Erilaiset maailmat: eksoplaneettojen hämmästyttävä diversiteetti

8.9.2020 klo 12.00, kirjoittaja
Kategoriat: Eksoplaneetat , Elinkelpoisuus , Havaitseminen , Koostumus , Synty ja kehitys

Tunnemme jo yli 4000 eksoplaneettaa kiertämässä Auringon lähitähtiä. Tietomme planeetoista ja planeettakunnista ovat kasvaneet eksponentiaalisesti viimeisen 25 vuoden aikana — sinä lyhyenä ajanjaksona, kun eksoplaneettojen löydöt ovat olleet tieteen valtavirtaa. Eksoplaneettojen tutkimus on tähtitieteen haarana ja osa-alueena nuori mutta vakiintunut — ja yksi mielenkiintoisimmista, koska planeettoja on niin monenlaisia, erilaisilla radoilla kiertämässä erilaisia tähtiä.

Aurinkokunnasta tuttu luokittelu kivisiin sisäplaneettoihin ja kaasumaisiin ulkoplaneettoihin, on ehkäpä tunnetuin tapa jaotella planeettoja omiin lokeroihinsa. Jaottelu on myös omalla tavallaan helpon intuitiivinen. Pienet kiviset planeetat kiertävät Aurinkoa sen lähettyvillä kun taas suuret kaasumaiset planeetat ovat kauempana, Aurinkokunnan ulko-osissa. Pienet kappaleet, kuten Pluto ja muut kääpiöplaneetat, rikkovat tätä intiutiivista illuusiota harmoniasta ja osittain siitä syystä Pluto onkin luokiteltu uudelleen kääpiöplaneetaksi varsinaisen planeetan sijaan.

Koska perinteinen luokittelumme perustuu vain yhteen esimerkkiin, Aurinkokunnan tuttuihin planeettoihin, se ei kuvasta juuri lainkaan muita tähtiä ympäröiviä ja kiertäviä planeettakuntia ja planeettoja. Aurinkokunta on oikeastaan erikoinen, eriskummallinen luonnonoikku, joka poikkeaa tavanomaisista planeettakunnista jokseenkin joka tavalla. Luokittelut ovat lisäksi väistämättä keinotekoisia, luonnon jatkumoon näennäistä järjestystä tuovia konstruktioita, joita ei todellisuudessa ole olemassa muualla kuin luokitteluista pitävien ihmisten mielissä. Luonnon ei tarvitse piitata veteen piirtämistämme erilaisten luokitusten välisistä viivoista hitusenkaan vertaa.

Havainnot vääristävät

Se, mitä tiedämme eksoplaneetoista ja eksoplaneettakunnista, riippuu voimakkaasti siitä, mitä voimme havaita. Tällä yksinkertaisella tosiasialla on suunnattomia vaikutuksia siihen, mitä saamme tietää ja mitä kykenemme tutkimaan.

Erilaisilla havaintomenetelmillä voidaan luonnollisesti havaita erilaisia planeettoja ja niiden eri ominaisuuksia. Doppler spektroskopialla tai radiaalinopeusmenetelmällä havaitaan planeettoja tarkastelemalla tähden heilahtelua avaruudessa. Heilahtelu havaitaan mittaamalla tähden valon Doppler siirtymää, eli siirtymää sinisemmäksi ja punaisemmaksi, kun tähti liikkuu näkymättömän planeetan vetovoiman vaikutuksesta meitä kohti ja meistä poispäin. Havainto on sitä helpompi mitä suurempi planeetta on kyseessä, koska planeetan vetovoima ja siten tähden heilahtelun suuruus riippuu suoraan planeetan massasta. Havaitsemme siten suuremmat planeetat pienempiä helpommin ja varmemmin.

Pienet tähdet taas heilahtelevat voimakkaimmin. Jos tähti on massaltaan pieni, esimerkiksi pienimassainen punainen kääpiötähti, planeetan vetovoima heilauttaa sitä voimakkaammin kuin massiivisempia auringonkaltaisia, keltaisia spektriluokan G kääpiötähtiä. Kaksi Aurinkoa lähintä planeettakuntaa on havaittu juuri punaisten kääpiötähtien Proxima Kentauri ja Barnardin tähti ympärillä. Samalla muodostuu toinen havaintojen tuottama harha — planeettoja on helpompaa löytää keveämpien tähtien kiertoradoilta, joten niitä löydetään enemmän kuin planeettoja kiertämässä massiivisia tähtiä.

Myös planeetan radalla on merkitystä. Havainnot ovat sitä helpompia ja varmempia mitä useampi ratajakso on havaittu. Planeetat, jotka kiertävät tähtensä nopeasti, havaitaan siis todennäköisemmin kuin planeetat, joiden kiertoajat — eli vuoden pituudet — ovat pidempiä. Havaittaessa jaksollista ilmiötä kuten planeetan kiertoliikettä tähden ympäri on lisäksi varmennettava, että se tosiaan on jaksollista. Planeetan liike on siksi tunnettava tyypillisesti ainakin yhden ratajakson ajalta, jotta voidaan varmistua tähden heilahtelun aiheutuvan juuri planeetasta eikä kyseessä ole vaikkapa tähden aktiivisuuden aiheuttama epäsäännöllinen Doppler siirtymäksi tulkittu häiriö. Silloin planeetat, joiden kiertoajat ovat vuosikymmenien mittaisia, jäävät tyypillisesti havaitsematta. Löydämme siis enemmän planeettoja, joiden kiertoajat ovat lyhyitä ja joiden radat ovat lähellä tähtiään. Syy ei ole se, että sellaisia planeettoja olisi välttämättä enemmän, vaan se, että havaitsemme niitä todennäköisemmin.

Pisimmät yhtäjaksoiset lähitähtien havaintosarjat kattavat nykyisellään noin 10, korkeintaan 20 tai erittäin harvoin jopa 30 vuotta joillekin kirkkaille lähitähdille. Aurinkokuntaan suhteutettuna se tarkoittaa sitä, että Auringon 29 vuodessa kiertävä Saturnus olisi vain juuri ja juuri havaittavissa riittävällä varmuudella, vaikka se heilauttaakin aurinkoa havaittavan määrän. Saturnusta pienemmän Neptunuksen havaitseminen ei olisi nykyisellään lainkaan mahdollista. Neptunuksenkaltaisia planeettoja ei siis voi havaita lähitähtien kiertoradoilta, vaikka niitä olisi kirjaimellisesti kaikkialla.

Radiaalinopeusmenetelmällä siis havaitaan helpoiten planeettoja, jotka ovat suurikokoisia massaltaan ja kiertävät pieniä kääpiötähtiä mahdollisimman nopeasti. Siksi pienet auringonkaltaisia tähtiä kiertävät planeetat, jotka matkaavat tähtensä ympäri vuoden tai vuosien kuluessa muutamien päivien sijaan, ovat huomattavasti hankalammin havaittavissa. Niihin kuuluu myös Maa — radiaalinopeusmenetelmällä voidaan havaita noin 0.5 m/s heilahteluita auringonkaltaisen tähden liikkeessä mutta maapallojen aiheuttama heilahtelu olisi vain suuruusluokkaa 0.1 m/s. Sellainen tarkkuus on toistaiseksi saavuttamattomissa. Ylikulkumenetelmällä maapallojen havainnointi on samoin erittäin vaikeaa mutta täysin eri syistä.


Ylikulkuhavainto tarkoittaa sitä, että havaitaan, kun planeetta kulkee tähtensä pinnan editse. Koska planeetat eivät loista kovin kirkkaina, kaukaisista planetoista saadaan tietoa vain havaitsemalla miten tähti näyttää himmenevät prosentin murto-osia planeetan peittäessä pienen osan sen pintaa. Jotta eksoplaneetta kulkisi Maasta katsottuna tähtensä editse, sen ratatason on oltava juuri sopiva. Planeetan on silloin matkattava radallaan täsmälleen maanpäällisten havaitsijoiden ja tähden pinnan välistä. Vain noin prosentilla tähdistä on kiertolaisinaan planeettoja sopivilla radoilla, joten käytännössä on havaittava keskimäärin sataa tähteä, jotta edes yhden planeetan ylikulku voitaisiin nähdä.

Kepler-avaruusteleskoopin tuhannet löydöt onnistuivat vain, koska tähtitieteilijät suunnittelivat teleskoopin havainto-ohjelman oikealla tavalla. Teleskooppi asetettiin Maan kiertoradalle siten, että se kykeni tuijottamaan valittua taivaan kohtaa silmääkään räpäyttämättä muutaman vuoden ajan. Kepler suunnattiin kohtaan taivasta, jossa on samaan aikaan näkyvissä satoja tuhansia tähtiä. Siksi tuhansien eksoplaneettojen löytäminen oli jopa väistämätön lopputulos. Sitä ei tosin tiedetty etukäteen, avaruusteleskooppia suunniteltaessa, koska planeettojen määrää avaruudessa on kyetty arvioimaan luotettavasti vasta juuri Kepler-teleskoopin tulosten avulla.

Yksi ylikulkumenetelmän ongelmista on se jäljelle jäävä valtaosa, 99% tähdistä, joiden planeetat jäävät havaitsematta, koska ne eivät kulje radallaan tähtensä editse. Siksi ylikulkumenetelmällä ei voida havaita Aurinkokuntaa lähinnä sijaitsevia eksoplaneettoja — sadasta lähimmästä planeettakunnasta vain keskimäärin yksi on havaittavissa. Lähimmät ylikulkumenetelmällä havaitut planeetat kiertävätkin tähteä HD 219134 noin 21 valovuoden päässä.

Ylikulkumenetelmällä on muitakin rajoitteita. On kyettävä tuijottamaan valittua kohdetta tai niiden joukkoa keskeytyksettä, pitkiä aikoja. Vain tuntien pituisten planeettojen ylikulkujen havaitseminen on äärimmäisen vaikeaa, koska niiden kiertoajat mitataan suotuisimmillaankin päivissä tai kymmenissä päivissä.

Planeettojen ylikulkujen havaitsemiseen vaaditaan runsaasti puhdasta tuuria. Maan päällä planeettamme pyörähtäminen estää tehokkaasti luotettavat ylikulkujen etsinnät, koska kohteet siirtyvät taivaalla pois näkyvistä aina 24 tunnin sykleissä. Puolta taivaasta ei voida havaita, koska Auringon puolella päivänvalo tekee tähtitieteellisistä havainnoista mahdottomia. Maan vuotuinen kierros Auringon ympäri estää vuorollaan eri taivaan osien havainnot. Ongelmia tuottavat myös ilmakehän vesihöyry ja ajoittainen pilvisyys, joka sulkee optisen ikkunan taivaalle kokonaan. Myös Kuun sattuminen lähelle havaintokenttää nostaa taustavalon määrän liian suureksi tarkoille havainnoille — erityisesti Kuun ollessa täysi. Maan päältä on siten mahdotonta havaita ainuttakaan tähteä yhtäjaksoisesti, pitkiä aikoja, jotta voitaisiin etsiä luotettavasti planeettojen ylikulkuja. Avaruudessa on toisin.

Eksoplaneetan ylikulun luotettavaan havaitsemiseen ei yleensä riitä yksi tunnettu ylikulkutapahtuma. Yksittäinen tähden näennäinen himmeneminen voi johtua jostakin muustakin ilmiöstä, kuten taustataivaan vuorotellen toistensa eteen kiertävistä kaksoistähden komponenteista tai vaikkapa suuresta tähdenpilkusta, joka pyörähtää vuoroin esiin ja vuoroin tähden taakse. On havaittava mieluiten kolme ylikulkua, jotta saadaan kaksi mittausta ratajaksosta ja voidaan varmistua sen pysyneen samana.

Kahden ylikulun havaitseminen ei sekään riitä. Kyseessä voivat olla yksittäiset kahden eri planeetan ylikulut. Silloin menetelmällä havaittavien planeetojen kiertoajoilla on yläraja. Esimerkiksi Kepler avaruusteleskoopin toiminta-ajaksi suunniteltiin 3.5 vuotta. Se olisi rajoittanut planeettojen havainnointia siten, että kappaleet, joiden kiertoaika on noin 400 päivää tai enemmän jäisivät armotta havaitsematta riittävällä varmuudella. Teleskoopin toiminta-aika valittiin sitä silmälläpitäen, että Maata kooltaan ja kiertoratansa ominaisuuksilta muistuttavien planeettojen havaitseminen olisi mahdollisuuksien rajoissa.

Suuremmat planeetat ovat luonnollisesti helpompia havaita kuin pienemmät, jotka himmentävät tähteään vähemmän kulkiessan niiden editse. Tähtensä nopeasti kiertävät planeetat taas tuottavat useamman havaittavissa olevan ylikulun samassa ajassa. Ylikulkumenetelmä on siten parhaimmillaan, kun havaitaan kuumia Jupitereita, jättiläismäisiä planeettoja, jotka kiertävät tähtensä nopeasti, aivan niiden pinnan vieressä. Mutta menetelmä soveltuu vain satunnaisiin kohteisiin, joissa planeettojen ratataso sattuu olemaan sopiva. Sillä ei voida varmistaa muilla menetelmillä havaittujen planeettojen olemassaoloa kuin vain hyvin harvoissa, onnekkaissa tapauksissa.

Havaintomenetelmien herkkyys vaikuttaa havaittujen planeettojen määrään ja ominaisuuksiin voimakkaasti. Saamme niiden vääristävän linssin avulla vinoutuneen kuvan galaktisen lähinaapurustomme planeetoista ja planeettakunnista. Mutta vääristymää voidaan myös korjata — tuntemalla havaintomenetelmän herkkyys eri kokoisille planeetoille erilaisilla radoilla, voidaan arvioida eri kokoisten planeettojen todellinen määrä erilaisilla kiertoradoilla. Kaikista vääristymistä huolimatta, olemme saaneet valtavasti tietoa paikallisesta eksoplaneettapopulaatiosta vain etsimällä planeettoja ja pitämällä kirjaa etsintämenetelmiemme herkkyydestä ja rajoitteista.

Oudot jättiläiset oudoilla radoilla

Kuva 1. Eksoplaneettojen minimimassat rataperiodin funktiona. Kuva: P. Gilster (data: exoplanet.eu)

Päätelmät planeetttojen luonteesta ja yleisyydestä joudutiin tekemään perustuen radiaalinopeushavaintoihin ennen Kepler-avaruusteleskoopin laukaisua vuonna 2009. Radiaalinopeusmenetelmällä tehdyistä planeettahavainnoista on saatu runsaasti tietoa erilaisista planeettatyypeistä (Kuva 1.). Koska jättiläisplaneettojen havainnointi on helpointa, massaltaan Jupiterin ja Saturnuksen suuruiset kappaleet olivat ensimmäisiä planeettoja, joita onnistuttiin löytämään. Mutta ne eivät muistuttaneet juuri lainkaan oman aurinkokuntamme tuttuja jättiläisiä.

Ensimmäiset havaitut eksoplaneetat kuuluivat omituiseen kuumien jupiterien luokkaan — ne ovat jättiläisplaneettoja, joita ei pitänyt olla olemassakaan, kiertämässä tähtiään vain muutamassa päivässä, aivan tähtensä pintaa viistäen. Kuumat neptunuksenkokoiset planeetat ovat myös helposti havaittavissa mutta loistavat, muutamaa poikkeusta lukuunottamatta, poissaolollaan — aivan kuin jokin kosminen voima estäisi niitä muodostumasta. Se kosminen voima on aika. Kuumat Neptunukset menettävät kaasukehänsä tähtien puhaltaessa ne avaruuteen ja muuttuvat pelkiksi karrelle palaneiksi kivisiksi ytimiksi, kuumiksi supermaapalloiksi (Kuva 1.).

Nopeasti kävi myös ilmi, että kauempana tähdestään sijaitsevat viileät ja kylmät jättiläisplaneetat ovat usein hyvin soikeilla kiertoradoilla, joilla niiden etäisyys tähdestä vaihtelee huimasti jo yhden ratakierroksen aikana. Näitä planeettoja kiertää Aurinkokunnan lähitähtiä radoilla, joiden ratajakso on viidestäkymmenestä päivästä aina kymmeniin tuhansiin — Jupiter ja Saturnus sopivat siksi tähän planeettojen joukkoon mainiosti, joskin niiden radat ovat omituisen tarkasti ympyränmuotoisia suhteessa joukon muihin jättiläisiin.

Planeettojen väliset vuorovaikutukset ovat tyypillisesti syynä eksoplaneettojen soikeisiin ratoihin. Vain noin pari prosenttia jättiläisplaneetoista on kiertämässä tähteään Jupiterin ja Saturnuksen tapaan kaukana, usean AU:n päässä, lähes ympyräradalla. Sellaiset järjestelmät ovat hyviä kandidaatteja Aurinkokunnan kaltaisiksi planeettakunniksi. Ne ovat vain valitettavan harvinaisia.

Planeettakuntien syntyhistorioiden tapahtumat ovat vastuussa jättiläisplaneettojen ratojen havaitusta monimuotoisuudesta. Mukana on oleellisesti kaksi planeettojen ratoihin vaikuttavaa tekijää: nuoren, vastasyntyneen tähden ympärille muodostuvan kertymäkiekoksi kutsutun kaasukiekon vuorovaikutus planeettojen ratojen ominaisuuksien kanssa ja planeettojen oma vetovoima. Siten fysikaaliset reunaehdot tuottavat erilaisten planeettojen luokkia, joita ovat jättiläisplaneetoille karkeasti kuumat jupiterit sekä ”klassiset jättiläisplaneetat”. Jupiter ja Saturnus kuuluvat näistä jälkimmäiseen joukkoon, vaikka valtaosa klassisista jättiläisistä onkin soikeilla kiertoradoilla. Mitään tästä emme kuitenkaan tienneet ennen eksoplaneettojen aikakauden alkua. Valtaosa tutkijoista arveli Jupiterin ja Saturnuksen olevan malliesimerkkejä kaasuplaneetoista maailmankaikkeudessamme ja se vaikutti siihen, miten planeettoja 1980- ja 1990-luvuilla, ja vieläkin sitä aiemmin, etsittiin.


Jättiläisplaneetat syntyvät tähtien kiertoradoilla, kun pölyhiukkaset takertuvat toisiinsa ja muodostavat aina vain suurempia, kasvavia komplekseja, joihin uudet pölyhiukkaset takertuvat. Pölyksi kutsutaan tässä yhteydessä atomeja ja molekyylejä, joista koostuva aines pysyy kiinteässä muodossaan. Lähellä tähteä metallit ja silikaatit muodostavat pölyhiukkaset mutta kauempana, niin kutsutun ”jäärajan” takana lämpötilat ovat riittävän matalia, jotta myös vesimolekyylien joukot ovat kiinteitä hiukkasia. ne muodostavatkin valtaosan aineksesta, josta jättiläisplaneettojen ytimet koostuvat — siksi jättiläisplaneettojen ei katsota voivan muodostua jäärajan, eli noin 2-3 AU:n etäisyyden, sisäpuolella auringonkaltaisten tähtien ympärillä.

Pöly jatkaa hidasta kasautumistaan tuhansia vuosia. Hiukkaset kasvavat aina vain suuremmiksi ja lopulta syntyneet kappaleet ovat metrien ja satojen metrien kokoluokassa. Kappaleet myös törmäilevät ja syntyy aina vain suurempia kiertolaisia. Lopulta alkunsa saa kourallinen protoplaneetoiksi kutsuttuja kappaleita, jotka ovat kooltaan kääpiöplaneettojen Ceres ja Pluto kokoluokkaa, yli kaksituhatta kilometriä halkaisijaltaan, ja niin massiivisia, että ryhtyvät hakeutumaan hydrostaattiseen tasapainotilaan. Niiden oma gravitaatio saa aineksen erottumaan siten, että raskaampi materiaali ryhtyy vajoamaan kohti ydintä prosessissa, jossa vapautuu lämpöä. Ensimmäiset planeetat ovat syntyneet.

Mutta muodostumisprosessi ei pääty, vaan kiihtyy. Suurimmat protoplaneetat häiritsevät vetovoimallaan läheisillä kiertoradoilla olevia pienempiä kappaleita, mikä aikaansaa lisää törmäyksiä, joiden seurauksena protoplaneetat kasvavat entisestään. Jäärajan ulkopuolella, jossa jäät ovat kiinteinä aineina ja materiaa on eniten, protoplaneetat saavuttavat lopulta 10-20 kertaa Maapallon massan. Silloin niiden kehityksessä alkaa uusi vaihe ja ne saavat tulevaisuuden jättiläisplaneettojen ytiminä.

Tähteä ympäröivä kaasukiekko tarjoaa lisää materiaalia planeettojen kasvuun. Jättiläisplaneetat muodostuvat, kun massiiviset protoplaneetat ryhtyvät vetämään puoleensa kaasumaista kertymäkiekon materiaa vetovoimansa avulla. Niiden kasvulla on silloin rajana vain kiekossa olevan materian määrä ja ne kasvavat massiivisiksi Jupiterin kokoisiksi planeetoiksi tai vieläkin suuremmiksi jättiläisiksi. Näiden jättiläisten varjossa syntyvät pienemmät planeetat, kiviset maapallot ja supermaapallot, joita on universumissa lähes kaikkialla.

Monenlaiset pikkuplaneetat

Maankaltaisilla planeetoilla tarkoitetaan tavallisesti kooltaan tai massaltaan Maan kokoluokkaan kuuluvia kivisiä planeettoja. Mutta sellaiset planeetat voivat olla erilaisilla radoilla ja kiertämässä erilaisia tähtiä. Ne voivat olla kuumia tai kylmiä, vapaasti pyörähteleviä tai pyörimiseltään lukkiutuneita, yksin tai tiheästi pakatuissa planeettakunnissa ja joskus, jopa elämän vyöhykkeeksi kutsutulla etäisyydellä tähdestään, jolla planeettojen pintalämpötilat mahdollistavat nestemäisen veden esiintymisen.

Ylivoimaisesti suurin osa tunnetuista eksoplaneetoista on kuitenkin karkeasti kuumiksi supermaapalloiksi luokiteltavia kappaleita (Kuva 2.). Niitä on kiertämässä käytännöllisesti katsoen jokaista tähteä, ja niiden kiertoratojen periodit vaihtelevat päivästä noin sataan päivään. Kooltaan kyseiset planeetat ovat puolesta Maapallosta noin neljään, joskin sitä suurempia planeettoja on myös suhteellisen runsaasti lähitähtien kiertoradoilla. Aurinkokunnan planeetoista yksikään ei varsinaisesti kuulu tähän planeettojen joukkoon, mutta syynä voi olla vain se, että niistä yksikään ei olisi ollut helposti Kepler-avaruusteleskoopin havaittavissa. Tarkempi tarkastelu kuitenkin osoittaa, että planeetat ovat vielä tätäkin monimuotoisempia.

Kuva 2. Tunnetut eksoplaneetat massa-periodi -diagrammissa ennen Kepler-avaruusteleskoopin havaintoja (vasen) ja säde-periodi -diagrammissa Kepler-avaruusteleskoopin havaintojen jälkeen (oikea), olettaen karkea planeetttojen massan ja koon suhde. Kuva: N. Batalha.

Vaikka kaksi kertaa Maapallon kokoinen planeetta voi hyvinkin olla edelleen kivinen pinnaltaan, ja siten ominaisuuksiltaan maapallon kaltainen, suuremmat kappaleet ovat jotakin aivan muuta. Kaksi kertaa maapallon kokoinen kappale, jolla on maapallon kanssa sama koostumus, on massaltaan noin kahdeksankertainen supermaapallo. Se on niin massiivinen, että sen pintaa peittää luultavasti paksu kaasuvaippa, jonka pohjalla olevan kivipinnan päällä paksun kaasumeren kuumuus ja paine ovat niin suuria, että olosuhteet muistuttavat lähinnä valtaisaa painekattilaa Maapallon sijaan. Jos kaasukehä on primitiivistä hiilidioksidista koostuvaa tyyppiä, jollainen Maan kaasukehä oli sen ollessa nuori ja Marsin ja Venuksen kaasukehät ovat edelleen, kasvihuoneilmiö pääsee voimistumaan valtavaksi tuottaen pinnalle muservatan paineen lisäksi valtaisan kuumuuden, jossa kivinen pinta sulaa. Sellaiset planeetat eivät selvästi ole otollisia paikkoja ainakaan elämän etsimiseen.

Vieläkin suuremmat kappaleet taas omaavat huomattavasti paksummat kaasuvaipat, kuten vajaan neljän Maapallon kokoinen Neptunus, joka on massaltaan noin 17 maapalloa. Kepler-avaruusteleskoopin havaitsemaan planeettojen joukkoon kuuluu siis valtava kirjo kappaleita Maapalloa pienemmistä kaasukehättömistä kivenmurikoista massiivisiin, kuumiin neptunuksenkaltaisiin kaasuplaneettoihin. Näiden joukossa on muutama erittäin mielenkiintoinen, joskin osittain hypoteettinen, planeettojen luokka.

Aavikkoplaneetat

Suuri osa, jopa yli puolet, potentiaalisesti elinkelpoisista kiviplaneetoista saattaa olla niin sanottuja aavikkoplaneettoja (2). Ne ovat karuja, kuivia planeettoja, joiden pinnalla ei esiinny vettä suurina valtamerinä, kuten Maapallolla. Aavikkoplaneettojen arvellaan voivan olla jopa elinkelpoisia. Silloin veden ja vesihöyryn merkkien puute kivisistä, pienikokoisista eksoplaneetoista tehdyissä havainnoissa, ei tee niistä automaattisesti täysin elinkelvottomia. Ne voivat säilyttää joitakin maankaltaisia ominaisuuksia jopa niinkin lähellä auringonkaltaisia tähtiä kuin Aurinkokunnan planeetta Merkurius, jonka etäisyys Auringosta on vain 0.38 AU. Sellaisessa tilanteessa aavikkoplaneettojen elinkelpoisuuden edellytys tosin on niiden voimakas heijastavuus, joka estäisi planeettoja kuumenemasta pinnoiltaan liikaa. Toisessa ääripäässä pienet planeetat, jotka eivät aivan kykene ylläpitämään paksua kaasukehää, ovat kylmiä aavikkoplaneettoja. Oman järjestelmämme planeetta Mars on hyvä esimerkki sellaisesta. Eksoplaneetoista kaikkein lähin naapurimme, Proxima b, voi olla samalla lähin esimerkki lämpimästä aavikkoplaneetasta kiertämässä toista tähteä.

Monet tähtiään lähellä kiertävät kiviplaneetat kuuluvat aavikkoplaneettojen luokkaan. Mutta ollessaan liian lähellä tähtiään, voimakas säteily ja hiukkastuuli voivat miljoonien vuosien kuluessa riisua pienet planeetat kaasukehistään, puhaltaen ne avaruuteen ja jättäen jäljelle vain kuumat ja elottomat pinnat. Ne ovat todellisia aavikkoplaneettoja — planeettoja, joiden paljailla, karuilla pinnoilla vain voimakas säteily ja hiukkastuuli hiljalleen hajottaa pinnan mineraalien rakennetta. Ne eivät kärsi eroosiosta, koska tuulen ja veden vaikutusta ei ole. Vain satunnaiset meteorit iskeytyvät paahtuneelle pinnalle jättäen jälkeensä ikuisesti törmäyksistä muistuttavat kraaterit kuten Merkuriuksen tai Kuun pinnoilla. Sellaisilla planeetoilla ei varmasti elä mikään.

Meriplaneetat

Toinen mielenkiintoinen planeettojen kategoria on syvän, yhtenäisen valtameren peittämät meriplaneetat. Sellaisten planeettojen pienoismalleja esiintyy Aurinkokunnassa, joskin ne ovat kaikki kaukana Auringosta ja kiertoradalla jättiläisplaneettojen ympäri Aurinkokunnan ulko-osissa. Esimerkiksi Jupiterin kuista Europa, Ganymedes ja Kallisto ovat kuin pikkuisia meriplaneettoja, vaikka eivät varsinaisesti planeettoja olekaan. Niitä kuitenkin peittää kymmenien, jopa satojen kilometrien paksuinen vesikerros, joka tosin on pinnaltaan jäässä kaukana Auringon lämmöstä.

Meriplaneettojen kanssa yhteensopivia keskitiheyksiä tunnetaan useilta eksoplaneetoilta. Yksi parhaista esimerkeistä on vain noin 47 valovuoden etäisyydellä Aurinkokunnasta sijaitseva punaista kääpiötähteä Gliese 1214 kiertävä planeetta. Gliese 1214 b on massaltaan noin 6.6 kertaa Maapallon kokoinen ja halkaisijaltaan noin 2.7 kertainen. Se on siten keskitiheydeltään vain noin kolmanneksen Maapallon keskitiheydestä, mikä tarkoittaa, että suuri osa planeetasta koostuu kiveä kevyemmästä aineksesta. Vaikka Gliese 1214 b:n kaasukehä voikin olla paksu, mikä osaltaan selittäisi sen pientä tiheyttä, planeettaa peittävä, syvä valtameri on erittäin todennäköinen syypää sen matalaan tiheyteen.

Gliese 1214 b on luultavasti paksun vesipitoisen kaasukehän peittämä mutta sen valtavassa paineessa, syvällä planeetan sisäosissa, vesi esiintyy jokseenkin erikoisessa olomuodossa ionisoituna plasmana. Elämän edellytykset eivät siis täyty Gliese 1214 b:n pinnalla muta se osoittaa, että vesiplaneettoja on olemassa jo aivan kosmisessa lähinaapurustossamme. Jos ne olisivat Gliese 1214 b:tä pienempiä, niiden meressä voisi hyvinkin uiskennella omituisia valtamerielämään sopeutuneita elämänmuotoja.

Jääplaneetat

Tähden säteily heikkenee kääntäen verrannollisena etäisyyden toiseen potenssiin. Se on vain matemaattinen tapa ilmaista, että kauempana on kylmempää. Jotkut planeetat ovat niin kaukana kiertämistään tähdistä, että niiden pinnalla ei voi virrata nestemäistä vettä, koska se on kaikki jäätynyt. Ainuttakaan eksoplaneettaa, jolla olisi jäinen pinta, ei ole onnistuttu havaitsemaan ja varmistamaan jääpeitteiseksi mutta niitä on varmasti runsaasti Linnunradassa.

Jääplaneetat ovat varmuudella yleisiä. Niiden miniatyyriversioita on runsaasti jo omassa Aurinkokunnassamme, jättiläisplaneettojen kuina ja Pluton kaltaisina jäisinä kääpiöplaneettoina, Neptunuksen radan tuolla puolen. Vesi on maailmankaikkeuden yleisin yhdiste ja sitä esintyy aivan kaikkialla — lukuunottamatta aivan planeettakuntien kuumia sisäosia, joista tähtien säteily on haihduttanut sen pois. Pienet planeetat taas muodostuvat herkästi ja esiintyvät yleisesti tiukkaan pakatuissa planeettakunnissa, jossa kappaleiden radat ovat vieri vieressä. Monet näistä planeetoista koostuvat suurista määristä vettä ja osa niistä on niin kaukana tähdestään, että vesi jäätyy. Mitään muuta ei tarvita.

Jääplaneetoilla voi olla kaasukehä mutta niitä yhdistävä piirre on paksu jääkuori, jonka alla velloo syvä valtameri. Sellaiset valtameret pysyvät nestemäisinä planeetan metalleista ja silikaateista koostuvassa ytimessä tapahtuvan radioaktiivisen hajoamisen tuottaman lämmön ja läheisten taivaankappaleiden vuorovesien aiheuttaman kitkalämmön avulla. Elämää voisi esiintyä sellaisissa merissä.

Olemme saattaneet jo löytää useita jääplaneettoja — emme vain voi varmistua niiden ominaisuuksista ja koostumuksesta riittävällä varmuudella. Lähin jääplaneetta saattaa löytyä läheisestä Kapteynin tähden planeettakunnasta vain vajaan 13 valovuoden päästä — se on tähti, joka on luultavasti peräisin toisesta, Linnunrataan kauan sitten sulautuneesta galaksista. Meillä ei kuitenkaan ole vielä keinoja tutkia järjestelmän supermaapalloiksi luokiteltavien planeettojen ominaisuuksia.

Silmäplaneetat

Eräs Maan pyörimisliikkeeseen tottuneille vieras planeettatyyppi on niiden planeettojen joukko, joiden pyöriminen ja kiertoaika on synkronoitu. Sellaisia on suunnilleen jokainen niistä pienistä planeetoista, jotka kiertävät tähtensä vain muutamassa tai muutamassa kymmenessä päivässä. Tähden voimakkaat vuorovesivoimat saavat satojen miljoonien vuosien kuluessa sitä lähellä kiertävien planeettojen pyörimisen lukkiutumaan kiertoaikaan siten, että ne näyttävät aina saman puolen tähdelleen. Vuorovesivoimat muokkaavat hiljalleen pyörimistä kunnes se lukkiutuu — kyse on vain siitä, että järjestelmä hakeutuu tasapainotilaan. Planeetan lukkiuduttua, vuorovesivoimat eivät jatkuvasti muokkaa sen pintaa, vaan tähden vetovoima pysyy likimain vakiona planeetan eri puolilla ja on saavutettu aiempaa stabiilimpi tila. Esimerkiksi Kuu tarjoaa ilmiöstä mainion esimerkin, vaikkei planeetta olekaan.

Mielenkiintoiseksi tilanne muuttuu, jos kyseessä on meriplaneetta. Silloin tähden säteily lämmittää planeetan toisen puolen ja pitää sen sulana saaden veden haihtumaan voimakkaasti, kun taas toisella puolella voi esiintyä paksulti jäätä. Puoliskojen väliin saattaa silloin muodostua lauhkea vyöhyke, jossa elämä pääsee kukoistamaan. Planeetta näyttää kuin jättiläismäiseltä avaruudessa vaeltavalta silmältä, jonka katse on kiiinnittynyt tähteensä.

Pallonpuoliskojen valtaisat lämpötilaerot kuitenkin pyrkivät tasautumaan, ja voimakkaat tuulet kuljettavat kuumaa vesihöyryä lauhkealle vyöhykkeelle. Jäähtyessään, höyrystä syntyy sadetta ja lauhkea vyöhyke voikin olla jatkuvien monsuunisateiden kourissa. Lämpötilaerot aiheuttavat myös voimakkaita merivirtoja, jotka tasaavat lämpötilaa eri puolilla planeettaa. Valon määrä ei kuitenkaan muutu. Silmäplaneettojen toinen puoli on ikuisessa valossa ja toinen ikuisesti pimeä. Siinä välissä, lauhkealla vyöhykkeellä, taas on ikuinen aamuhämärä, jos tähden näkeminen vain on kaikkien sadepilvien alta mahdollista.

Monet aavikkoplaneetat voivat myös olla silmäplaneettoja. Aavikkoplaneetan voi tehdä elinkelpoiseksi juuri se, että lauhkealla vyöhykkeellä voi esiintyä hiukan nestemäistä vettä, vaikka planeetan päivän puolella kuumuus olisikin jatkuvasti liian polttavaa nestemäisen veden, ja siten elämän, esiintymiselle.


Planeettojen metsästäjiä on jo kauan kiehtonut ajatus mahdollisuudesta löytää ominaisuuksiltaan maankaltaisia planeettoja. Vaikka maan kokoista ja massaista planeettaa ei olekaan löytynyt kiertämässä maankaltaisella radalla auringonkaltaista tähteä, tunnemme runsaasti mielenkiintoisia eksoplaneettoja, joita voidaan pitää ainakin jonkinasteisina kandidaatteina eläviksi planeetoiksi.

Pohjimmiltaan kaikki pienet planeetat koostuvat vain raudasta, silikaateista ja vedestä. Kaasuplaneetat puolestaa ovat haalineet vetovoimansa avulla itselleen vedystä ja heliumista koostuvan paksun kaasuvaipan. Pohjimmiltaan pienet planeetat jakautuvat kivisiin maapalloihin ja supermaapalloihin sekä paksun kaasuvaipan omaaviin minineptunuksiin ja neptunuksiin. Ne ovat luultavasti fysikaalisestikin erillisiä luokkia, koska havainnoissa näkyy kaksi kokoluokkaa, joiden välillä on vähemmän planeettoja. Luokkien välinen raja on noin kaksi kertaa Maan kokoisissa planeetoissa, joita on vähemmän kuin sitä suurempia minineptunuksia ja pienempiä supermaapalloja (Kuva 3.). Mutta mitään tarkkoja rajoja planeettojen eri luokilla ei ole. On vain erilaisia ominaisuuksia, joiden jatkumon johokin osaan kaikkien planeettojen ominaisuudet osuvat (Kuva 3.). Aurinkokunnan planeetat tarjoavat näytille vain pienen murusen siitä planeettojen kirjosta, joka löytyy jo aivan lähimpien tähtien kiertoradoilta.

Kuva 3. Eksoplaneettojen massa-säde diagrammi, joka antaa tietoa niiden koostumuksesta ja muodostumisesta (1). Värit kuvastavat planeettojen erilaisia pintalämpötiloja. Kuva: Li Zeng et al.

Ei ole olemassa vain yhtä tapaa luokitella eksoplaneettoja. Luokitukset ovat aina tarkoituksenmukaisia ja subjektiivisia, ja ne tehdään jostakin tietystä näkökulmasta. Voi olla hyödyllistä luokitella planeettoja niiden koon mukaan, koska koko on ylikulkumenetelmällä mitattavissa oleva parametri. Toisinaan planeettoja luokitellaan koostumuksen mukaan, kuten kuvassa 3., jossa eri käyrät kuvastavat erilaista keskimääräistä koostumusta. Itse olen käyttänyt luokitusta, jossa määrittävänä tekijänä on planeetan massa — se on parametri, joka on saatavilla radiaalinopeushavainnoista.

Eksoplaneetat ovat kuitenkin todellisuudessa vielä oudompia kuin niiden yleisimpien tyyppien tarkastelu antaa odottaa. On lähes puhtaasta raudasta koostuvia, jopa kolme kertaa Maata tiheämpiä planeettoja, kuumia, yli 6000°C lämpötilaan tähden voimakkaassa säteilyssä kuumenneita kappaleita, planeettoja joiden kaasukehässä sataa rautaa ja planeettoja, jotka ovat matkanneet aivan naapuriimme toisesta galaksista. Niiden joukossa on varmasti myös Maapallon planetaarisiin olosuhteisiin sopeutuneille ihmisapinoille tutulta näyttäviä maailmoja, joissa elämä voisi kukoistaa, jos sitä vain on päässyt syntymään.

3 kommenttia “Erilaiset maailmat: eksoplaneettojen hämmästyttävä diversiteetti”

  1. Lasse Reunanen sanoo:

    Pitkä blogisi monta kohtaa sisältäen, joita kaikkea ei kommentointiini. Eksoplaneettojen luokittelun mahdollisuuksiin kuitenkin ennakoisin vaikka vielä havainnot vähäisinä rajaavat näkemästä kokonaisuuksia:
    Maan melko pyöreiden planeettaratojen jakautuminen noudattaa melko tarkoin tunnettua jaksollista etäisyysjakaumaa. Myös Jupiterin radalla kiertävät pienkappaleiden seuralaiset ns. tasajakoisille radoilleen asettuneena. Olettaa siis voinee eksoplaneettojenkin ratatasojen hakeutuneen tai hakautuvan vastaavasti omilla ratatasoillaan säännönmukaisuuksiin, joissa kiinteät pitkäkestoiset rataetäisyydet mahdollistuu – kertoimet tosin erilaiset voinee olla kuin Aurinkoa kiertävillä planeetoilla.
    Vasta useampien samaa tähteä kiertävien eksoplaneettojen muodostelmista tätä ns. jaksollisuutta voidaan laskea ja kenties varmentaakin – tosin soikeat radat tuo omat lisätulkinnat…

    Eilen Yle Radio Puhe / Juuso Pekkinen ohjelmassa haastateltiin professori Heikki Ojaa, jolta uusi kirja; Eksoplaneetat (olen vasta selaillut sitä kirjakaupassa). Olit myös ohjelman loppupuolella haastateltavana, jossa otit esiin lisääntyvien satelliittien ja valosaasteen haitat havaita oikeaa tähtitaivasta.
    Tässä tähtitaivaan lisääntyvissä satelliiteista voinee tuottaa videoita, joissa suodatettuina tähdet pois ja sitten vastaavasti vain satelliitteja näkyen…

  2. Kalle Mansikkamaa sanoo:

    Alussa oli Big Bang ja universumi äärettömään kuuma. Koska universumi oli niin paljon jäähtynyt, että planeetat ja vesi saattoivat yhdistyä vetiseksi planeetaksi?

    1. Mikko Tuomi sanoo:

      Maailmankaikkeus jäähtyi niin, että atomit pysyivät kasassa 370000 vuotta alun jälkeen. Siitä eteenpäin, seuraavan miljardin vuoden ajan, tähdet ja galaksit alkoivat syntymään ja ensimmäiset jättiläistähdet räjähtivät supernovina tuottaen samalla veden rakennusainetta, happea. Vetisiä planeettoja saattoi siis syntyä jo maailmankaikkeuden ensimmäisen miljardin vuoden aikana mutta tarkkaa ajankohtaa ei ole mahdollista antaa.

Vastaa käyttäjälle Lasse Reunanen Peruuta vastaus

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *