aina, vaan se on syntynyt kosmisesta pölystä ja kaasusta ja kehittynyt nykyisenlaiseksi kaoottisessa planeettakuntien syntyprosessissa.

Jättiläisplaneettojen hierarkiset radat ja etäisyydet Auringosta eivät ole sattuman tulosta. Aurinkokunnan jättiläisten, Jupiterin, Saturnuksen, Uranuksen ja Neptunuksen, suhteelliset etäisyydet Auringosta noudattavat likiman kokonaislukusarjaa 1, 2, 4, 6. Jos siis Jupiterin etäisyys Auringosta on yksikkönä, on planeetoista kaukaisimman, Neptunuksen, rataetäisyys noin kuusi yksikköä. Planeettojen väliset gravitaatiovuorovaikutukset ovat pyrkineet saattamaan jättiläiset radoille, joilla ne ovat pakkautuneet niin lähelle toisiaan kuin mahdollista mutta kuitenkin riittävän etäälle, jotta järjestelmä pysyy stabiilina. Muulla tavalla asia ei voisi edes olla — jos planeetat olisivat liian lähellä toisiaan, järjestelmä olisi epästabiili ja se olisi hajonnut jo kauan sitten omaan mahdottomuuteensa. Ja uuden tutkimuksen mukaan, epästabiiliuden ajanjakso todellakin mahduu järjestelmämme historiaan.


Jättiläisplaneettojen syntyessä, Aurinkoa ympäröivä protoplanetaarinen kaasusta ja pölystä koostuva kiekkomainen rakenne oli vielä olemassa. Auringon vartuttua tasaisesti säteileväksi plasmapalloksi sen hiukkastuuli kuitenkin puhalsi jäljelle jääneet kiekon rippeet kauas avaruuteen, estäen jättiläisplaneettoja enää kasvamasta. Planeetat kasvoivat kiekon sisällä nykyiseen kokoonsa imuroimalla vetovoimansa avulla protoplanetaarisen kiekon materiaa itseensä mutta kiekon kadottua niiden ympäristö muuttui täysin ja kasvu pysähtyi. Kaasun kadotessa planeettoja hiljalleen sisään päin radoillaan ajava kitkavoima katosi ja ne olivatkin liian lähellä toisiaan, jotta vosivat kitkan puutteessa pysyä stabiileilla radoilla. Alkoi lyhytkestoinen kaaoksen aikakausi, jonka tuloksena oli nykyinen planeettakuntamme.

Kuva 1. Taiteilijan havainnekuva vastasyntyneestä planeettakunnasta, jonka kaasukiekkoa tähtituuli puhaltaa ulospäin paljastaen planeetat. Kuva: NASA/JPL-Caltech/T. Pyle (SSC)

Mutta protoplanetaarinen kiekko ei kadonnut hetkessä, vaan auringon säteily ja hiukkastuuli yksinkertaisesti työnsivät sen sisäreunaa hiljalleen ulospäin. Jupiter jäi paikalleen reunan paettua sen radan ulkopuolelle mutta vaikutus Saturnukseen oli merkittävämpi. Saturnus ryhtyi vaikuttamaan vetovoimallaan jääjättiläisiin Uranukseen ja Neptunukseen. Jääjättiläisten radat puolestaan muuttuivat kaoottisiksi — ne sinkoutuivat vuoroin ulommas ja palasivat vuoroin sisemmäs kiekon kitkavoiman hidastaessa niiden liikettä. Lopputuloksena oli nykyisin havaitsemamme laaja ulkoplaneettojen järjestelmä, joka nousi tiukemmin pakatun mutta epästabiilin järjestyksen tuhkasta. On mahdollista, että joukossa oli vielä kolmaskin, järjestelmästämme kaaoksen keskellä poistunut jääjättiläinen, joka sattui saamaan Saturnukselta ja Jupiterilta niin paljon liike-energiaa, että poistui joko koko Aurinkokunnasta tai päätyi sen kylmiin ja pimeisiin ulko-osiin havaintolaiteidemme ulottumattomiin. Se on ainakin tietokonesimulaatioiden perusteella havaittuihin planeettojen ratoihin sopiva hypoteesi (Kuva 2.).

Kuva 2. Ulkoplaneettojen ratojen isoakselien kehitys ja viidennen kaasuplaneetan sinkoutumien pois Aurinkokunnasta. Huomionarvoista on, miten Neptunus päätyy nykysen paikkansa tietämille ulospäin siirtyvän protoplanetaarisen kiekon mukana (musta katkoviiva). Kaoottiset radanvaihtelut vaikuttavat kaikkiien planeettoihin kiekon haihduttua. Kuva: Liu et al.

Uusille radoille kaoottisten vuorovaikutusten myötä vaeltelevilla jättiläisplaneetoilla on merkittäviä vaikutuksia samaan aikaan vasta muodostumassa olevaan sisäplaneettakuntaan. Hitaammin muodostuvia pienempiä planeettoja ei vielä ole nykyisessä muodossaan, vaan Jupiterin radan sisäpuolella on satoja pienempiä protoplaneettoja, joiden törmätessä toisiinsa varsinaiset planeetat saavat alkunsa. Se etäisyys, jolle Jupiter ja Saturnus kaottisten radanvaihteluiden vaimennuttua asettuvat, määrittää sen, kuinka etäällä tähdestä kiviplaneettoja voi olla. Liian lähellä Jupiteria ei ole stabiileja ratoja, vaan Jupiterin vetovoima siivoaa pienemmät kappaleet nopeassa tahdissa pois radoiltaan (Kuva 3.). Marskin päätyi lähinnä satunnaiseksi pikkukappaleeksi, joka ei ehtinyt saavuttamaan edes Maapallon kokoa Jupiterin häiritessä sen muodostumista.

Kuva 3. Protoplaneettojen kasautuminen sisäplaneetoiksi protoplanetaarisen kaasukiekon haihduttua. Ympyröiden koko vastaa planettojen kappaleiden massaa mutta jättiläisplaneetat eivät ole oikeassa mittasuhteessa pienempiin kappaleisiin, vaan vain toisiinsa. Punainen ympyrä vastaa Marsiksi muovautunutta protoplaneettaa. Kuva: Clement et al.

Mutta Jupiter vaikutti toisellakin tapaa. Sen vetovoima muovasi pienempien kappaleiden ratoja niin voimakkaasti, että muodostuviin planeettoihin päätyi materiaa eri etäisyyksiltä alkuperäistä protoplanetaarista kiekkoa. Eri etäisyyksillä taas kiekko on erilaisissa lämpötiloissa, mikä johtaa siihen, että erilaiset aineet ovat pölyhiukkasina muodostamassa protoplaneettojen siemeniä. Aivan lähimpänä Aurinkoa vain metallit ovat kiinteänä aineena, kun taas hiukan kauempana erilaiset silikaatit muodostavat valtaosan pölystä. Noin kolmen AU:n etäisyydellä sijaitsevan ”lumirajan” takana taas vesi on ylivoimaisesti yleisin kiinteän aineen komponentti ja kauempana muodostuvista protoplaneetoista tuleekin pääsääntöisesti likaisia lumipalloja — kappaleita, joiden koostumuksesta valtaosa on vesijäätä. Valtaosa Aurinkokunnan kääpiö- ja sekundäärisistä planeetoista sekä pienemmistä kuista koostuu valtaosaltaan jäästä. Sekoittuminen oli apuna tuottamassa erilaiset kiviplaneetat monipuolisine geologisine piirteineen ja ominaisuuksineen.

Tuloksista on lisäksi seurauksena yksi mielenkiintoinen hypoteesi. Luonnollinen, protoplanetaarisen kertymäkiekon haihtumisen aiheuttama kaoottinen vaihe Aurinkokunnan historiassa selittäisi mainiosti jonkin supermaapallon kokoluokkaan kuuluvan planeetan poistumisen Aurinkokunnan ulko-osiin, jossa ne eivät voi luonnollisin prosessein muodostua aineen liian pienen määrän ja tiheyden vuoksi. Jos Aurinkokunnan kaasuplaneettojen nykyisiä ratoja selittää parhaiten malli, jossa ulkoplaneettoja oli alkujaan viisi mutta yksi poistui kaoottisten vetovoimavaikutusten vuoksi kauemmaksi (Kuva 2.), on luonnollista kysyä poistuiko kappale kokonaan Auringon vetovoimakentästä vai jäikö se kaukaiselle radalle kiertämään Aurinkoa? Hypoteettinen planeetta 9, jonka olemassaolo on postuloitu joidenkin kaukaisten kappaleiden rata-anomalioiden perusteella, ja josta saattaa olla jopa suoraa havaintoaineistoa, olisi voinut olla alkujaan vain yksi Aurinkokunnan jääjättiläisistä, joka sattui poistumaan järjestelmän ulko-osiin.

Planeetta 9 on hypoteettinen kappale, jonka olemassaolo on kaikkea muuta kuin varmaa. Kuitenkin, näyttää siltä, että sen olemassaolo kaukaisella radalla on sopusoinnussa Aurinkokunnan muodostumishistorian kanssa. On siten hyvinkin mahdollista, että tulevaisuuden tehokkaammat havaintolaitteet onnistuvat saamaan suoria havaintoja Maata suuremmasta planeetasta. Varmaa se ei kuitenkaan ole, kuten tiedämme tieteen historiasta ja sen yllätyksellisyydestä uusien havaintojen tullessa saataville.

3 kommenttia “Kaaoksesta syntyneet”

  1. Erkki Tietäväinen sanoo:

    Olisiko seuraavassa, nykytiedon perusteella kerettiläiseltä kuulostavassa planeettojen syntyprosessissa mitään järkeä:

    Auringon ympärille syntynyt kaasu- ja pölykiekko oli aluksi melkolailla tasalaatuinen ja kapea. Siinä oli mukana raskaita alkuaineita, pölyä ja kaasuja. Ensin syntyivät sisäplaneetat. Niihin kasaantui protoplanetaarisen kiekon raskaimmat ainesosat ja niistä tuli sen vuoksi kiviplaneettoja. Samalla jäljelle jäänyt kiekko muuttui lähinnä kaasuja sisältäväksi.

    Auringon tähtituulen jatkaessa puhallustaan sitä lähempänä olleen kiekon rakennusaineet loppuivat nopeammin kuin kauempana sijainneessa avaruudessa olevan kiekon aineet. Niinpä kiviplaneettojen koko kasvoi etäisyyden lisääntyessä tarjolla olleen materian riittävyyden myötä. Miksi Mars on pienempi kuin Maa vaatisi lisäpohdintaa. Eräs syy voisi olla Jupiterin vaikutus niin kuin blogissa mainitaan. Mutta olisiko mahdollista, että Maa ja Mars ovat jossain kaoottisessa vaiheessa vaihtaneet paikkaa?

    Merkurius, Venus, Maa ja Mars käyttivät kiviplaneettojen tarvitsemat raskaat rakennuspalikat. Kun tähtituuli jatkoi kaasumaisemmaksi muodostuneen kiekon työntämistä kauemmas, jäljellle jääneestä aineesta muodostuivat kaasu- ja jääjättiläiset.

    1. Mikko Tuomi sanoo:

      Tuollainen tapahtumien kulku ei ole mahdollinen. Helpoiten ja nopeimmin syntyvät planeetat siellä, missä on eniten ainetta. Eniten ainetta taas on noin 3 AU:n ”lumirajan” ulkopuolella, missä vesijää on kiinteänä aineksena. Siellä syntyvät aluksi muutaman Maan massan suuruiset kaasuplaneettojen ytimet, kunnes ne ryhtyvät keräämään kaasuvaippaa itsellensä. Vasta huomattavasti sen jälkeen kiviplaneetat sisäplaneettakunnassa saavuttavat nykyisen kokonsa, koska sisemmällä ainesta on paljon vähemmän. Ja kun sisäplaneetat syntyvät, tähti on jo syttynyt loistamaan kunnolla puhaltaen kaiken ylimääräisen kaasun tiehensä.

  2. Olen joskus miettinyt Merkuriuksen ytimen suurta kokoa ja sen selitykseksi seuraavaa skenaariota. Proto-Merkurius törmäsi proto-Venukseen, mutta toisin kuin Maa-Kuu -tapauksessa Merkurius menetti vaippansa mutta ydin pysyi ehjänä ja jäi kiertämään Venusta samoin kuin Maan Kuu. Sitten vuorovesivoima loitonsi Merkuriusta samoin kuin Maa-Kuu -tapauksessa mutta paljon nopeammin koska Venuksella on paksu ilmakehä jonne syntyy voimakas vuorovesiaalto. Prosessissa Venuksen pyöriminen hidastui ja Merkurius loitontui, kunnes se karkasi ja muuttui itsenäiseksi planeetaksi. Mutta sitä en tiedä miten Merkuriuksen rata olisi sen jälkeen pienentynyt nykyiselleen. Skenaario pyrkisi siis selittämään Merkuriuksen suuren ytimen/ohuen vaipan ja Venuksen hitaan pyörimisen.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *