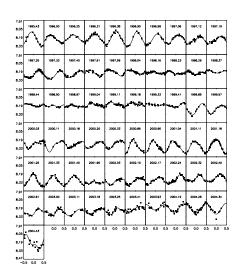
Period search from light curves with changing shapes

Jyri Lehtinen

Ursa - University of Helsinki

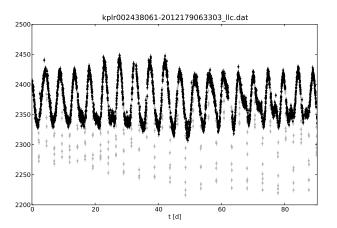
April 26, 2013

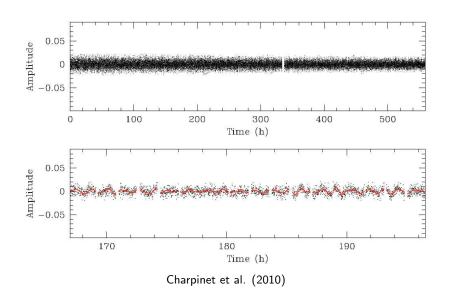


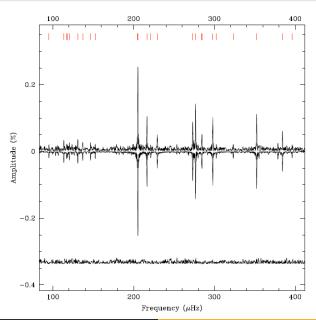
Many kinds of periodicity

- The sky is full of periodic phenomena inluding a large fraction of variable stars.
- While some periodic variable stars show nice stable light curves, this is not at all the case for all of them.
- The light curves can be unstable is a variety of ways, eg.
 - Variable period of eclipsing binaries ⇒ changing eclipse timings
 - ► Changing light curve profiles of semiregulars and Miras
- The more carefully you observe the periodic variables, the more of them turn out not to have totally stable light curves.

Changing light curves


- A particularly involving case are the light curves of stars that have photospheric spots.
- Here we observe variations of both light curve shape and period and the variability can even disappear at times.


FK Com – Hackman et al. (2012)


Changing light curves

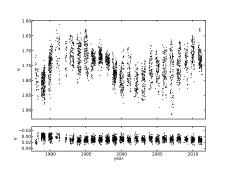
With good enough data we see that the light curves of these spotted stars are constantly evolving and don't repeat any single period cycle.

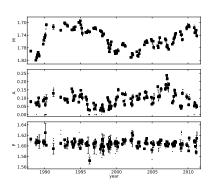
- A simple and commonly used way to search for periodicity is to compute the *power spectrum* of the data.
 - ► Lomb-Scargle periodogram for unevenly spaced observations (Scargle 1982)
- This assumes that the data consists of sinusoidal waves with stable frequencies.
 - ► Stationary waves or growing and decaying waves at specified frequencies
- Works well for stars with "non-violent" pulsations (δ Sct, asteroseismic targets).

Piecewise modelling

- In many cases we don't want to make the assumptions that using the power spectrum forces us to do.
- An alternative is to select shorter pieces of the data and to do modelling of those.
- The optimal length of the analysed datasets has to be determined based on the data.
 - ► Short enough for excluding variations of the profile but long enough to include enough data for reliable modelling

Piecewise modelling

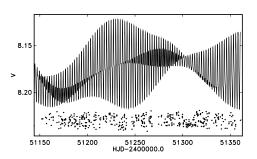

 The most obvious approach is to fit a low order Fourier-series into the short dataset,


$$\hat{y}(t_i) = M + \sum_{k=1}^{K} [B_k \cos(k2\pi f t_i) + C_k \sin(k2\pi f t_i)]$$

(Continuous Period Search - Lehtinen et al. 2011)

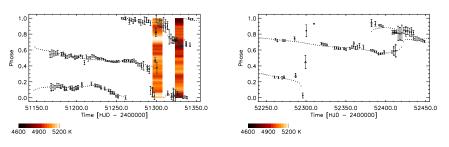
- From the fit we estimate the mean M, amplitude A and period P=1/f of the dataset as well as minimum or maximum times of the light curve.
- By changing the model order K we can control how detailed modelling we want.

Piecewise modelling



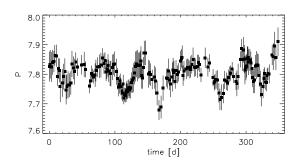
LQ Hya - Lehtinen et al. (2012)

Carrier wave modelling

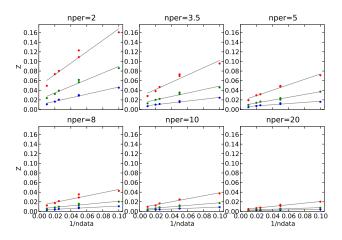

- Another approach is to model all the data on one go but to allow smooth variability of all the model parameters in time.
- This means fitting models for the parameters M(t), $B_k(t)$, $C_k(t)$, f(t), (Carrier Fit Method Pelt et al. 2011)

FK Com – Hackman et al. (2012)

Comparing the methods

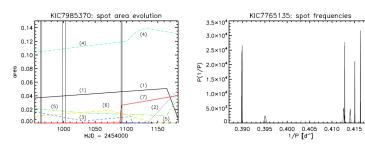

- In reality the two approaches work well and give similar results for real photometry
- This is shown in phase diagrams of light curve minima of FK Com derived from the fits done with both of the methods:

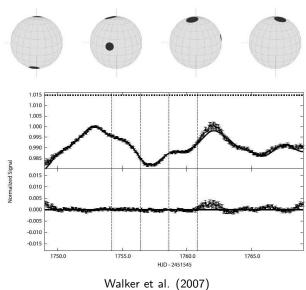
Hackman et al. (2012)


Errors of period estimation

- Unfortunately having to cut down the data used for modelling introduces errors in the period estimation.
- With a small amount of data, short time span of observations or large observational errors the uncertainties of the period estimation can far exceed real period variations.
- Below are period estimates of a stable sinusoid made to mimick real photometry and modelled with a sliding window.

Errors of period estimation

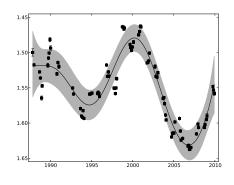

Relative uncertainty in period estimation:


Relative errors of data, $\epsilon \in [0.05, 0.1, 0.2]$

More physical modelling

- If we know more about the physics of the observed system, we can try to make our modelling reflect the actual reality of the system more closely.
- An example is modelling spotted stars by placing evolving spots on a rotating model star.

Frölich et al. (2012)



More physical modelling

- However, the results can only be as good as the physical model you used to get them.
- Too complex models can also make it impossible to get well defined and unique solutions based on the available data.
- Results from such modelling can be misleading.

Further ideas

- Only barely periodic data might need special approaches to get good estimates of the periodicity.
- We need to pay attention for allowing enough variability in the light curve profile.

V711 Tau mean brightness

Concluding remarks

- For modelling periodic data successfully we need to know how the data behaves as well as what assumptions or models force us to make.
- Bad choice of modelling approach can lead to misleading results.
- On the other hand, successful analysis can be done using very simple ideas.

